用户名: 密码: 验证码:
H_2-CO还原钛精粉的热力学及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国钛资源储量丰富,居世界首位,其中四川约占国内的90%,具有独特的资源优势;伴随我国冶金工业机械化、现代化的快速发展,近15年来其产能一直居世界首位,这个以资源和能源消耗为主体的工业,必将直接或间接地产生大量含能气体,即H_2和CO。因此,利用H_2和CO含能气体的还原性,实现钛资源中有价金属高效分离,符合节能减排的绿色冶金发展要求,意义重大。
     本文以我国钛资源和含能废气综合利用为目标,采用化学分析、扫描电镜、金相显微镜及X射线等理化手段,系统研究了钛精粉及其预氧化钛精粉在氢气、一氧化碳及其混合气条件下的还原特征及其动力学规律;并初步实现了还原产物中Ti、Fe分离,进行了有益尝试。
     为了准确研究100ml·min-1流量还原气体在不同工艺参数条件下,还原产物金属化率的变化关系,本文优化了FeCl3浸出-K_2Cr_2O_7滴定法测定其金属铁含量的方法,其最佳实验参数:取样质量0.1g;FeCl3用量100ml;FeCl3浓度10g·L-1;搅拌时间60min;K_2Cr_2O_7浓度0.01N。该方法标准偏差是0.24%,与前苏联国标结果一致,符合检测要求。
     综合考虑金属化率、反应时间等方面因素,钛精粉在H_2-CO条件下的最佳还原工艺参数是:混合气中氢气浓度大于50%、还原温度1150oC、还原时间90min;失重率约12%,金属化率可达87%;还原产物主要由M_3O_5固溶体和金属Fe相组成。在还原过程中,Fe和Ti的相组成主要受温度影响,Fe_2O_3低于600oC,即被还原;高于600oC,FeTiO_3才被还原为金属Fe和TiO_2,并含有TinO_2n-1;1000oC时,出现M_3O_5固溶体,其衍射峰随还原温度的升高而增强。还原温度低于1000oC,如还原气中含有一氧化碳,则还原产物可能存在单质碳或渗碳体相;超过这个温度,其衍射峰极其微弱,甚至消失。
     钛精粉在氧化过程中,900oC时重量增加最显著,此时FeTiO_3被氧化为Fe_2Ti_3O_9和部分Fe_2O_3,随后重量逐渐减小,直至1200oC反应开始平衡,最终氧化产物由Fe_2TiO_5和TiO_2相组成。微观形貌分析表明钛精粉在氧化过程中,其内部产生较多不规则孔隙,其为还原气向内部扩散和生成气脱离产物表面提供良好的反应通道和空间,可以提高后续还原速率。氧化过程中产物硫含量随温度的升高而增加,直至1200oC,其脱硫率可达99%。
     预氧化处理工艺不但提高了其还原过程的反应速率及还原产物金属化率,而且降低了还原温度。在H_2-CO条件下,还原产物金属化率可达93%以上,与未预氧化钛精粉的还原相比,其增加了6%。最佳还原工艺条件是混合气中氢气浓度大于50%、还原温度1100oC、还原时间80min。最终还原产物相组成与原精粉还原产物相同,即由M_3O_5固溶体和金属Fe相组成,但该固溶体中Fe含量相对较低;研究发现氢气与一氧化碳相比,预氧化处理对于提高反应速率而言,一氧化碳还原的效果显著,随其浓度的升高而增加。
     本文采用扩散和界面化学反应模型研究了钛精粉及其预氧化产物的还原动力学。结果表明其还原过程符合未反应核模型,由于钛精粉的氧化作用,其还原机理不同。还原温度低于950oC,钛精粉及其预氧化钛精粉在Fe~(3+)还原为Fe~(2+)的过程中,分别受扩散和界面化学模型控制,高于此温度受扩散与界面化学反应混合控制;950-1200oC,Fe~(2+)还原为Fe时,其模型与Fe~(3+)还原为Fe~(2+)相同,其表观活化能介于59~74kJ·mol-1和48-68kJ·mol-1,随氢气浓度的增加而减小,当氢气浓度大于50%时,活化能数值比较接近,但就其总体而言,预氧化钛精粉还原的表观活化能低于原钛精粉的还原。
     相组成、宏观与微观形貌分析表明预氧化钛精粉在还原过程中,除单质Fe外,Fe_2TiO_5依次被还原为FeTiO_3、TiO_2及TinO_2n-1;且混合气氧分压对数ln(PO2/Pθ)介于-14~-16之间,也证明了其相转变;最后TiO_2、TinO2n-1与Mg、Mn等氧化物固溶为M3O5固溶体。以Mn、Al为主形成的固溶体不规则地分布在颗粒边缘,阻碍还原气向反应物内部扩散及气相生成物脱离还原产物;Mg、Ti与少量Fe等元素形成的固溶体则较均匀地分布于整个颗粒,结构致密;两固溶体相均能有效降低反应物活度,减小其还原度,是金属化率降低和后期反应减速的主要原因。此外,以Ca、Si为主的元素与微量Fe等元素形成粘结相,使每个颗粒相互连接而形成一个整体。
     最后本文推导出1100oC,氢气浓度大于50%时,预氧化钛精粉还原产物金属化率的预报模型,其表达式如下:
     y3.1094.279t6.40610~2t23.202104t3100m Y
     该预报模型较好地吻合了本文实验数据,可以定量预1测001100oC时,不同氢气/一氧化碳混合气、不同反应时间条件下预氧化钛精粉还原产物金属化率。
