用户名: 密码: 验证码:
染料敏化太阳能电池ZnO阳极的修饰与光电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(DSSC)的光电转换研究已经成为国际性的热点课题。本研究以ZnO为染料敏化太阳能电池的光阳极,通过掺杂和共敏化两种方法分别对ZnO进行改性与修饰,并以此降低ZnO光阳极染料敏化太阳能电池的成本。本研究从单掺杂、双掺杂和共敏化三个方面对比改性修饰后的ZnO的性质以及染料敏化太阳能电池的光电性能,进而研究掺杂和共敏化对染料敏化太阳能电池光电性能的影响。
     以ZnO粉体为初始反应物,氨气为掺杂源,在自制的反应容器中制备N掺杂ZnO,研究了N掺杂ZnO的合成条件与ZnO禁带带宽和光电转换效率之间的关系。通过改变氨气压强、煅烧温度和煅烧时间得到不同N掺杂量的ZnO,发现N掺杂ZnO的禁带宽度有不同程度的窄化,并通过改变N掺杂条件实现了对ZnO禁带宽度的可控调节。实验的N掺杂反应条件为:氨气压强0.6~1.2MPa,煅烧温度450~750℃,煅烧时间12~72h。实验结果表明,随着氨气压强、煅烧温度和时间的增加,N掺杂含量逐渐增加,ZnO的禁带宽度逐渐窄化,染料敏化太阳能电池光电转换效率随之增加。采用X射线粉末衍射、紫外-可见吸收光谱、X射线光电子能谱、表面光电压谱和瞬态光谱对N掺杂ZnO的晶体结构、掺杂价态、光学性质以及表面光生电子-空穴的性质进行了分析,研究发现:N掺杂到ZnO晶格中形成六方纤锌矿结构,N掺杂有效地降低了禁带宽度和导带能级,有利于电子-空穴对的生成,增加了载流子的传输,为提高电池性能奠定了基础。
     采用低温溶液法对ZnO进行了N掺杂,并与高温煅烧掺杂方法进行对比研究。在低温溶液法中N的掺杂源为氨水,研究了溶液pH值对掺杂效果的影响。结果表明,随着溶液pH的增加,N掺杂含量增加,但溶液pH=7时,光电转换效率最高。实验还发现:低温溶液法制备的N掺杂ZnO的光电性能优于高温煅烧法。
     采用Materials studio的Castep模块对N掺杂ZnO进行理论计算,对模拟的能带结构、态密度和光学性质进行计算分析。认为N掺杂产生的N2p轨道在价带顶和Zn3d轨道杂化,使得价带顶上移并同时引起导带底下降,窄化禁带,为N掺杂减小禁带宽度、降低导带底提供了一定的理论依据。
     对ZnO进行了Pr和N元素的双掺杂。实验结果表明:Pr-N双掺杂ZnO为六方纤锌矿结构,禁带宽度和导带能级都有较大程度的下降,导致紫外-可见吸收光谱的吸收带边红移至可见光区,光吸收增强的同时也增加了导带内电子的注入效率,Pr-N双掺杂比N掺杂更能有效提高电池光电转换效率,光电转换效率最大达5.2%,较空白ZnO电池提高了100%。
     以空白ZnO为光阳极,对电池染料的太阳光谱吸收谱带进行补充,采用配合物与N719对光阳极进行共敏化,填补电池在太阳光谱紫外高能光区的吸收空白,拓宽电池对太阳光谱的吸收响应范围。选取吡啶双亚胺类过渡金属配合物、含邻菲罗啉类过渡金属配合物和吡啶二甲酸类稀土金属配合物进行共敏化,单色光光电转换效率(IPCE)揭示共敏化通过提高电池在紫外光区的吸收来提高电池器件的光电转换效率。电化学循环伏安和紫外-可见吸收光谱联用表明配合物敏化剂能有效地进行电子的激发和注入,同时顺利被电解液还原。采用等效电路对交流阻抗进行模拟,分析电池阳极/染料/电解液界面的电子注入和传输性质,结果表明配合物、电池阳极和电解液之间具有很好的能级匹配,在阳极/染料/电解液界面电子能够顺利的注入和传输,共敏化能有效提高电池光电转换效率,具有较大共轭体系的配合物更有利于电池性能的提高。
     本文通过阳极改性和染料共敏化等途径提高了ZnO染料敏化太阳能电池的光电性能,为其实际应用打下了一定的基础。
The dye-sensitized solar cell (DSSC) is a focus in the field of photovoltaicstudies. The research focus on ZnO photoanode of DSSC. In this work, doping andco-sensitizing are used to modify ZnO photoanode and reduce the costs of DSSC.The properties of modified-ZnO and photovolatic performance of DSSC is superiorcontrast to that of pure ZnO and DSSC based on pure ZnO. The influence of dopingand co-sensitizing on photovolatic performance are studied.
     ZnO powders were used and NH3gas was used as dopants. N-doped ZnO wasprepared in self-designed devices. The relationship between preparation condition ofN doped ZnO, band gap of N doped ZnO, and conversion efficiency of DSSC wasinvestigated. The different N doping concentration of ZnO was obtained by varyingNH3gas presure, annealing temperature, and annealing time. The band gap of ZnOwas narrowed by N doping and the controlled band gap of ZnO was achieved byvarying the doping conditions. The NH3gas pressure was from0.6MPa to1.2MPa,the reaction temperature was from450℃to750℃, reaction time wasfrom12h to72h. The results shows that N doping concentration and the narrowing of band gapincreased with NH3gas presure, annealing temperature, and annealing time, theconversion efficiency of DSSC increase correspondingly. The structure andcompositions of the material were characterized by X-ray diffraction analysis (XRD)and X-ray photoelectron spectroscopy (XPS). UV-visible absorption spectroscopy(UV-vis), surface photovoltage spectroscopy (SPS), and the transient photovoltage(TPV) were used to characterize the optical property, performance of photoproducedelectron-hole separation, transfer, and recombination. It was found that N atomswere doped into the lattice of ZnO crystals, N doping effectively reduced the bandgap and energy level of conduction band, produced electron-hole pairs, andenhenced charge carriers transport. This established the foundation for improvingthe performances of DSSC.
     The solution method for N doping was compared with the annealing method.The ammonia acted as the source of N dopant in the solution method. The effect ofthe pH of the solution on N doping was studied. The results showed N dopingconcentration increase with pH value of the solution. The conversion efficiency ofDSSC was highest when pH value was7. The photovolatic performances of N dopedZnO by solution method was better than that of annealing method.
