用户名: 密码: 验证码:
纳米SiO_2的合成及其与硅灰对水泥基材料性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过对当前国内外文献的查阅,综述了纳米二氧化硅的结构、性能及其各种制备方法,阐述了各种制备方法的优缺点。同时总结了纳米二氧化硅在橡胶制品、塑料制品、涂料和建筑材料等领域的应用情况。另外,还综述了当前国内外高性能水泥的种类和性能,以及我国水泥的发展现状,提出了固相制备纳米SiO_2及其复合水泥的研究方向。
     纳米级SiO_2具有纳米材料特有的性质,如表面效应、小尺寸效应等,而且与水泥基材料发生水化反应,具有高的活性。本论文探讨了这些纳米技术理论与水泥水化理论的有机结合,提出“纳米诱导水化效应”。论述制备纳米SiO_2复合水泥的可行性。
     用TEM、SEM、TG/DTA、XRD和IR等测试方法,研究了共沸蒸馏和直接干燥方法处理纳米SiO_2粉末对其性能的影响。结果表明,共沸蒸馏法能有效的脱除SiO_2凝胶中的水,防止干燥过程中颗粒间硬团聚的形成。所制得的纳米SiO_2粉体颗粒为无定型态,粒径在30~40nm间。
     在分别研究了纳米级SiO_2和硅灰的活性对水泥基材料的改性后,将它们复合,作为高活性的掺合料,加入水泥基材料中,探索对水泥基材料的复合改性效应。对复合改性后的水泥硬化浆体进行宏观力学
    
     广西大学硕士学位论文纳米5102的合成及其对水泥基材料性能影响的研究
    性能测试、抗渗性能测试和孔隙率的测试,发现复合改性后的水泥硬
    化浆体其抗压强度、抗渗性能和孔隙率都得到明显改善。用OTA、XRD、
    SEM分析了水泥基材料的组成、显微结构,结果表明,纳米级5 1 02比
    硅灰具有高的活性,二者复合活性更佳,它们改性的水泥硬化浆体显
    微结构致密,C一S一H凝胶交织成致密的网状结构,缺陷显著降低;尚
    且,纳米 5 1 02对水泥硬化浆体中的氢氧化钙相有显著的吸收作用。
     本论文经过以上对复合改性水泥性能的研究,探讨了纳米5 1 02
    与水泥浆体作用的机理,提出了用固相反应法制备纳米二氧化硅的新
    思路和纳米诱导水化效应的新概念。
The characteristic, structure, preparation methods of nano-SiO2, merits and demerits of these methods are summarized in the thesis after looking up the literatures at home and abroad. Its application in the fields of rubber, plastics and building materials are also recounted. In addition, developing situation in our country, the kinds and properties for high-performence OPC(Ordinary Portland cement) at home and abroad are also summed up. Then the methods of solid-phase preparation of nano-SiO2 and study orientation of nano-SiO2 composite cement are posed.
    The properties of nanometer materials, for instance, surface-effect, small-size effect and so on, were presented in nano-SiO2. And high activities of reacting chemically with cement matrix existed in nano-SiO2. In this thesis, the effective combination nanometer technology theories with cement hydrate theories are approched and the effect of nanometer inducement hydrate was firstly put forward. The feasibility of preparation nano-SiO2 composite cement was discussed here.
    With the use of test methods of TEM, SEM, TG/DTA, XRD and IR, the influences on the properties in azeotropic distillation and direct dry during preparing nano- SiO2 powder are studied. The results show that the
    
    
    
    water in silica gel can be effectively removed by azeotropic distillation and the formation of hard agglomerates in the drying process is prevented. The particles of nano-SiO2 powder are amorphous and average particle diameters are in the range of 20 to 30 nm.
    After studying the activities of nano-SiO2 and silica fume individully, they are mixed into highly active additives and added to ordinary Portland cement for approaching composite modified effect. After testing the properties of macroscopic mechanics, anti-penetrability and porosity in modified hardening slurry, compressive strength, anti-penetrability and porosity are obviously improved and the activities of nano-SiO2 powder are higher than these of silica fume. When mixing them, these activities are even excellent. There are dense microstructure, thick interwoven net-C-S-H and fewer defects in modified hardening slurry. The nano-SiO2 powder can evidently absorb the Ca (OH) 2 phases in the slurry.
    According to the above-mentioned studies, the reactive mechanism of nano-SiO2 in the slurry is approched. New thinking of preparing nano-SiO2 with the help of method of solid phase reaction and up-to-date concept of nanometer inducement hydrate effect are put forward here.
引文
[1] 简明不列颠百科全书(M),北京,中国大百科全书出版社,1985,2,804.
    [2] F.Liebau著,席耀忠译,硅酸盐结构化学(M),北京,化学工业出版社,1989,60~70.
    [3] 化工百科全书(M),北京,化学工业出版社,1994,3,945~946.
    [4] Iler, R.K., The chemistry of Silica (M), New York, John Wiley & Sons, Inc., 1979, 141.
    [5] 张立德,中国粉体技术(M),北京,化学工业出版社,2000,6(1),1~5.
    [6] 刘伯元,中国粉体技术(M),北京,化学工业出版社,2001,7(1),12~17
    [7] 张立德,纳米材料(M),北京,化学工业出版社,2000,11,45.
    [8] 宁延生,马慧斌,王惠玲等,沉淀法白炭黑与纳米级二氧化硅,无机盐工业(J),2002,34(1),18~20.
    [9] 乐志强等,无机精细化学品手册(M),北京,化学工业出版社,2001,652~654
    [10] 瞿其曙,何友昭,淦五二等,超细二氧化硅的制备及研究进展,硅酸盐通报(J),2000,5,57~63.
    [11] 张咏春,田明,张立群等,二氧化硅制备,改性,应用进展,现代化工(J),1998,4,11~14
    [12] Larry L.H, Jon K W, The Sol-gel process. (J)Chem.Rev, 1990,90, 33-70.
    [13] Surdihong,ZhangYe,FanWenhao, Sol-gel Technology and Chemical Tailoring of Nano-Sized Materials, (J)Progress in chemistry,1999,11(1), 80~85.
    [14] 沈新璋,金名惠,孟厦兰,纳米二氧化硅的制备及表征,涂料工业(J),2002,9,15~18.
    [15] QinXiaodong JiangXiaoming CHenYuezhu, Preparation of SiO_2 ultrafine powder with high specific surface area, (J) Journal of the University of Petroleum, 2001,25(3), 36~40.
    [16] ShenXiaoqingl,LiZhongjun, YaoHongehang, Preparation and Mechanism of Nanometer Sized Silica Powder by Azeotropic Distillation Method, (J) Journal of ZhengZhou University, 2002.34(2), 88~91.
    [17] 杨修造,顾俊杰,戴邦忠,用氯化钠制备纳米超细非晶二氧化硅微粒的研究,化学世界(J),1995,10,517~521
    [18] 黄传勇,唐子龙,张中太,纳米级二氧化锆粉体合成新方法,硅酸盐学报(J),
    
