用户名: 密码: 验证码:
磨盘柿生物技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以磨盘柿当年生休眠芽为外植体,研究了接种形态及基本培养基对初代培养的影响;以组培苗为材料,研究了影响其离体快繁的诸因素,确定了适于磨盘柿早期和中期继代增殖的培养基成分;利用组培苗叶片及无节茎段为外植体,较为系统地研究了影响其不定芽再生的各因素,建立了不定芽再生体系;从成熟期的磨盘柿果实中成功克隆了2个ACC合成酶基因片段。以期为通过生物技术改善柿果贮运性能、简化贮运操作奠定基础。主要结果如下:
     以剥离的休眠芽为外植体,在含BA7.5mg/L的MS,MS(1/2N)和1/2 MS培养基中均能建立初代培养。其中在MS(1/2N)+BA7.5mg/L中的外植体,生长状态最好,转入MS(1/2N)+ZT1.0mg/L+IAA0.1mg/L+BA1.0mg/L培养基中,继代培养2代后,增殖系数达2.37,平均苗高为11.8mm。
     组培苗在MS(1/2N)+ZT1.0mg/L+IAA0.1mg/L+BA1.0mg/L培养基中继代培养10~12代,转入MS+ZT1.0mg/L中IAA0.1mg/L+BA1.0mg/L培养基中后,增殖系数较前者提高了44.4%,平均苗高增加5mm。方差分析结果显示,基本培养基对磨盘柿继代增殖的影响极为显著,ZT的作用次之,IAA作用较弱,BA最弱。与MS(1/2N)和1/2 MS相比,MS基本培养基更有利于组培苗早期继代增殖。
     在MS+ZT1.0mg/L+IAA0.1mg/L+BA1.0mg/L培养基中继代10~12代的组培苗,转入DKW+ZT1.0mg/L+IAA0.1mg/L+BA1.0mg/L培养基中,组培苗生长极为旺盛、健壮,增殖系数较MS基本培养基中提高了43.1%,平均苗高增加6mm。R值结果表明,DKW+ZT1.0mg/L+IAA0.1mg/L+BA1.0mg/L培养基为磨盘柿组培苗中期继代增殖的最佳培养基。
     通过三因素三水平正交试验,对基本培养基、ZT及IAA对叶片不定芽再生的影响进行了研究。结果表明,ZT浓度对叶片不定芽再生的影响作用最大,基本培养基次之,IAA对愈伤组织的形成有促进作用。组培苗顶端前2节位展开叶片,切成4mm×4mm左右,远轴面接触培养基时的再生效果最好。切片在MS(1/2N)+ZT4.0mg/L培养基中的分化率和平均不定芽数分别为76.76%和1.26。
     位于组培苗顶端前2节位的伸长无节茎段,切成约4mm左右,平铺于MS(1/2N)+ZT4.0mg/L+IAA0.1mg/L培养基中可以获得最高的分化率和平均不定芽数,分别为83.65%和2.25。ZT和基本培养基对分化率和平均不定芽数的影响显著高于IAA,
    
    而I从对愈伤组织形成的作用明显高于ZT和基本培养基。
     从成熟期的磨盘柿果实中克隆到2个ACC合成酶基因片段M一CSI和M一CsZ,
    两者核昔酸与氨基酸的同源性分别为98%和99%;与DK一ACsl的核昔酸同源性分别
    为69%和70%。二者均编码224个氨基酸,均含有其它植物ACC合成酶的氨基酸保
    守区及不变氨基酸残基,在多肤水平上的同源性很高,与DK-ACSI的氨基酸同源性
    分别是98%和99%。
Dormant buds formed in the same year of Mopan persimmon trees were taken as explants. Effects of explants form and basal media on primary culture were studied. Factors affecting subculture micropropagation were studied by using tube seedlings as materials- The suited ingredient of culture medium for subculture micropropagation of forepart and metaphase were established Some factors affecting adventitious shoot regeneration were studied. Adventitious shoot regeneration systems from in vitro leaves and stems without internode of tube seedlings were obtained. 2 ACC synthase gene fragments were successfully cloned from, mature Mopan persimmon fruit, Here all have been done is in order to improve the persimmon performance of storage and transportation and simplify the management of storage and transportation. The mean results were as follows:
    Dormant bud explants taken from Mopan persimmon trees after being peelled squamas and 3 leaf primordia off were inoculated on MS, MS(1/2N) and 1/2MS all supplemented with 7.5 mg/L BA. Primary cultures were all obtained on the 3 media. The growth state of explants inoculated on MS(1/2N)+ BA 7.5 mg/L medium was the best. They then were transferred on MS (1/2N) +ZT 1.0 mg/L +IAA.04 mg/L+BA1.0mg/L medium. The mean multiplication reached 2.37 and the average height of tube seedlings reached 11.8 mm after being subcultured 2 times.