     The band structure, density of states, and optical perporty of N doped ZnOwere calculated by Castep of Materials Studio software. The results indicated the topof the valence band for N-doped ZnO was composed of N2p orbital followed by Zn 3d orbital. The Zn3d and N2p electrons in the upper valence band form the p-drepulsion, led to the uplift of the valence band top and narrowing of the band gap.The calculation results conformed shift conduction band and band gap narrowing byN doping.
     The Pr-N co-doped ZnO was prepared. The Pr-N co-doped ZnO still possesseda hexagonal wurtzite structure. The co-doping of Pr and N significantly influencethe optical properties of ZnO. UV-visible absorption spectroscopy (UV-vis) revealedthat co-doping of Pr and N led to a red shift of the absorption edge of ZnO andnarrowing of band gap. The conversion efficiency of Pr-N co-doped ZnO show thehighest conversion efficiency of DSSC of5.2%, an onefold increase compared tothat of pure ZnO.
     The metal complexes and N719co-sensitized ZnO photoelectrode showbroadened absorption band of DSSC and extended the response of DSSC. The metaltypes of complexes were transition metal complexes with2,6-bis(imino)pyridylligands, transition metal complexes with phen, and lanthanide metal complexesconstructed by pyridine-2,6-dicarboxylic acid ligands. IPCE revealed thatco-sensitization improved the conversion of DSSC by improving the UV lightabsorption and extended absorption response of DSSC to UV light region. Theperformance of electron injection and transport in photoanode/dye/electrolyteinterface was investigated by AC impedence and equivalent circuit. The resultsshowed that electrons were more easily injected and transferred in the interface ofphotoanode/dye/electrolyte, so that the conversion efficiency of DSSC wasimproved. The results showed that the metal complexe with large conjugated systemwas positive for improving the performance of the DSSC.
     In this paper, modification of photoanodes and co-sensitizing of dyes are usedto improve the photovolatic performance of DSSC based on ZnO photoanode, whichwill find wide provides potential applications in devices.
引文
[1]王青,夏咏梅,何祖明,等.染料敏化太阳能电池光阳极及其敏化研究进展[J].科技导报,2009,27(1):91-95.
    [2] Zhu K, Neale N, Miedaner A. Enhanced Charge-Collection Efficiencies andLight Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2NanotubesArrays[J]. Nano Letters,2007,7(1):69-74.
    [3] Nguyen H, Pearce J. Estimating Potential Photovoltaic Yield with Sun and theOpen Source Geographical Resources Analysis Support System[J]. SolarEnergy,2010,84(5):831-843.
    [4] Santbergen R, Rindt C, Zondag H, et al. Detailed Analysis of the Energy Yieldof Systems with Covered Sheet-and-Tube PVT Collectors[J]. Solar Energy,2010,84(5):867-878.
    [5] Ashenfelter O, Storchmann K. Using Hedonic Models of Solar Radiation andWeather to Assess the Economic Effect of Climate Change: the Case of MoselValley Vineyards[J]. Review of Economics and Statistics,2010,92(2):333-349.
    [6] Santberg R, Becquerel E. M moire Sures Effects Electriques Produits SousL'influence Des Rayons Solaires[J]. Comptes Rendus de l'Académie desSciences. Série I. Mathématique,1839,(9):561-567.
    [7] Chapin M, Fuller C, Pearson G. New Silicon p-n Junction Photocell for SolarRadiation into Electrical Power[J]. Journal of Applied Physics,1954,(51):676-677.
    [8] Gr tzel M. Conversion of Sunlight to Electric Power by Nanocrystalline DyeSensitized Solar Cells[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,(164):3-14.
    [9] Frank L, Jessica K, Shelly B, et al. Surface Photovoltage Spectroscopy ofDye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3NanocrystallinePhotoanodes: Indication for Electron Injection from Higher Excited DyeStates[J]. The Journal of Physical Chemistry B,2001,(105):6347-6352.
    [10] O’Regan B, Gr tzel M. A Low-Cost, High-Efficiency Solar Cell Based onDye-Sensitized Colloidal TiO2Films[J]. Nature,1991,(353):737-740.
    [11] Michael G. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells[J].Inorganic Chemistry,2005,44(20):6841-6851.
    [12]李文欣,胡林华,戴松元.染料敏化太阳电池研究进展[J].中国材料进展,2009,28(7-8):20-25.
    [13] Liu Q H, Miao Q X, Liu J J, et al. Solar and Wind Energy Resources andPrediction[J]. Journal of Renewable and Sustainable Energy,2009,1(4):043105-12p.
    [14] Deng Y G, Liu J. Recent Advances in Direct Solar Thermal PowerGeneration[J]. Journal of Renewable and Sustainable Energy,2009,1(5):052701-23p.
    [15] Ameen S, Shaheer Akhtar M, Shin H S. Growth and Characterization ofNanospikes Decorated ZnO Sheets and Their Solar Cell Application[J].Chemical Engineering Journal,2012,(195-196):307-313.
    [16] Xu C, Wang X, Wang Z. Nanowire Structured Hybrid Cell for ConcurrentlyScavenging Solar and Mechanical Energies[J]. Journal of American ChemicalSociety,2009,(131):5866-5872.
    [17] Guillen E, Azaceta E, Peter L, et al. ZnO Solar Cells with an Indoline Sensitizer:a Comparison between Nanoparticulate Films and Electrodeposited NanowireArrays[J]. Energy&Environmental Science,2011,(4):3400-3407.
    [18] Thirumal K, Mu T, Akshara V, et al. A Facile Route to Vertically AlignedElectrospun SnO2Nanowires on a Transparent Conducting Oxide Substrate forDye-Sensitized Solar Cells[J]. Journal of Materials Chemistry,2012,(22):2166-2172.
    [19] Seoyeong C, Minhye K, Younguk K. Effects of Cr2O3Modification on thePerformance of SnO2Electrodes in DSSCs[J]. Physical Chemistry ChemicalPhysics,2012,(14):3576-3582.
    [20] Xiao L, Zhang Z, Huang F, et al. Charge Transport in Photocathodes based onthe Sensitization of NiO Nanorods[J]. Journal of Materials Chemistry,2012,(22):7005-7009.
    [21] Hsu C Y, Chen W T, Chen Y C, et al. Charge Transporting Enhancement of NiOPhotocathodes for P-Type Dye-Sensitized Solar Cells[J]. Electrochimica Acta,2012,(66):210-215.