There exists the abundant mineral resource of titanium in China, more than90%of which deposited in province Sichuan of the country, is the richest in titaniumresource in the world. With the rapid development of mechanization andmodernization of metallurgical industry, the output, which is mainly made byconsuming of energy and resources, is biggest in the world so that it must producemuch metallurgical waste gas containing energy of hydrogen and carbon monoxide.Therefore, titanium resources and waste gas energy owned dominant positionobviously in our country. Therefore, efficient separation of multivalent metal intitamium resource is carried out by using reduction of H2and CO, which is in accordwith development of freen metallurgical requriments with saving energy andreducing pollutant smission. It is of great significance to study the above in theoryand practice.
     Aiming at comprehensive utilization of titanium resources and metallurgicalwaste gas, reduction characteristics and kinetics were studied in the atmosphere ofhydrogen, carbon monoxide or their mixture gas by using chemical analysis,scanning electron microscopy, optical microscopy and X-ray diffraction and so on.We successed preliminarily in separating of titanium and iron from reductionproducts of preoxidation ilmenite concentrate. Several significative tries were donein the experimental process.
     In order to investigate metallization rate of reduction products reduced bydifferent gas of100ml·min-1, the method of measuring the metal iron concentrationwas optimized by FeCl3dissolution-K_2Cr_2O_7titrmetric method. The optimal processparameters were as follows: the sample quality of0.1g, the composition andconcentration of FeCl_3of100ml and10g·L~(-1), the electromagnetic stirring time of60min, K_2Cr_2O_7concentration of0.01N. The method, standard error of which was0.24%, was consistant with national standard of early Russian and satisfied with chemical analysis.
     Considering the factors of metallization rate and reaction time and so on, theoptimal reduction process parameters were obtained. As follows: hydrogenconcentration of more than50%in mixture gas, reduction temperature of1150oC,reduction time of90min. The weight loss and metallization rate can reach12%and87%respectively. The final reduction product phases contained mainly Fe and M_3O_5solid solution. Influence of reaction temperature on composition of Fe and Ti phasein the reduction process. Fe_2O_3was only reduced below600oC and FeTiO_3wasgradually reduced to Fe, TiO_2and TinO_2n-1. The intensities for M_3O_5solid solutionappeared at1000oC increased gradually with adding of reduction temperature. Thephase of carbon and ferric carbide could occur in the reduction products if reductiongas contained carbon monoxide below1000oC, or the intensities of diffractions wereweak and could disappear above1000oC.