    Tube seedlings having been cultured on MS(1/2N) + ZT 1.0 mg/L + LAA 0.1 mg/L + BA 1.0 mg/L medium for about 10-12 times then were transferred on MS + ZT 1.0 mg/L + IAA 0.1 mg/L + BA 1.0 mg/L medium. The multiplication increased 44.4%, at the same time the average height of shoots increased 5 mm. The results showed that the effect of the 4 factors on subculture micropropagation was in the order of basal medium, ZT, IAA and BA. Compared with MS(1/2N), MS basal medium was more beneficial to forepart subculture micropropagation.
    Tube seedlings having been cultured on MS + ZT 1.0 mg/L + IAA 0.1 mg/L + BA 1.0 mg/L medium about 10~12 times then were inoculated on DKW + ZT 1.0 mg/L + IAA 0.1 mg/L + BA 1.0 mg/L medium. The multiplication increased 43.1% , and the average height of shoots increased 6 mm. The results of R value showed that the DKW basal medium was
    
    
    
    the most suitable medium to the metaphase subculture micropropagation of "Mopan" tube seedlings.
    Effects of basal media, ZT and IAA on adventitious shoot regeneration were studied through orthogonal design trial L9(34). The results showed that the effect of ZT concentration was the greatest and the basal medium took the second place. But the concentration of IAA was more effective on the forming of callus than basal medium and ZT. The upper 2 expanding leaves of tube seedlings, cut into 4 mm X 4 mm and inoculated with abaxial layer downside may have the greatest regeneration efficiency. The differentiation percentage and the average adventitious shoot number per explants on MS(1/2N) + ZT 4.0 mg/L were 76.76% and 1.26 respectively.
    The upper 2 extending stems without internode on tube seedlings, cut about 4mm in length and lay on the MS(1/2N) + ZT 4.0 mg/L + IAA 0.1 mg/L medium may have the greatest regeneration efficiency. The differentiation percentage and the average adventitious shoot number per explants were 83.65% and 2.25 respectively. The effect of ZT concentration was the greatest and the basal medium was greater than IAA. But the concentration of IAA was more effective on the forming of callus than basal medium and ZT.
    2 ACC synthase gene fragments M-ACS1 and M-ACS2 were successfully cloned from mature Mopan persimmon fruit. The identities of nucleotide acid and amino acid were 98% and 99% respectively. The nucleotide acid identities of M-ACS1 and M-ACS2 with DK-ACS1 were 69% and 70% respectively. They both encoded 224 amino acid. They also have the conserved amino acid regions and invariant amino acid residues of ACC synthase existing in other plants, and with higher identity in polypeptide leveE The amino acid identities with DK-ACS1 were 98% and 99% respectively.
引文
[1] 林娇芬,庞杰,吴少谦,等.柿果采后处理及保鲜技术[J].中国果菜,2002,5:22.
    [2] 中国农业年鉴,1995~2002,中国农业出版社.
    [3] 朱佳满,王永忠.柿产业开发的问题与对策[J].果农之友,2003,2:3.
    [4] 李红伟,王立平.石灰岩山区柿树丰产优质栽培技术[J].河北林果研究,1998,13(增刊):111~112.