    [22] Zhang H, Wang Y, Yang D, et al. Directly Hydrothermal Growth of SingleCrystal Nb3O7(OH) Nanorod Film for High Performance Dye-Sensitized SolarCells[J]. Advanced Materials,2012,(24):1598-1603.
    [23] Barea E, Xu X, Victoria G, et al. Origin of Efficiency Enhancement in Nb2O5Coated Titanium Dioxide Nanorod Based Dye Sensitized Solar Cells[J].Energy Environmental Science,2011,(4):3414-3417.
    [24] Parthiban S, Elangovan E, Ramamurthi Martins R, et al. High Near-infraredTransparency and Carrier Mobility of Mo Doped In2O3Thin Films forOptoelectronics Applications[J]. Journal of Applied Physics,2009,(106):063716-6p.
    [25] Liu X, Ding S, Lin T, et al. Ta2O5Nanowires: a Novel Synthetic Method andTheir Solar Energy Utilization[J]. Dalton Transactions,2012,(41):622-628.
    [26] Kim D, Lee S, Park J, et al. Transmittance Optimized Nb-DopedTiO2/Sn-Doped In2O3Multilayered Photoelectrodes for Dye-Sensitized Solarcells[J]. Solar Energy Materials&Solar Cells,2012,(96):276-280.
    [27] Robertson N. Optimizing Dyes for Dye-Sensitized Solar Cell Made from a DyeModified ZnO Convered TiO2Nanoporous Electrode[J]. Chemistry ofMaterials,2001,(13):678-682.
    [28]梁茂,陶占良,陈军.染料敏化太阳能电池中敏化剂[J].化学通报,2005,889-896.
    [29] Cong J, Yang X, Hao Y, et al. A Highly Efficient ColourlessSulfur/Iodide-based Hybrid Electrolyte for Dye-Sensitized Solar Cells[J]. RSCAdvances,2012,(2):3625-3629.
    [30] Woo K, Yong C, Yoon P, et al. A Light Scattering Polymer Gel Electrolyte forHigh Performance Dye-Sensitized Solar Cells[J]. Journal Material Chemistry,2012,(22):6027-6231.
    [31] Bok J, Hae M, In T, et al. A Desirable Hole-Conducting Coadsorbent for HighlyEfficient Dye Sensitized Solar Cells through an Organic Redox CascadeStrategy[J]. Chemistry A European Journal,2011,(17):11115-11121.
    [32] Ji S, Sung K, Jumi Y, et al. CNT-Pt Counter Electrode Prepared Using a PolyolProcess to Achieve High Performance in Dye-Sensitised Solar Cells[J]. Journalof Industrial and Engineering Chemistry,2012,(18):1023-1028.
    [33] Byunghong L, Buchholz D, Chang R. An Carbon Counter Electrode for DyeSensitized Solar Cells[J]. Energy Environmental Science,2012,(5):6941-6945.
    [34] Soumyendu R, Reeti B, Ajay K, et al. Plasma Modified Flexible Bucky Paperas an Efficient Counter Electrode in Dye Sensitized Solar Cells[J]. EnergyEnvironmental Science,2012,(5):7001-7008.
    [35] Da K, Young L, Chang C, et al. Inverse Opal Carbons for Counter Electrode ofDye-Sensitized Solar Cells[J]. Langmuir,2012,(28):7033-7038.
    [36] Sui H, Chi T, Chun L, et al. Nanoporous Platinum Counter Electrodes byGlancing Angle Deposition for Dye-Sensitized Solar Cells[J]. OrganicElectronics,2012,(13):856-863.
    [37] David C, Gary H, Michael G, et al. Nature of Photovoltaic Action inDye-Sensitized Solar Cells[J]. Journal Physical Chemistry B,2000,(104):2053-2059.
    [38] Monori N, Madoka T, Hiroomi M. Amorphous Silicon Solar Cells Deposited atHigh Growth Rate[J]. J Non-Crystalline Solids,2002,(299):1116-1121.
    [39] Huang S, Schliehthorl G, Nozik A, et al. Charge Recombination inDye-Sensitized Nanoerystalline Titanium Solar Cells[J]. The Journal PhysicalChemistry B,1997,(101):2576-2582.
    [40] Gr tzel M. Photoelectrochemical Cells[J]. Nature,2001,(414):338-344.
    [41] Du G. Preparation of Intrinsic and N-doped P-type ZnO Thin Films byMetalorganic Vapor Phase Epitaxy[J]. Applied Physics Letters,2005,(87):213103-5p.
    [42] Dunlop L, Kursumovic A, Macmanusdriscoll J. Reproducible Growth of P-typeZnO:N Using A Modified Atomic Layer Deposition Process Combined WithDark Annealing[J]. Applied Physics Letters,2008,(93):172111-10p.
    [43] Zhang Y, Lu J, Ye Z, et al. Effects of Growth Temperature on Li-NDual-Doped P-Type ZnO Thin Films Prepared by Pulsed Laser Deposition[J].Applied Surface Science,2008,(254):1993-1996.
    [44] Gopalakrishnan N, Shin B, Lim H, et al. Effect of GaN Doping on ZnO Filmsby Pulsed Laser Deposition[J]. Materials Letters,2007,(61):2307-2310.
    [45] Rogozin I. Nitrogen-Doped P-type ZnO Thin Films and ZnO/ZnSe P-NHeterojunctions Grown on ZnSe Substrate by Radical Beam GetteringEpitaxy[J]. Thin Solid Films,2009,(517):4318-4321.
    [46] Oh D, Kim J, Makino H, et al. Characteristics of Schottky Contacts to ZnO:NLayers Grown by Molecular-Beam Epitaxy[J]. Applied Physics Letters,2005,(86):042110-8p.
    [47] Jin W, Elangovan E, Vincent S, et al. Effect of Annealing on the Properties ofN-Doped ZnO films Deposited by RF Magnetron Sputtering[J]. AppliedSurface Science,2008,(254):7178-7182.
    [48] Nakano Y, Morikawa T, Ohwaki T, et al. Electrical Characterization of P-TypeN-Doped ZnO Films Prepared by Thermal Oxidation of Sputtered Zn3N2Films[J]. Applied Physics Letters,2006,(88):172103-4p.
    [49] Nian H, Hahn S, Koo K-K, et al. Sol-gel Derived N-doped ZnO Thin Films[J].Materials Letters,2009,(63):2246-2248.
    [50] Gerischer H, Tributsch H, Bunsenges B. The ZnO Photoanode forDye-Sensitized Solar Cell[J]. The Journal Physical Chemistry,1969,73(1):251-256.