     FeTiO_3phases, weight increment of which reached maximum, were oxidized toFe_2Ti_3O_9and Fe_2O_3at900oC in the oxidation process, and then weight changedecreased gradually until oxidation products were mainly composed of Fe2TiO5andTiO2at1200oC. Microstructure evolution indicated that a lot of internal porositiesappeared in the oxidation process could provide reaction path and space forreduction gas diffusion from outside into intior and productive gas separation fromreduction products, which could raise reaction velocity. Sulphur concentrationproducts decreased with increasing of reaction temperature in the processing ofoxidation and desulphurization ratio could reach99%at1200oC.
     Preoxidation treatment not only raised the reduction speed and metallizationrate of products but also decreased reaction temperature in the reduction process.Metallization rate of reduction products could reach93%and was more6%than thatfrom ilmenite concentrate by H_2-CO. The optimal reduction process parameters wereas follows: hydrogen concentration of more than50%, reaction temperature of1100oC, reduction time of80min. The final reduction product, same as that of ilmenite concentrate, consisted of iron and M3O5solid solution with less Feconcentration. The preoxidation ilmenite concentrates were reduced more quickly bycarbon monoxide than by hydrogen and the speed increased with increasing ofcarbon monoxide concentration.
     The reduction kinetics of ilmenite concentrates and preoxidation products wereinvestigated by diffusion and chemical reaction model. The results shew thatreduction process satisfied unreacted ores model and reaction mechanism wasdifferent owing to oxidation of ilmenite concentrates. The reaction of Fe~(3+) Fe~(2+)inthe reduction of ilmenite concentrates and preoxidation products was controlled bydiffusion and chemical reaction model respectively below950oC, or by bothdiffusion and chemical reaction. The reaction mechanism of Fe~(3+) Fe~(2+)was same asthe above from950oC to1200oC, but the apparent activation energy of them wasfrom59to74kJ·mol-1and48to68kJ·mol-1, and decreased with the increasing ofhydrogen concentration in mixture. In general, the energy was more in the reductionof ilmenite concentrates than preoxidation products in the constant atmosphere.
     The analysis of phase, macrograph and microstructure indicated that Fe2TiO5was reduced gradually to FeTiO_3, TiO_2and TinO2n-1, which was proved by oxygenpartial press with ln(PO2/Pθ) from-14to-16, then TiO_2, TinO2n-1and MgO, MnOand so on formed M_3O_5solid solution. The solid solutions, which consisted mainlyof Mn and Al and so on, appeared on outer rims or the cracks; this could inhibitdiffusing of reduction gas from outerside into intior and separating of product gasfrom the reduced samples. The solid solutions of Mg, Ti and less Fe phasesoccurred in all of particle so that the structure was dense. The formation of bothsolid solutions could decrease the activity and reduction degree of the reactant,which was main season of decreasing the metallization rate and reaction speed.Besides, the binding phases, which were informed from Ca, Si, O and less Febetween the volids of different particles, made the reduction products form thetense structure.
     Forecasting model of metallization rate of preoxidation ilmenite concentrate is deduced in hydrogen of above50%at1100℃. The model is shown as following:
     The forecasting model is fit with the experimental datas of the paper. It can forecast quantitatively the metallization rate of preoxidation ilmenite concentrate under the condition of different hydrogen and carbon monoxide concentration and reaction time at1100℃.
引文
[1]杨绍利,盛继孚.钛铁矿熔炼钛渣与生铁技术[M].北京:冶金工业出版社,2006:1-2.
    [2] XuanyongLiu, PaulK.Chu, Chuanxian Ding. Surface modification of titanium,titaniumalloys, and related materials for biomedical applications[J]. Materials science andengineering,2004(R47):49-121.
    [3] Goger Thomas. Titanium in the geothermal industry[J]. Geothermics,2003(32):679-687.
    [4] René Beutnera, Jan Michaelb, Anne F rsterb, Bernd Schwenzerb, Dieter Scharnwebera.Immobilization of oligonucleotides on titanium based materials incorporation in anodicoxide layers[J]. Bimaterials,2009(30):2774-2781.