    [5] 齐敏,禹兰景,岳崇峰,等.柿的营养及药用[J].河北林业科技,1997,4:53~54.
    [6] 张余康.食药兼优话柿子[J].药膳食疗,2003,3:42~43.
    [7] 缪士毅.果中圣品话柿子[J].中国林业,1995,11:43.
    [8] 郭宏伟.食药俱佳话秋柿[J].饮食科学,2000,12:20.
    [9] 马兰花.柿子药用成份分析及研究[J].山西林业,2001,5:29~30.
    [10] 张继澍,葛秀荣,黄森,高梅.柿树资源的开发利用研究[J].粮油加工与食品机械,2002,10:12~15.
    [11] 张子德,马俊莲,甄增立.柿果采后生理研究[J].河北农业大学学报,1995,18(2):105~107.
    [12] Adams D O, Yang S F. Ethylene biosynthesis: Identification of 1-aminocyclopropane -1-carboxylic acid as an intermediate in the conversion of methionine to ethylene[J]. Proc Natl Acd Sci, USA, 1979, 76: 170~174.
    [13] 周跃钢.反义RNA技术在植物基因工程中的应用[J]. 生物化学与物理进展,1996,23(4) 297~301.
    [14] 马晓莉.反义RNA及其应用研究进展[J].安徽教育学院学报,1999,86(2):75~78.
    [15] 金勇丰,张上隆,陈昆松,等.果实成熟的分子生物学[J].植物生理学通讯,1996,32(5):390~396:
    [16] Yu YB, Adams D.O, Yang S F. 1-Aminocyclopropane-1-carboxylie acid synthase, a key enzyme in ethylene biosynthesis[J] Arch Biochem Biophys, 1979, 198: 280.
    [17] 王伏林,王远山,胡张华.反义RNA在植物基因工程中的应用[J].生物技术,2003,13(1): 34~35.
    [18] 李祥,易自力,蔡能,等.反义RNA及其在植物基因工程领域的应用[J].生物技术通讯,2003,14(2):162~164.
    [19] 许本波,张学昆,李加纳.反义RNA技术在现代作物遗传改良中的应用[J].中国农学通报,2003,19(3):84~88.
    [20] 汤郡,张莉,郭辉玉.反义RNA技术及其应用[J].广州医学院学报,1999,27(2):82~86.
    [21] 马晓莉.反义RNA及其应用研究进展[J].生物学数学,2000,25(6):2~4.
    [22] 孟博.反义RNA技术的应用与进展[J].国外医学遗传学分册,2001,24(6):289~292.
    [23] 石东乔,陈正华.反义RNA及其在植物学研究中的应用[J].遗传,2001,23(1):73~76.
    [24] Sato T, Theologis A. Cloning the rnRNA encoding 1-aminocyclopropane-1-carboxylate synthase
    
    the key enzyme for ethylene biosynthesis in plants[J]. Proc Natl Acad Sci USA, 1989, 86: 6621~6625.
    [25] Nakajima N, Nakagawa N,Imaseki H, et al. Molecular size of wound-induced 1-aminocyclopropane-1-carboxylate synthase from Cucurbita maxima Dueh. and change of translatable mRNA of the enzyme aider wounding[J]. Plant Cell Physiol, 1988, 29: 989~998.
    [26] Dong J G, Yip W K, Yang S F Monoelonal antibodies against apple 1-aminocyclopropane-1-carboxylate synthase. Plant Cell Physiol, 1991,.32.25~31.
    [27] 胡建成,华雪增,刘愚.番茄果实ACC合成酶的纯化[J].1995,植物生理学报,21:57~64.
    [28] Rottmarm W H, Peter. G E, Oeller P W, et al. 1-Aminoeyelopropane-1-earboxylate synthase in tomato, is encoded by a multigene family whose transcription is induced during fruit and floral senescence[J]. J Mol Biol, 1991, 222: 937~961.
    [29] Van Der Straeten D, Van Wiemeersch L, Goodman H M. Cloning and sequence of two different cDNAs encoding 1-Aminocyelopropane-1-carboxylate synthase in tomato[J]. Proc Natl Aead Sci USA,1990, 87: 4859~4863.