    [51] Matsumura M, Matsudaira S, Tsubomura H. An Energy Efficiency of2.5%forDye-Sensitized Solar Cell[J]. Industrial Engineering Chemistry Research,1980,19(3):415-421.
    [52] Redmond G, Fitzmaurize D, Gr tzel M. Visible Light Sensitization byCis-Bis(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) of aTransparent Nanocrystalline ZnO Film Prepared by Sol-Gel Techniques[J].Chemistry Materials,1994,6(5):686-691.
    [53] Law M, Greene L E, Yang P D, et al. Nanowire Dye-Sensitized Solar Cells[J].Nature Materials,2005,4(6):455-459.
    [54] Elena G, Eneko A, Laurence M P, et al. ZnO Solar Cells with an IndolineSensitizer: a Comparison between Nanoparticulate Films and ElectrodepositedNanowire Arrays[J]. Energy&Environmental Science,2011,(4):3400-3407.
    [55] Periyayya U, Ji H K, Senthilarasu S, et al. The Different Types of ZnOMaterials on the Performance of Dye-Sensitized Solar Cells[J]. Physica E,2011,(43):1746-1750.
    [56] James S B, Lioz E, Swee C T, et al. An Efficient DSSC Based on ZnONanowire Photo-Anodes and a New D-P-A Organic Dye[J]. EnergyEnvironmental Science,2011,(4):2903-2908.
    [57] Yu X, Li Z, Xu Z, et al. Preparation of Coaxial TiO2/ZnO Nanotube Arrays forHigh-efficiency Photo-Energy Conversion Applications[J]. ElectrochemistryCommunications,2011,(13):788-791.
    [58] Chen Z, Tang Y, Zhang L, et al. Electrodeposited Nanoporous ZnO FilmsExhibiting Enhanced Performance in Dye-Sensitized Solar Cells[J].Electrochimica Acta,2006,(51):5870-5875.
    [59] Irene G-V, You Y, Belén B, et al. Synthesis Conditions, Light Intensity andTemperature Effect on the Performance of ZnO Nanorods-Based DyeSensitized Solar Cells[J]. Journal of Power Sources,2011,(196):6609-6621.
    [60] Wu C, Liao W, Wu J. Three-Dimensional ZnO Nanodendrite NanoparticleComposite Solar Cells[J]. Journal Materials Chemistry,2011,(21):2871-2876.
    [61] Seung H K, Daeho L, Hyun W K, et al. Nanoforest of Hydrothermally GrownHierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized SolarCell[J]. Nano Letters,2011,(11):666-671.
    [62] Sadia A, Shaheer A M, Young S K, et al. Influence of Seed Layer Treatment onLow Temperature Grown ZnO Nanotubes: Performances in Dye SensitizedSolar Cells[J]. Electrochimica Acta,2011,(56):1111-1116.
    [63] Xu C, Wu J, Desai U, et al. Multilayer Assembly of Nanowire Arrays forDye-Sensitized Solar Cells[J]. Journal of the American Chemical Society,2011,(133):8122-8125.
    [64] Wu S, Han H, Tai Q, et al. Improvement in Dye-Sensitized Solar Cells with AZnO-coated TiO2Electrode by rf Magnetron Sputtering[J]. Applied PhysicsLetters,2008,(92):122106-8p.
    [65] Rong Z, Jie P, Evan P, et al. Studies on the Adsorption of RuN3Dye onSheet-Like Nanostructured Porous ZnO Films[J]. Solar Energy Materials&Solar Cells,2008,(92):425-431.
    [66] Anjen C, Yonhua T, Yi Z, et al. Thermal Chemical Vapor Deposition Growth ofZinc Oxide Nanostructures for Dye-Sensitized Solar Cell Fabrication[J].Applied Physics Letters,2008,(92):092113-9p.
    [67] Jiang C Y, Sun X, Lo G, et al. Improved Dye-Sensitized Solar Cells with aZnO-Nanoflower Photoanode[J]. Applied Physics Letters,2007,(90):263501-6p.
    [68] Feng X, Li S. Solution-Derived ZnO Nanostructures for Photoanodes ofDye-Sensitized Solar Cells[J]. Energy Environmental Science,2011,(4):818-821.
    [69] Han C, Aurelien D P, Gaurav S, et al. Dye-sensitized Solar Cells Using ZnONanotips and Ga-doped ZnO Films[J]. Semiconductor Science andTechnollogy,2008,(23):045004-6p.
    [70] Yun S, Lee J, Chung J, et al. Improvement of ZnO Nanorod-BasedDye-Sensitized Solar Cell Efficiency by Al-Doping[J]. Journal of Physics andChemistry of Solids,2010,(71):1724-1731.
    [71] Ameen S, Akhtar S, Seo H-K, et al. Influence of Sn Doping on ZnONanostructures from Nanoparticles to Spindle Shape and theirPhotoelectrochemical Properties for Dye Sensitized Solar Cells[J]. ChemicalEngineering Journal,2012,(187):351-356.
    [72] Luo L, Tao W, Hu X, et al. Mesoporous F-Doped ZnO Prism Arrays withSignificantly Enhanced Photovoltaic Performance for Dye-Sensitized SolarCells[J]. Journal of Power Sources,2011,(196):10518-10525.
    [73] Lu L, Li R, Peng T, et al. Effects of Rare Earth Ion Modifications on thePhotoelectrochemical Properties of ZnO-based Dye-Sensitized Solar Cells[J].Renewable Energy,2011,(36):3386-3393.
    [74] Matt L, Lori E, Aleksandra R, et al. ZnO-Al2O3and ZnO-TiO2Core-ShellNanowire Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B,2006,(110):22652-22663.
    [75] Yang Y, Dong S, Yong Q, et al. Unexpected Long-Term Instability of ZnONanowires “Protected” by a TiO2Shell[J]. Journal of the American ChemicalSociety,2009,(131):13920-13926.
    [76] Plank N V, Snaith H J, Ducati C, et al. A Simple Low Temperature SynthesisRoute for ZnO-SiO2Core-Shell Nanowires[J]. Nanotechnology,2008,(19):465603-6p.
    [77] Shintaro U, Shinobu F. Effect of an Nb2O5Nanolayer Coating on ZnOElectrodes in Dye-Sensitized Solar Cells[J]. Electrochimica Acta,2011,(56):2906-2913.