    [5] So-Yoon Lee, Madoka Takai, Hyun-Min Kim, Kazuhiko Ishihara. Preparation ofnano-structured titanium oxide film for biosensor substrate by wet [J]. Current appliedphysics,2009,(9):266-269.
    [6] Rahul K. Keswani, Harshad Ghodke, Deepa Sarkar, Kartic C. Khilar, Raman S. Srinivasa.Room temperature synthesis of titanium dioxide nanoparticles of different phases in waterin oil microemulsion[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,369(2010):75-81.
    [7] Yunjiao Li, George P. Demopoulos. Precipitation of nanosized titanium dioxide fromaqueous titanium chloride solutions by neutralization with MgO[J]. Hydrometallurgy,90(2008):26-33.
    [8]杨绍利,盛继孚.钛铁矿熔炼钛渣与生铁技术[M].北京:冶金工业出版社,2006:11-21.
    [9]邓国珠.世界钛资源及其开发利用现状[J].钛工业进展,2002(5):9-12.
    [10]陈德明.攀西地区钛资源的特点及其利用途径[J].攀枝花科技与信息,2009,34(3):5-9.
    [11]王立平,王镐,高欣,李献军,陈战乾,窦永庆.我国钛资源分布和生产现状[J].稀有金属,2004,28(1):265-267.
    [12]吴贤,张健.中国的钛资源分布及特点[J].Ti工业进展,2006,23(6):8-12.
    [13]陈丽云,张春霞,胡长庆,齐渊洪,王海风.钢铁厂焦炉煤气利用的潜力分析[J].世界钢铁,2005(5):37-41.
    [14]娄马宝.高炉煤气燃气轮机发电-利用高炉煤气的好形式[J].上海汽轮机,2000(1):33-35.
    [15]孙承波,李宝义.氧气转炉烟气净化回收技术[J].重型机械,2007(5):1-6.
    [16] WenderesFevent, Donald.Gunn. Production of hydrogen-rich gases from steam reformingof methane in an automatic catalytic microreactor[J]. International Journal of HydrogenEnergy,2003(28):945-959.
    [17] Asghar Molaei Dehkordi, Chiya Savari, Mohammad Ghasemi. Steam reforming ofmethane in a tapered membrane-Assisted fuidized-Bedreactor: Modeling and simulation[J].International journal of hydrogen energy,2011(36):490-504.
    [18] Wang Shuyan, YinLijie, Lu Huilin, He Yurong, Jianmian Ding, Liu Guodong, Li Xiang.Simulation of effect of catalytic particle clustering on methane Steam reforming in acirculating fuidized bed reformer[J]. Chemical Engineering Journal2008(139):136-146.
    [19] Yuwen Zhang, Qian Li, Peijun Shen, Yong Liu, Zhibin Yang, Weizhong Ding, XionggangLu. Hydrogen amplification of coke oven gas by reforming of methane in a ceramicmembrane reactor[J]. International journal of hydrogen energy,2008(33):3311-3319.
    [20] Hongwei Cheng, Xionggang Lu, Dahai Hu, Yuwen Zhang, Weizhong Ding, Hailei Zhao.Hydrogen production by catalytic partial oxidation of coke oven gas inBaCo0.7Fe0.2Nb0.1O3-x membranes with surface modification[J].2011(36):528-538.
    [21] Peijun Shen, Weizhong Ding, Yuding Zhou, Shaoqing Huang. Reaction mechanism onreduction surface of mixed conductor membrane for production by coal-gas[J]. AppliedSurface Science,2010(256):5094-5101.
    [22] Madlinger(德),钱晖(译),王巍(译).钢铁联合企业生产中气体能源最佳利用的技术经济和生态保护的研究[J].世界钢铁,2005(1):32-40.
    [23] Ryutaro Hino, Shinji Kubo, Kaoru Onuki, Yukio Tachibana, Masuro Ogawa. Contributionof nuclear hydrogen to ironmaking[J]. CAMP-ISIJ: Vol.22(2009):290-293.
    [24]杨绍利,盛继孚.钛铁矿熔炼钛渣与生铁技术[M].北京:冶金工业出版社,2006:42-47.