    [30] Botella J R, Sehlagnhaufer C D, Arteca R N, et al. Identification and characterization of 3 putative genes for 1-aminocyclopropane-1-carboxylate synthase from etiolated mungbean hypocotyls segments[J]. Plant Mol Biol, 1992, 18: 793~797.
    [31] Subraminiam K, Abbo S, Ueng P P. Isolation of two differentially expressed wheat.ACC synthase cDNAs and the characterization of one of their genes with root-predominant expression [J]. Plant Mol Biol, 1996, 31 (5): 1009~1020.
    [32] Dong J G, Kim W T, Yip W K, et al, Cloning of a cDNA encoding 1-Aminocyclopropane-1-catboxylate synthase and expression of its mRNA in ripening apple fruit[J]. Planta, 1991, 185:38~45
    [33] Lawton K A, Huang B, Golgsbrough P B, et al. Molecular cloning and characterization of senescence-related genes from carnation flowerpetals[J]. Plant Physiol, 1989, 90: 690~696.
    [34] Park K Y, Drory A, Woodson W R. Molecular cloning 1-aminocyelopropane-1-carboxylate synthase from senescing carnation flower petals[J]. Plant Mol Biol, 1992, 18: 377~386.
    [35] Nakajima N, Mori H, Yamazaki K. Molecular Cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-1-carboxylate synthase included by tissue wounding[J]. Plant Cell Physiol, 1990, 31: 1021~1029.
    [36] Nakajima N, Mori H, Yamazaki K. Cloning of a complementary DNA for auxin-induced 1-aminocyclopropane-1-carboxylate synthase and differential expression of the gene by auxin and wounding[J]. Plant Cell Physiol, 1991, 32: 1153~1163.
    [37] 尹俊,哈斯阿古拉,方天祺.河套蜜瓜ACC合成酶cDNA片段的克隆和序列分析[J].生物技术,1997,7(3):10~13.
    [38] 饶景萍,童斌,中野龙平,等.柿果实ACC合成酶eDNA的克隆及其序列分析[J].西北植物学报,2001,21(5):819~825.
    
    
    [39] Yip W K, Dong J G, Kenny J W, et al. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase[J], Proc Nail Acad Sci USA, 1990, 87: 7930~7934.
    [40] Kim W T., Silverstone, Yip W K, et al. Induction of 1-aminocyclopropane-1-carboxylate synthase mRNA by auxinin mungbean hypocotyls and cultured apple shoots[J]. Plant physiol, 1992,98: 465~471.
    [41] 刘传银,田颖川,沈全光,等.番茄ACC合成酶eDNA克隆及其对果实成熟的反义抑制[J].生物工程学报,1998,14(2):139~146.
    [42] 刘中大,仇润祥,王永胜,等.番茄1位氨基环丙烷羧酸(ACC)合成酶基因的分离和克隆[J].内蒙古大学学报(自然科学版),1998,29(4):548~551.
    [43] Shinjiro Shiomi, Mkihiro Yamamoto, Teijiono. CDNA cloning of ACCsynthase and ACC oxidase genes in cucumber fruit and the redifferential expression by wounding and auxin[J]. Japan Soc Hort sci1998, 67 (5): 685~692.
    [44] Hyodo H, Tanaka K, Watanabc K. Wound-induced ethylene production and 1-aminocyclopropane-1-carboxylate synthase in mesocarp tissue of winter squash fruit. Plant Cell physiol, 1983, 24: 963.
    [45] 金勇丰,张耀洲.桃果实ACC合酶cDNA的克隆.园艺学报,2000,27(4):257~262.
    [46] 徐昌杰,陈昆松,张上隆.猕猴桃ACC合成酶基因家族四个成员的克隆[J].农业生物技术学报,2001,9(1):55~57.
    [47] 王新力,彭学贤,李宏.香蕉果实特异性ACC合酶的cDNA克隆及序列分析[J].生物工程报,2000,16(2):134~136.