    [78] Liu Z, Liu C, Ya J, et al. Controlled Synthesis of ZnO and TiO2Nanotubes byChemical Method and their Application in Dye-Sensitized Solar Cells[J].Renewable Energy,2011,(36):1177-1181.
    [79] Law M, Greene L, Radenovic A, et al. ZnO-Al2O3and ZnO-TiO2Core-ShellNanowire Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B,2006,(110):22652-22663.
    [80] Raksa P, Nilphai S, Gardchareon A, et al. Copper Oxide Thin Film andNanowire as a Barrier in ZnO Dye-Sensitized Solar Cells[J]. Thin Solid Film,2009,(517):4741-4744.
    [81] Gan X, Li X, Gao X, et al. ZnO Nanowire/TiO2Nanoparticle PhotoanodesPrepared by the Ultrasonic Irrdiatioon Assisted Dip-Coating Method[J]. ThinSolid Films,2010,(518):4890-4897.
    [82] Lee Y, Nung W, Lai C. Fabrication and Characterization of ZnO BranchedNanorods and ZnO/NiO Heterojunction Electrodes by Chemical SolutionMethod[J]. Physica E,2010,(42):2289-2294.
    [83] Chen Z, Tang Y, Liu C, et al. Vertically Aligned ZnO Nanorod ArraysSentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells[J].The Journal of Physical Chemistry C,2009,(113):13433-13437.
    [84] Qin Z, Huang Y, Liao Q, et al. Stability Improvement of the ZnO NanowireArray Electrode Modified with Al2O3and SiO2for Dye-Sensitized SolarCells[J]. Materials Letters,2012,(70):177-180.
    [85] Kumara G, Tennakone K, Kottegoda R, et al. Efficient Dye-SensitizedPhotoelectrochemical Cells Made Fromnanocrystalline Tin(IV) Oxide-ZincOxide Composite Films[J]. Semiconductor Science and Technology,2003,(18):312-318.
    [86] Keita K, Eiji H, Shinobu F. Enhanced Photoelectrochemical Performance ofZnO Electrodes Sensitized with N-719[J]. Journal of Photochemistry andPhotobiology A: Chemistry2006,(179):81-86.
    [87] Li S, Zhang X, Jiao X, et al. One-Step Large-Scale Synthesis of Porous ZnONanofibers and their Application in Dye-Sensitized Solar Cells[J]. MaterialsLetters,2011,(65):2975-2978.
    [88] Zhang Q, Jeong Y, Cao G, et al. Light Scattering with Oxide NanocrystalliteAggregates for Dye-Sensitized Solar Cell Application[J]. Journal ofNanophotonics,2010,(4):041540-7p.
    [89] Rebecka S, María Q, Erik M, et al. Preventing Dye Aggregation on ZnO byAdding Water in the Dye-Sensitization Process[J]. The Journal of PhysicalChemistry C,2011,(115):19274-19279.
    [90] Sin Y, Sang L. Improved Conversion Efficiency in Dye-Sensitized Solar CellsBased on Electrospun Al-Doped ZnO Nanofiber Electrodes Prepared by SeedLayer Treatment[J]. Journal of Solid State Chemistry,2011,(184):273-279.
    [91] Tsukasa Y, Hideki M. Electrochemical Self-Assembly of Dye-Modified ZincOxide Thin Films[J]. Advanced Materials,2000,12(6):45-49.
    [92] Tian Y, Hu C, Wu X, et al. Time Stability of Dye-Sensitized Solar Cell Basedon ZnO Sphere Aggregates[J]. Solar Energy Materials&Solar Cells,2012,(98):83-87.
    [93] Nazeeruddin M, Kay A, Rodicio I. Conversion of Light to Electricity byCis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) Ruthenium(Ⅱ) Charge-TransferSensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2Electrodes[J]. Journal of American Chemical Society,1993,115(14):6382-6390.
    [94] Wang P. Molecular-Scale Interface Engineering of TiO2Nanocrystals:Improving the Efficiency and Stability of Dye-Sensitized Solar Cells[J].Advanced Materials,2003,15(24):2101-2104.
    [95] Klein C. Engineering of a Novel Ruthenium Sensitizer and its Application inDye-Sensitized Solar Cells for Conversion of Sunlight into Electricity[J].Inorganic Chemistry,2005,44(2):178-182.
    [96] Wang P. A High Molar Extinction Coefficient Sensitizer for StableDye-Sensitized Solar Cells[J]. Journal of the American Chemical Society,2005,127(3):808-812.
    [97] Reddy P. Efficient Sensitization of Nanocrystalline TiO2Films by a Near IRAbsorbing Unsymmetrical Zinc Phthalocyanine[J]. Angewandte Chemie,2007,46(3):373-376.
    [98] He J. Modified Phthalocyanines for Efficient Near-IR Sensitization ofNanostructured TiO2Electrode[J]. Journal of the American Chemical Society,2002,124(17):4922-4932.
    [99] Jasieniak J, Johnston M, Waclawik E. Characterization of a PorphyrinContaining Dye Sensitized Solar Cell[J]. Journal of Physical Chemistry B,2004,108(34):12962-12971.
    [100]Watson D, Meyer G. Cation Effects in Nanocrystalline Solar Cells[J].Coordination Chemistry Reviews,2004,248(13-14):1391-1406.
    [101]Ehret A, Stuhl Spitler M. Spectral Sensitization of TiO2NanocrystallineElectrodes with Aggregated Cyanine Dyes[J]. Journal of Physical Chemistry B,2001,105(41):9960-9965.
    [102]Ushiroda S. Dye Sensitization of the Anatase(101) Crystal Surface by a Seriesof Dicarboxylated Thiacyanine Dyes[J]. Journal of the American ChemicalSociety,2005,127(14):5158-5168.
    [103]Nazeeruddin M,Zakeeruddin S. Gr tzel M. Acid-Base Equilibria of (2,2’-biPyridyl-4,4’-diearboxylic acid)ruthenium(Ⅱ) Complexes and the Effectof Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania[J].Inorganic Chemistry,1999,(38):6298-6305.
    [104]Nazeeruddin M, Kay A, Gratzel M. Conversion of Light to Electricity byCis-X2Bis(2,2’-biPyridyl-4,4’-diearboxylate)ruthenium(11) Charge-TransferSensitizers(X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2Electrodes[J]. Journal of the American Chemical Society,1993,(115):6382-6390.
    [105]Nazeeruddin M, Peehy P. Gratzel M. Efficient Panchromatic Sensitization ofNanoerystalline TiO2Films by a Black Dye Based on a TrithioeyanatoRuthenimu Complex[J]. Chemical Communications,1997,1705-1708.