    [25]孙艳.高钙镁钛铁矿制取高品质富钛料新工艺研究[D].昆明:昆明理工大学,2006:6-7.
    [26] A.A. Francis, A.A. El-Midany. An assessment of the carbothermic reduction of ilmeniteore by statistical design[J]. Journal of materials processing technology,199(2008)279-286.
    [27] Suresh K. Gupta, V. Rajakumar, P. Grieveson. Kinetics of reduction of ilmenite withgraphite at1000to11000C[J]. Metallurgical transactions B, Volume18B, December1987,713-718.
    [28] Wang Yu-ming, Yuan Zhang-fu, Guo Zhan-cheng, Tan Qiang-qiang, Li Zhao-yi, JiangWei-zhong. Redution mechanism of natural ilmenite with graphite[J]. Trans. NonferrousMet. Soc. China18(2008)962-968.
    [29] Wang Yu-ming, Yuan Zhang-fu. Reductive kinetics of the reaction between a naturalilmenite and carbon[J]. Int. J. Process,81(2006)133-140.
    [30] C.S. Kucukkaragoz, R.H. Eric. Solid state reduction of a natural ilmenite[J]. MineralsEngineering19(2006)334-337.
    [31] Xu Meng, Guo Ming-wei, Zhang Jian-liang, Wan Tian-ji, Kong Ling-tan. Beneficiation oftitanium oxides from ilmenite by self-reduction of coal bearing pellets[J]. Journal of ironand steel research, internatonal,2006,13(2):6-9.
    [32] N.J. Welham, J.S. Williams. Carbothermic reduction of ilmenite and rutile[J]. Metallurgicaland materials transactions B, Volume30B, December1999,1075-1081.
    [33] M. Pourabdoli, Sh. Raygan, H. Abdizadeh, K. Hanaei. Production of high titania slag byElectro-Slag Crucible Melting(ESCM) process[J]. Int. J. Process,78(2006)175-181.
    [34] J. Pesl, R.H. Eric. High temperature carbothermic reduction of Fe2O3-TiO2-MxOyoxidemixtures[J]. Minerals engineering15(2002)971-984.
    [35] B. Saensunon, G.A. Stewart, R. Pax. A combined Fe-mossbauer and X-ray diffractionstudy of the ilmenite reduction process in a commercial rotary kiln[J]. Int. J. Process,86(2008)26-32.
    [36] Y. Chen, T. Hwang, J.S.Williams. Ball milling induced low-temperature carbonthermicreduction of ilmenite[J]. Materials Letters28(1996)55-58.
    [37] N.J. Welham. A patametric study of the mechanically activated carbothermic reduction ofilmenite[J]. Minerals Engineering, Vol.9, No.12. pp.1189-1200.
    [38]黄孟阳,彭金辉,黄铭,张世敏,范兴祥,雷鹰.微波加热还原钛精矿制取富钛料扩大试验[J].有色金属(冶炼部分),2007(6):31-34.
    [39]雷鹰,李雨,彭金辉,张利波,张世敏,郭胜惠.微波碳热还原攀枝花低品位钛精矿[J].钢铁钒钛,2010,31(4):1-6.
    [40] V.M. Soklov, V.D. Babyuk, Ye.A. Zhydkov, Yu.Ya. Skok. Aluminothermic studies of aliquid partial reduced ilmenite[J]. Minerals Engineering21(2008)143-149.
    [41] Y.Z. Lan, J. Liu. Effect of the heat of reaction during the aluminothermic process ofilmenite[J]. Acta metallrugica sinica(Einglish letters),2005,18(2):173-176.
    [42] N.J. Welham. Mechanchemical reaction between ilmenite and aluminium[J]. Journal ofalloys and compounds270(1998)228-236.
    [43] WU Yi, YIN Chuangqiang, ZOU Zhengguang, WEI Hongju, LI Xiaomin. Combustionsynthesis of fine TiFe series alloy powder by magnesothermic reduction of ilmenite[J].Rare metals,2006,25(9):280-283.
    [44] N. J. Welham. Mechanically induced reduction of ilmenite and rutile by magnesium[J].Journal of alloys and compounds,274(1998):260-265.