    [48] 金志强,彭世清,邵寒霜,等.香蕉ACC合成酶eDNA的PCR扩增及序列测定[J].热带作物学报,1998,19(1):48~51.
    [49] 金志强,李瑞珍,徐碧玉,等.香蕉果实特异性ACC合成酶基因的克隆及反义载体的构建[J].农业生物技术学报,2002,10(3):305~306.
    [50] Nakagawa N, Kamiya Y, Imaseki H. Nucleotide sequence of an an ximinegulated 1-aminocyclopropane-1-carboxylate acid synthase gene from Cucurbita maxima Duch[J]. Plant Physiol,1995,109:1499.
    [51] Bleeker A B, Herner R C, Kende H. Use of monoelonal antibodies in the purification and characterization of 1-aminocyclopropane-1-carboxylate synthase an enzyme in ethylene biosynthesis[J]. Proc NatlAcad Sci USA, 1986, 83: 7755~7759.
    [52] Yip W K, Dong J G, Yang S F Purification and characterization of 1-aminocyclopropane-1-carboxylate synthase from apple fruits[J]. Plant physiol, 1991, 95: 251~257.
    [53] Kanzaki S, Yonemori K, Sugiura A, Sato A, Yamada M. Identification of molecular markers linked to the trait of natural astringency loss of Japanese persimmon[J]. J Am Soc Hortic Sci, 2001, 126: 51-55.
    [54] Jiang Y, Fu J. Ethylene regulation of fruit ripening: molecular aspects[J]. Plant Growth Regul 2000,
    
    30:193-200.
    [55] Mullins ED, McCollum TG, McDonald RE. Ethylene: a regulator of stress-induced ACC synthase activity innonclimacteric fruit[J]. Physiol Plant,1999, 107:1-7.
    [56] Cooper PA, Cohen D. Micropropagation of Japanese persimmon(Diospyros kaki)[J].Combined Proceedings of the International Plant Propagators Society, 1984, 34: 118~124.
    [57] Sugiura A, Tao tL Murayama H, et al In Vitro Propagation of Japanese persimmon[J]. HortScience, 1986, 21(5): 1205~1207.
    [58] Murayama H, Tao R, Tanaka T, et al. In vitro shoot proliferation and rooting of several Japanese persimmon cultivars[J]. Journal of the Japanese Society for Horticultural Science, 1989, 58 (1): 55~61.
    [59] Fukui H, Sugiyama M, Nakamura M. Shoot tip culture of Japanese persimmon (Diospyros kaki Thnnb.)[J]. Joumal of the Japanese Society for Horticultural Science, 1989, 58 (1): 43~47.
    [60] Fukui H, Nishimoto K, Murase I, et al. Annual changes in responsiveness of shoot tip cultures to cytokinin in Japanese persimmon[J]. Journal of the Japanese Society for Horticultural Science, 1990, 59(2): 271~274.
    [61] Fukui H, Nishimoto K, Nakamura M. Varietal differences in shoot tip culture of Japanese persimmon(Diospyros kaki Thunb.)[J]. Journal of the Japanese Society for Horticultural Science, 1990, 59(1): 51~57.
    [62] Sarathehandra SU, Butch G. Micropropagation of Japanese persimmon(Diospyros kaki Thunb.)ev. Hiratanenashi[J]. New Zealand Journal of Crop and Horticultural Science, 1991, 19 (2): 113~120.
    [63] Fao tL Ito J, Sugiura A: Comparison of growth and rooting characteristics of micropropagated adult plants seedings of persimmon(Dicspyros kaki L)[J]. -Journal of the Society for Horticultural Science, 1994, 63 (3): 537~541.
    [64] Ietsumura T. Effect of types of eytokinin used for In vitro shoot proliferation of Japanese persimmon on the subsequent rooting of shoots[J]. Acta Horticulturae, 1997, 436:143~148.
    [65] Bellini E, Giordanin E. In vitro culture establishment and shoot elongation of "Kaki Tipo" (Diospyros kaki L.)dormant buds[J]. Acta Horticulturae, 1997, 436: 129~134.