    [106]Alfredo O, Sebastian P.(Zn, Cd)S Porous Layers for Dye-Sensitized Solar CellApplication[J]. Solar Energy Materials and Solar Cells,1998,(55):149-156.
    [107]Yafit I, Olivia N, Miles P, et al. Sb2S3-Sensitized Nanoporous TiO2SolarCells[J]. The Journal of Physical Chemistry C,2009,113(11):4254-4256.
    [108]Tang Y, Hu X, Chen M, et al. CdSe Nanocrystal Sensitized ZnO Core-ShellNanorod Array Films: Preparation and Photovoltaic Properties[J].Electrochimica Acta,2009,(54):2742-2747.
    [109]Pastore M, Mosconi E, De Angelis F. A Computational Investigation ofOrganic Dyes for Dye-Sensitized Solar Cells: Benchmark, Strategies, andOpen Issues[J]. Journal of Physical Chemistry C,2010,114(15):7205-7212.
    [110]Strümpel C, Mc Cann M, Beaucarne G, et al. Modifying the Solar Spectrum toEnhance Silicon Solar Cell Efficiency-an Overview of Available Materials[J].Solar Energy Materials and Solar Cells,2007,91(4):238-249.
    [111]Choi H, Kim J, Song K. Molecular Engineering of PanchromaticUnsymmetrical Squaraines for Dye-Sensitized Solar Cell Applications[J].Journal of Materials Chemistry,2010,20(16):3280-3286.
    [112]Sapp S, Elliott C, Coniado C, et al. Substituted Polypyridine Complexes ofCobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized SolarCells[J]. Journal of the American Chemical Society,2002,124:11215-11222.
    [113]Wang P, Zakeeruddin S, Moser J, et al. A Solvent-Free, SeCN-/(SeCN)3-BasedIonic Liquid Electrolyte for High-Efficiency Dye-Sensitized NanocrystallineSolar Cells[J]. Journal of the American Chemical Society,2004,(126):7164-7166.
    [114]Ehlet A, Sfuhl L, Spitler M. Spcetral Sensitization of TIO:NanoerystallineEleetrodes with Aggregated Cyanine Dyes[J]. Joumal of Physieal Chemistry B,2001,105(41):9960-9965.
    [115]Sayama K, Tsukaqoshi S, Mori T. Effieient Sensitzation of NanocrystallineTIO: Films with Eyanlnc and Merocyanine Organic Dyes[J]. Energy MaterialsCells,2003,(80):47-51.
    [116]Chen Y,Zeng Z,Li C. Highly Efficient Co-Sensitization of NanoerystalllneTIO:Electrodes with Plural Organic Dyes[J]. New Journal Chemistry,2005,(29):773-776.
    [117]Ogura R, Nakane S, Morooka M, et al. High-Performance Dye-SensitizedSolar Cell with a Multiple Dye System[J]. Applied physics Letters,2009,94(7):756-759.
    [118]Ramgir N, Late D, Bhise A, et al. ZnO Multipods Submicron Wires, andSpherical Structures and their Unique Field Emission Behaviour[J]. TheJournal of Physical Chemistry B,2006,(110):18236-18242.
    [119]Yum J, Jang S, Walter P, et al. Efficient Co-Sensitization of NanocrystallineTiO2Films by Organic Sensitizers[J]. Chemical Communications,2007,(44):4680-4682.
    [120]Kuang D, Walter P, Ndeseh F, et al. Co-sensitization of Organic Dyes forEfficient Ionic Liquid Eleetrolyte-Based Dye-Sensitized Solar Cells[J].Langmuir,2007,(23):10906-10909.
    [121]Ehret A, Stuhl L, Spitler M. Spectral Sensitization of TiO2NanocrystallineElectrodes with Aggregated Cyanine Dyes[J]. The Journal of PhysicalChemistry,2001,(105):9960-9965.
    [122]Guo M, Diao P, Ren Y, et al. Photoelectrochemical Studies of NanocrystallineTiO2Co-sensitized by Novel Cyanine Dyes[J]. Solar Energy Materials Solarcells,2005,(88):23-25.
    [123]Nian H, Hahn S, Koo K-K, et al. Sol-gel Derived N-doped ZnO Thin Films[J].Materials Letters,2009,(63):2246-2248.
    [124]Neenu V, Panchakarla L, Hanapi M, et al. Solvothermal Synthesis of Nanorodsof ZnO, N-doped ZnO and CdO[J]. Materials Research Bulletin,2007,(42):2117-2124.
    [125]Kanamori H. Shaking Without Quaking[J]. Science,1998,(279):2063-2064.
    [126]Christine M. Plant Physiology: Plant Biology in the Genome Erath[J]. Science,1998,(281):331-332.
    [127]Zhang J, Wang S, Wang Y, et al. ZnO Hollow Spheres: Preparation,Characterization, and Gas Sensing Properties[J]. Sensors and Actuators B,2009,(139):411-417.
    [128]Sheng X, Zhai J, Jiang L, et al. Enhanced Photoelectrochemical Performanceof ZnO Photoanode with Scattering Hollow Cavities[J]. Applied Physics A,2009,(96):473-479.
    [129]邓文雅,赵宗彬,沈琳,等.氧化锌空心球的制备及光致发光特征[J].功能材料,2007,9(38):1559-1562.
    [130]Chen L. A Facil Route to ZnO Nanorod Arrays Using Wet ChemicalMethod[J]. Journal of Crystal Growth,2006,293(2):522-527.
    [131]徐志兵,陈金龙,胡智东. ZnO微球的制备及表征[J].石油化工,2007,36(1):83-87.
    [132]Hu Y, Jiang Z, Xu C, et al. Monodisperse ZnO Nanodots: Synthesis,Charaterization, and Optoelectronic Properties[J]. The Journal of PhysicalChemistry C,2007,111(27):9757-9760.
    [133]Raghvendra S, Yadav A C, Sharda S S. ZnO Porous Structures Synthesized byCTAB-Assisted Hydrothermal Process[J]. Structural Chemistry,2007,(18):1001-1004.
    [134]Zhou X, Li Y, Peng T, et al. Synthesis, Characterization and itsVisible-Light-Induced Photocatalytic Property of Carbon Doped ZnO[J].Materials Letters,2009,(63):1747-1749.
    [135]Tan S, Sun X, Yu Z, et al. P-Type Conduction in Unintentional Carbon-DopedZnO Thin Films[J]. Applied Physica Letters,2007,(91):072101-4p.