    [45] N. J. Welham. Mechanically reduction of FeTiO3by Si[J]. Journal of alloys andcompounds,274(1998):303-307.
    [46] Tetsuji Saito, Katsuji Wakabayshi, Satoshi Yamashita, Minoru Sasabe. Production ofFe-Ti-Si alloys from ilmenite ore and their magnetic properties[J]. Journal of alloys andcompounds,388(2005):258-261.
    [47] Y. Chen, J.S. Williams, B. Ninham. Mechanochemical reactions of ilmenite with differentadditives[J]. Colloids and surfaces A: physicochemical and engineering aspects,129-130(1997)61-66.
    [48]吴一,邹正光,尹传强,李晓敏,周郎.天然钛铁矿原位合成金属陶瓷材料的现状[J].材料科学与工艺,2008,16(3):410-414.
    [49] Giovanni De Maria, Bruno Brunetti, Giuseppe Trionfetti, Daniela Ferro. High temperatureinteraction between H2, CH4, NH3and ilmenite[J]. AIP Conf Proc,2003,654:1142-1148.
    [50] Yuming Wang, Zhangfu Yuan, Hiroyuki Matsuura, Fumitaka Tsukihashi. Reductionextraction kinetics of titania and iron from an ilmenite by H2-Ar gas mixtures[J]. ISIJInternational49(2009)2:164-170.
    [51] Kang Sun, Reijiro Takahashi, Jun-ichiro Yagi. Reduction kinetics of cement-bondednatural ilmenite pellets with hydrogen[J]. ISIJ International32(1992)4:496-504.
    [52] M.L. de Vries, I.E. Grey. Influence of pressure on the kinetics of synthetic ilmenitereduction in hydrogen[J]. Metallurgical and Materials Transactions B,37B(2006)199-208.
    [53] Y. Zhao, F. Shadman. Reduction of ilmenite with hydrogen[J]. Ind. Eng. Chem. Res.30(1991)2080-2087.
    [54] P.L. Vijay, Ramani Venugopalan, D. Sathiy Amoorthy. Preoxidaton and hydrogen reductionof ilmenite in a fluidized bed reactor[J]. Metallurgical and Materials Transactions B,27B(1996)731-738.
    [55] Giovanni De Maria, Bruno Brunetti, Giuseppe Trionfetti, Daniela Ferro. High temperatureinteraction between H2O and hydrothermal reduced ilmenite[J]. AIP Conf Proc,2004,699:1060—1066.
    [56] R.Merk, C.A. Pichles. Reduction of ilmenite by carbon monoxide[J]. CanadianMetallurgical,1988,27(3):179-185.
    [57] David G. Jones. Kinetics of gaseous reduction of ilmenite[J]. J.Appl.Chem.Biotechnol,25(1975)561-582.
    [58] Satoshi Itoh, Atsushi Kikuchi. Reduction kinetics of natural ilmenite ore with carbonmonoxide[J]. Materials Transactions,2001,42(7):1364-1372.
    [59] Y. Zhao, F. Shadman. Kinetics and mechanism of ilmenite reduction with carbonmonoxide[J]. Aiche Journal,1990,36(9):1433-1438.
    [60] D.G. Jones. Photomicrographic investigation of the reduction[J]. Mineralogical laboratory,Australia. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya,2(1977)269-280.
    [61] Guangqing Zhang, O. Ostrovski. Deduction of ilmenite concentrates by methanecontaining gas: Part1. effects of ilmenite composition, temperature and gas composition[J].Canadian Metallrugical Quarterly,2001,40(3):317-326.
    [62] Guangqing Zhang, O. Ostrovski. Deduction of ilmenite concentrates by methanecontaining gas: Part2. effects of preoxidation and sintering[J]. Canadian MetallrugicalQuarterly,2001,40(4):489-498.
    [63]温旺光.钛铁矿选择氯化法制取人造金红石的热力学与动力学[J].钢铁钒钛,2003,24(1):8-15.
    [64]广东有色研究院氯化冶金组.钛铁矿选择氯化制取人造金红石的研究[J].金属学报,1977,13(3):161-168.