    [66] Benelli C, Bellini E, Giordani E, et al. In vitro plant regeneration and micmprojectile bombardment of callus from Japanese persimmon shoot tips(Diospyros kaki L.f., ev. Kaki tipo)[J]. Advances in Horticultural Science, 1999, 13: (2): 82~86.
    [67] 阙国宁,诸葛强.柿树芽的组织培养[J].植物生理学通讯,1990,2:42~43.
    [68] 孔祥生,张益民,张妙霞.柿树试管繁殖的研究[J].植物学通报,1992,9(增刊):11~12.
    [69] 孔祥生,张妙霞,张益民.柿离体繁殖研究[J].果树科学,1998,15(3):232~238.
    [70] 孔祥生,张妙霞,杜爱玲,等.甜柿离体快繁技术研究[J].华中农业大学学报,1998,17(2):178~186.
    [71] 李卫东,王文江,刘永居,等.甜柿休眠芽无菌繁殖系建立研究[A].温陟良,郗荣庭主编.干果研究进展(2)[C].北京:中国林业出版社,2001.231~233
    
    
    [72] 张妙霞,孔祥生,郭秀璞,等.柿树组织培养防止外植体褐变的研究[J].河南农业大学学报,1999,33(1):87~91.
    [73] 张妙霞,孔祥生,张益民,等.柿树组织培养中玻璃化现象的发生与防治[J].洛阳农业高等专科学校学报,1997,17(2):1~3.
    [74] 孔祥生,张妙霞,李亮琴,等.影响柿树外植体褐变因素的研究[J].洛阳农业高等专科学校学报,1997,17(4):1~4.
    [75] 陈正华.木本植物组织培养及其应用[C].北京:高等教育出版社,1986.24~74.
    [76] Tao R, Sugiura A. Micropropagation of Japanese Persimmon[J],Biotechnology in Agriculture and Forestry, 1992, 18: 424~440.
    [77] 孔祥生,张妙霞,张国海,等.柿树无节茎段培养和植株再生[J].中国果树,1998,(3):25~27.
    [78] 达克东,李雅志,束怀瑞.苹果叶片愈伤组织植株再生研究[J].核农学报,1995,9(3):139~143.
    [79] 师校欣,杜国强,高仪,等.苹果离体叶片高效再生不定芽技术研究[J].果树科学,1999,16(4):255~258
    [80] 张远记,钱迎倩.软枣猕猴桃试管苗叶片和茎段的愈伤组织诱导及植株再生[J].西北植物学报,1996,16(2):137~141.
    [81] Chirgwin J M, Przybyla AE, MacDonald R J, et al. Isolation of biologically active ribonucleic acid from sources enrichedin ribonucleases. Biochem, 1979, 18: 5294~5301.
    [82] 顾红雅,瞿礼嘉,明小天,等.植物基因与分子操作[M].北京:北京大学出版社,1995,77~78.
    [83] Murray MC, Thompson WF. Rapid-isolation of high molecular weight plant DNA. Nucleic Acid Res, 1980, 8: 4321~4325.
    [84] Privalle LS, Graham J S. Radio labeling of a wound-inducible pyridoxal phosphate-utilizing enzyme: evidence for its identification as ACC synthase[J]. Arch Biochem Biophys 1987, 253:333.
    [85] Satoh S, Esashi Y. Inactivation of 1-aminocyclopropane-1-carboxylic acid synthase of etiolated mung bean hypocotyl segments by its substrate, S-adenosyl-L-methionine[J]. Plant Cell Physiol, 1986, 27: 285~291.
    [86] Bleecker A B, Kenyon W H, Somerville S C. Use of monoclonal antibodies in the purification and characterization of 1-aminocyciopropane-1-carboxylic acid synthase, an enzyme in ethylene biosynthesis[J]. Proc Natl Acad Sci USA, 1986, 83: 7755~7759.
    [87] 汤福强,刘愚.植物乙烯生物合成研究进展[J].植物生理学通讯,1994,30(1):3~10.