    [136]Zhu Y, Lin S, Zhang Y, et al. Temperature Effect on the Electrical, Structuraland Optical Properties of N-doped ZnO Films by Plasma-Free Metal OrganicChemical Vapour Deposition[J]. Applied Surface Science,2009,(255):6201-6204.
    [137]Hu J, He H Y, Pan B C. Hydrogen Diffusion Behavior in N Doped ZnO:First-Principles Study[J]. Journal of Applied Physics,2008,(103):113706-4p.
    [138]Wang H, Ho H P, Xu J B. Photoelectron Spectoscopic Investigation ofNitrogen Chemical States in ZnO:(N, Ga) Thin Films[J]. Journal AppliedPhysice,2008,(103):103704-6p.
    [139]Wang H, Ho H P, Lo K C, et al. Growth of P-type ZnO Thin Films by (N, Ga)Co-Doping Using Dmhy Dopant[J]. Journal of Physics D: Applied Physics,2007,(40):4682-4685.
    [140]Wang J, Elangovan E, Vincent S, et al. Effect of Annealing on the Properties ofN-doped ZnO Films Deposited by RF Magnetron Sputtering[J]. AppliedSurface Science,2008,(254):7178-7182.
    [141]Jiang L, Xu Z, Shang X, et al. The Surface Properties and PhotocatalyticActivities of ZnO Ultrafine Particles[J]. Applied Surface Science,2001,(180):308-314.
    [142]Coppa B, Davis R, Nemanich R. Gold Schottky Contacts on OxygenPlasma-Treated, N-Type ZnO (0001)[J]. Applied Physics Letters,2003,(82):400-402.
    [143]Chen M, Wang X, Yu Y, et al. X-Ray Photoelectron Spectroscopy and AugerElectron Spectroscopy Studies of Al-Doped ZnO Films[J]. Applied SurfaceScience,2000,(158):134-140.
    [144]Seigo I, Hidetoshi M, Satoshi U, et al. Sub Nanometer Noble-Metal ParticleHost Synthesis in Porpous Silica Monliths[J]. Chemical Communications,2008,5194-5196.
    [145]Li Z, Xiong Y, Xie Y. Selected-control Synthesis of ZnO Nanowires andNanorods via a PEG-Assisted Route[J]. Inorganic Chemistry,2003,(42):8105-8109.
    [146]Chen S F, Zhang S J, Liu W, et al. Preparation and Activity Evaluation of P-NJunction Photocatalyst NiO/TiO2[J]. Journal of Hazardous Materials,2008,(155):320-326.
    [147]Burda C, Lou Y, Chen X, et al. Enhanced Nitrogen Doping in TiO2Nanoparticles[J]. Nano Letters,2003,3(8):1049-1051.
    [148]Shanmugasundaram S, Horst K. Photocatalytic and PhotoelectrochemicalProperties of Nitrogen-Doped Titanium Dioxide[J]. Chemphyschem,2003,(4):487-490.
    [149]Ryuhei N, Tomoaki T, Yoshihiro N. Mechanism for Visible Light Responsesin Anodic Photocurrents at N-Doped TiO2Film Electrodes[J]. The Journal ofPhysical Chemistry B,2004,(108):10617-10620.
    [150]Zhou C, Kang J. Modulation of Band Structure in Wurtzite ZnO viaSite-Selective Ga-N Codoping[J]. Journal of Physics Condensed Matter,2006,(18):6281-6287.
    [151]Gallino F, Valentin C, Pacchioni G, et al. Nitrogen Impurity States inPolycrystalline ZnO: a combined EPR and Theoretical Study[J]. Journal ofMaterials Chemistry,2010,(20):689-697.
    [152]Wang X, Yang Y, Jiang Z, et al. Preparation of TiNxO2-xPhotoelectrodes withNH3under Controllable Middle Pressures for Dye-Sensitized Solar Cells[J].European Journal of Inorganic Chemistry,2009,3481-3487.
    [153]Taki M, Nobuo I, Yoshiro K, et al. High Visible-Light Photocatalytic Activityof Nitrogen-Doped Titania Prepared from Layered Titania/IsostearateNanocomposite[J]. Catalysis Today,2007,(120):226-232.
    [154]井立强,袁福龙,侯海鸽,等. ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J].中国科学B辑.化学,2004,3(4):310-314.
    [155]Jing L, Xu Z, Shang J, et al. The Preparation and Characterization of ZnOUltrafine Particles[J]. Materials Science and Engineering A,2002,(332):356-361.
    [156]王雪松,王德军,肇启东,等.活性粒子吸附对ZnO纳米粒子表面光伏特性的影响[J].高等学校化学学报,2004,25(12):2353-2355.
    [157]Jing L, Xin B, Yuan F, et al. Deactivation and Regeneration of ZnO and TiO2Nanoparticles in the Gas Phase Photocatalytic Oxidation of N-C7H16or SO2[J].Applied Catalysis A: General,2004,(275):49-54.
    [158]Jing L, Wang D, Wang B, et al. Effects of Noble Metal Modification onSurface Oxygen Composition, Charge Separation and Photocatalytic Activityof ZnO Nanoparticles[J]. Journal of Molecular Catalysis A: Chemical,2006,(244):193-200.
    [159]Jing L, Wang B, Xin B, et al. Investigations on the Surface Modification ofZnO Nanoparticle Photocatalyst by Depositing Pd[J]. Journal of Solid StateChemistry,2004,(177):4221-4227.
    [160]Qian W, Qiang S, Puru J. N-Doped ZnO Thin Films and Nanowires:Energetics, Impurity Distribution and Magnetism[J]. New Journal of Physics,2009,(11):063035-9p.
    [161]Liu J, Liang Q, Zhang Y, et al. Improved P-Type Conductivity and AcceptorStates in N-doped ZnO Thin Films[J]. Journal of Physics D: Applied Physics,2007,(40):3177-3p.
    [162]Hu J, He H, Pan B. Hydrogen Diffusion Behavior in N Doped ZnO:First-Principles Study[J]. Journal applyics,2008,(103):113706-5p.
    [163]Sukit L, Li X, Wei S, et al. Probing Deactivations in Nitrogen Doped ZnO byVibrational Signatures: a First Principles Study[J]. Physica B,2006,(376-377):686-689.
    [164]Detlev M, Albrecht H, Frank L, et al. Hydrogen: a Relevant Shallow Donor inZinc Oxide[J]. Physical Review Letters,2012,88(4):045504-4p.