    2000,28(1),11—14.
    [19] 覃兴华,聚丙烯酸酯原位乳液聚合包覆SiO_2的研究,化工新型材料(J)1998.26(2),27-28.
    [20] 庞金兴,张超灿,吴力立,硅单质法制备纳米SiO_2及其分散稳定性研究,华中科技大学学报(J),2002,8,104-107.
    [21] 贾宏,郭锴,郭奋等,用超重力法制备纳米二氧化硅,材料研究学报(J),2002,15(1),120-124.
    [22] 王世敏,许租勋,傅晶,纳米材料制备技术(M),北京,化学工业出版社,2002,2,114~115
    [23] RONG Min-zhi, ZHANG Ming-qiu, ZHENG Yong-xiang, Interfacial Effects and Percolation Behavior In Silica Nanoparticles Filled Polypropylene Composites ACTA MATERIAE COMPOSITAE SINICA, 2002,19(1), 1~4.
    [24] 贺鹏,赵安赤,纳米粒子改性高密度聚乙烯的耐磨性研究,塑料(J),2001,30(1),39~43.
    [25] 徐国财,纳米SiO_2在紫外光固化涂料中的应用,涂料工业(J),1998,4,36~39
    [26] 叶青,纳米复合水泥结构材料的研究与开发,新型建筑材料,2001,11,4~6.
    [27] 冯乃谦编著,高性能混凝土[M],北京,中国建筑工业出版社,1996,380~390.
    [28] TAYLOR H F W, Cement Chemistry [M], London, UK, Academic Press, 1990, 305-307.
    [29] Stobe W Fink, A Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Collsids Strufaces. 1968,6, 62-69.
    [30] 张葥,王济奎,程树军,纳米二氧化硅改性CPE的研究,功能高分子学报(J),2002,15(3),271-276.
    [31] 张立德,超微粉体制备与应用技术[M],中国石化出版社,2001,4,23.
    [32] 周玉,武高辉,材料分析测试技术—材料X射线衍射与电子显微分析[M],哈尔滨工业大学出版社,1998,8,103~105.
    [33] 漆璇,戎咏华,X射线与电子显微分析[M],上海交通大学出版,1992,9,59~61.
    [34] 胡庆涛,非金属材料学[M],中国铁道出版社,1983,10,60.
    [35] 江玉和主编,非金属材料化学[M],科学技术文献出版社,1992,8,51.
    
    
    [36] 仪器分析[M],武汉大学化学系编,高等教育出版社,2001,6,166.
    [37] Ballard C C, Broge E C, Iler R K. Esterification of the surface of amorphous silica. J Phys Chem, 1961, 65, 20-25.
    [38] Brinker C J, Keefer K D, Schaefer D W, et al. Sol-gel transition in simple silicates. J Non-Cryst Solids, 1982, 48, 47-64.
    [39] 伍洪标,无机非金属材料试验[M],化学工业出版社,2002,103~105.
    [40] 杨南如,无机非金属材料测试方法[M],武汉工业大学出版社,1993,12,63.
    [41] 李颖,唐明,聂元秋,纳米级SiO_x与硅灰对水泥浆体需水量的影响,沈阳建筑工程学院学报(自然科学版)(J),2002,4(4),278~281.
    [42] 1,H . F . W . Taylor, Cement Chemistry (M) , Academic Press, London, 1998, 305~307.
    [43] S .Chatterji, J. Am. Ceram. Soc. 1997,80, 2959~2960.
    [44] 叶青,纳米SiO_2与硅灰的火山灰活性的比较,混凝土(J),2001,3,19.
    [45] 张立德,牟季美,纳米材料学[M],辽宁科学出版社,1994,21—23;46—47.
    [46] 陈荣升,叶青,掺纳米SiO_2与掺硅灰的水泥硬化浆体的性能比较,混凝土[J],2002,1.9.
    [47] 范基骏,丛立庆,汤俊艳,纳米ZrO_2提高水泥抗压强度机理的初探,中国硅酸盐学会2003年学术年会,水泥基材料论文集,451~455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700