    [88] 宋艳茹,谢安勇.乙烯生物合成与果实成熟的调节[J].植物学报,1991,36(增刊).1~13.
    [89] Theologis A. One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening[J]. Cell, 1992, 70: 181~184.
    [90] 徐昌杰,陈昆松,张上隆.乙烯生物合成及其控制研究进展[J].植物学通报,1998,15(增刊):54~61.
    [91] Ryutaro Tan, Hideki Murayama, Kazuki Moriguchi, et al. Plant Regeneration from Callus Cultures Derived from Primordial Leaves of Adult Japanese Persimmon[J]. HortScience, 1988, 23 (6):
    
    1055~1056.
    [92] Ryutaro Tao, Akira Sugiura. Adventitious Bud Formation from Callus. Cultures of Japanese Persimmon[J]. HortScience, 1992, 27 (3): 259~261.
    [93] 徐凌飞,马锋旺,王喆之,等.梨叶片离体培养和植株再生[J].园艺学报,2002,29(4): 367~368.
    [94] 孙清荣,樊圣华,刘庆忠.大鸭梨叶片高频率不定梢再生诱导研究[J].山东农业科学,2003,(2):10~12.
    [95] Tetsumura T, Yukinaga H. High-frequency shoot regeneration from roots of Japanese persimmon[J]. Hort Seience, 1996, 31 (3): 463~464.
    [96] Sarathchandra S U, Burch G. Mieropropagation of Japanese persimmon (Diospyros kaki Thun.) cv. Hiratanenashi[J]. New Zealand Journal of Crop and Horticultural Science, 1991, 19 (2):113~120.
    [97] 孔祥生,张妙霞,张益民.柿树的叶片培养和快速繁殖[J].植物生理学通讯,1998,34(3):203~204.
    [98] 弓弼,马惠玲,沈杰.杜仲优树的组培繁殖技术[J].西北林学院学报,2002,17(4):38~40.
    [99] 吴禄平,张志宏,杜丽华,等.苹果品种试管苗叶片再生不定芽[J].沈阳农业大学学报,1995,26(2):131~135.
    [100] Tetsumura T, Tao R, Yukinaga H. Factors influencing acclimatization of "Nishimurawase" Japanese persimmon microprogagules and their field performance[J]. Journal of the Japanese Society for Horticultural Science, 1993, 62 (3): 533~538.
    [101] Tetsumura T, Yukinaga H, Tao R. Early field performance of micropropagated Japanese Persimmon trees[J]. HortScience, 1995. 33 (4): 751~753.
    [102] Tetsumura T, Tao R, YukinagaH. Orehard growth, flowering and fruiting of micropropagated Japanese persimmon trees[J]. Journal of Horteultural Science and Biotectmology, 1999, 74 (2): 251~253.
    [103] Tao R, Ito W, Sugiura A. Adventitious bud formation on callus derived from anthers of persimmon "Meotogaki"and isozyme variations observed in the regenerated plantlets[J]. Journal of the Japanese Society for Horticultural Science, 1992, 61 (3): 527~533.
    [104] Ishida M, InabaA, Sobajima Y. In vitro of young embryo in Hiratanenashi persimmon[J].京都府立大学学报,农学,1980,32:20~24.
    [105] OhkumaT, Tao R, Tamura M, et al. Use of unreduced giant pollen to produce nonaploid persimmon[J]. Journal of the Japanese Society for Horticultural Science, 1997, 66 (supl):134~135.
    [106] 谷晓峰,唐仙英,罗正荣.罗田甜柿幼胚培养条件的研究[J].果树科学,2001,18(2):80~83.
    [107] Tao R, Tamura M, Yonemori K, et al. Plant regeneration from callus protoplasts of adult Japanese persimmon (Diospyros kaki L.) [J]. Plant Science, 1991, 79: 119~125.
    [108] Tamura M, Tao R, SugiuraA. Improved protoplast culture and plant regeneration of Japanese
    
    persimmon Japanese (Diospyros kaki L.)[J]. Journal of Breeding, 1993, 43: 239~245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700