    [165]Chris G, Vande W. Hydrogen as a Cause of Doping in Zinc Oxide[J]. PhysicalReview Letters,2010,85(5):1012-1015.
    [166]Li X, Brian K, Sally A, et al. Hydrogen Passivation Effect in Nitrogen-DopedZnO Thin Films[J]. Applied Physics Letters,2006,(86):122107-5p.
    [167]Ivan M-S, Juan A, Thomas D, et al. Continuous Time Random WalkSimulation of Short-Range Electron Transport in TiO2Layers Compared WithTransient Surface Photovoltage Measurements[J]. Journal of Photochemistryand Photobiology A: Chemistry,2006,(182):280-287.
    [168]Zhang Q, Wang D, Wei X, et al. A Study of the Interface and the RelatedElectronic Properties in N-Al0.35Ga0.65N/GaN Heterostructure[J]. Thin SolidFilms,2005,(491):242-248.
    [169]Pan Y, Chen L, Wang Y, et al. Transient Photovoltaic Properties inAl/Tin-phthalocyanine Indium-Tin-Oxide Sandwich Cell[J]. Applied PhysicsLetters,1996,68(10):1314-1316.
    [170]Zhang Y, Xie T, Jiang T, et al. Surface Photovoltage Characterization of a ZnONanowire Array/CdS Quantum Dot Heterogeneous Film and its Applicationfor Photovoltaic Devices[J]. Nanotechnology,2009,(20):155707-7p.
    [171]Wang Q, Moser J-E, Gr tzel M. Electrochemical Impedance SpectroscopicAnalysis of Dye-Sensitized Solar Cells[J]. The Journal of Physical ChemistryB,2005,(109):14945-14953.
    [172]He C, Zheng Z, Tang H, et al. Electrochemical Impedance SpectroscopyCharacterization of Electron Transport and Recombination in ZnO NanorodDye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C,2009,(113):10322-10325.
    [173]Lee K-M, Suryanarayan V, Ho K-C. A Photo-Physical and ElectrochemicalImpedance Spectroscopy Study on the Quasi-Solid State Dye-Sensitized SolarCells Based on Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)[J]. Journalof Power Sources,2008,(185):1605-1612.
    [174]Longo C, Nogueira A, Paoli M. Solid-State and Flexible Dye-Sensitized TiO2Solar Cells: a Study by Electrochemical Impedance Spectroscopy[J]. TheJournal of Physical Chemistry B,2002,(106):5925-5930.
    [175]Wang H, Ho H P, Lo K C,et al. Preparation of P-Type ZnO films with (N,Ga)Co-Doping by MOVPE[J]. Materials Chemistry and Physics,2008,(107):244-247.
    [176]Priti T, Pablo D, Michael B, et al. Electron Mobility and Injection Dynamics inMesoporous ZnO, SnO2, and TiO2Films Used in Dye-Sensitized Solar Cells[J].Nano,2011,5(6):5158-5166.
    [177]Chen Y, Song Q, Yan H, et al. Electronic Structure and Magnetic Properties ofthe N Monodoping and (Li, N)-Codoped ZnO[J]. Solid State Communications,2011,(151):619-623.
    [178]Han T, Meng F Y, Zhang S, et al. Band Gap and Electronic Properties ofWurtzite-Structure ZnO Codoped with IIA and IIIA[J]. Journal of AppliedPhysics,2011,(110):063724-7p.
    [179]Wei X, Xie T, Xu D, et al. A Study of the Dynamic Properties ofPhoto-induced Charge Carriers at Nanoporous TiO2/conductive SubstrateInterfaces by the Transient Photovoltage Techniq[J]. Nanotechnology,2008,(19):275707-3p.
    [180]Guan L, Liu B, Li Q, et al. Electronic Structure and Optical Properties ofSubstitutional and Interstitial Phosphor-doped ZnO[J]. Physics Letters A,2011,(375):939-945.
    [181]Kim Y, Choulis S A, Nelson J, et al. Device Annealing Effect in Organic SolarCells with Blends of Regioregular Poly(3-hexylthiophene) and SolubleFullerene[J]. Applied Physics Letter,2005,86:063502-063504.
    [182]Ashtaputre S S, Nojima A, Marathe S K, et al. Investigations of White LightEmitting Europium Doped Zinc Oxide Nanoparticles[J]. Journal Physics D:Applied Physics,2008,(41):015301-4p.
    [183]Tian H, Hu L, Zhang C, et al. Superior Energy Band Structure and RetardedCharge Recombination for Anatase N, B Codoped Nano-Crystalline TiO2Anodes in Dye-Sensitized Solar Cells[J]. Journal of Materials Chemitry,2012,(22):9123-9130.
    [184]Tian H, Yang X, Cong J, et al. Effect of Different Electron Donating Groups onthe Performance of Dye-Sensitized Solar Cells[J]. Dye and pigments,2010,(84):62-68.
    [185]Pan K, Dong Y, Tian C, et al. TiO2-B Narrow Nanobelt/TiO2NanoparticleComposite Photoelectrode for Dye-Sensitized Solar Cells[J]. ElectrochimicaActa,2009,(54):7350-7356.
    [186]Wang P, Wang L, Ma B, et al. TiO2Surface Modification and Characterizationwith Nanosized PbS in Dye-Sensitized Solar Cells[J]. Journal PhysicsChemistry B,2006,110:14406-14409.
    [187]Liu B, Yan P, Zhang J, et al. M-Ferrocenylbenzoate-Bridged LanthanideCoordination Polymers: Syntheses, Structures, Electrochemical and MagneticProperties[J]. Journal of Organometallic Chemistry,2010,(695):2441-2446.
    [188]Katoh R, Furube A, Yoshihara T, et al. Efficiencies of Electron Injection fromExcited N3Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5,SnO2, In2O3) Films[J]. Journal Physics Chemistry B,2004,(108):4818-4823.
    [189]Gordon E B, Gr tzel M. Metal Oxide Surfaces and their Interactions withAqueous Solutions and Microbial Organisms[J]. Chemical Reviews,1999,99(1):177-184.
    [190]Gr tzel M. Perspectives for Dye-Sensitized Nanocrystalline Solar Cells[J].Progress in Photovoltaics: Research and Applications,2000,8(1):171-185.
    [191]贾海顺,刘爱国,田戈夫,等.溶剂极性和pH值对甲苯胺蓝溶液的影响[J].北京师范大学学报(自然科学版),1994,30(2):237-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700