    [65] D.E. Bullard, D.C. Lynch. Reduction of ilmenite in a nonequibibrium hydrogen plasma[J].Metallurgical and materials transactions B, Volume28B, June1997,517-519.
    [66] P.V. Ananthapadmanabhan, Patrick R. Taylor. Titanium carbide-iron composite coatings byreactive plasma spraying of ilmenite[J]. Journal of alloys and comounds,287(1999)121-125.
    [67]戴云朵,郭兴敏,张家芸.H2+注入法研究钛铁矿还原微观机理[J].北京科技大学学报,2007,29(4):373-376.
    [68]郑国梁.等离子体熔态还原钛铁矿[J].钢铁,1986,21(9):4-10.
    [69]兰尧中.钛铁矿等离子熔态还原动力学[J].钢铁钒钛,1992,13(2):5-8.
    [70]李春,梁斌.钛铁矿的机械活化法及其浸出的研究进展[J].中国稀土学报,2008,26(专辑):1000-1007.
    [71] Chun Li, Bin Liang, Sheng-Pin Chen. Combined milling-dissolution of Panzhihua ilmenitein sulfuric acid[J]. Hydrometallurgy,82(2006)146-152.
    [72] Chun Li, Bin Liang, Ling-hong Guo, Zi-bin Wu. Effect of mechanical activation on thedissolution of Panzhihua ilmenite[J]. Minerals Engineering,19(2006)1430-1438.
    [73] Suchun Zhang, Michael J. Nicol. Kinetics of the dissolution of ilmenite in sulfuric acidsolutions under reduing conditions[J]. Hydrometallurgy,103(2010)196-204.
    [74] Chun Li, Bin Liang, Hao Song, Junqiang Xu, Xiaoqing Wang. Preparation of porous rutiletitania from ilmenite by mechanical activation and subsequent sulfuric acid leaching[J].Microporous and mesoporous Materials,115(2008)293-300.
    [75] Edward Olanipekun. A kinetic study of the leaching of a Nigerian ilmenite ore byhydrochloric acid[J]. Hydrometallurgy,53(1999)1-10.
    [76] Marshall R. Lanyon, Thaung Lwin, Richard R. Merritt. The dissolution of iron in thehydrochloric acid leach of an ilmenite concentrate[J]. Hydrometallurgy,51(1999)299-323.
    [77] C. Sasikumar, D.S. Rao, S. Srikanth, N.K. Mukhopadhyay, S.P. Mehrotra. Dissolutionstudies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4[J].Hydrometallurgy,88(2007)154-169.
    [78] Li Zhang, Huiping Hu, Liangping Wei, Qiyuan Chen, Jun Tan. Hydrochloric acid leachingbehaviour of mechanically activated Panxi ilmenite[J]. Separation and PurificationTechnology,73(2010)173-178.
    [79] Chun Li, Bin Liang, HaiYu Wang. Preparation of synthetic rutile by hydrochloric acidleaching of mechanically activated Panzhihua ilmenite[J].Hydrometallurgy,91(2008)121-129.
    [80] N. El-Hazek, T.A. Lasheen, R. El-Sheikh, Salah A. Zaki. Hydrometallurgical criteria forTiO2leaching from Rosetta ilmenite by hydrochloric acid[J]. Hydrometallurgy,87(2007)45-50.
    [81] A.A. Nayl, H.F. Aly. Acid leaching of ilmenite decomposed by KOH[J]. Hydrometallurgy,97(2009)86-93.
    [82] Yumin Liu, Tao Qi, Jinglong Chu, Qijie Tong, Yi Zhang. Decomposition of ilmenite byconcentrated KOH solution under atmospheric pressure[J]. Int. J.Miner.Process,81(2006)79-84.
    [83] A.M. Amer. Alkaline pressure leaching of mechanically activated Rosetta ilmeniteconcentrate[J]. Hydrometallurgy,67(2002)125-133.
    [84] G. Mazzocchitti, I. Giannopoulou, D. Panias. Silicon and aluminium removal from ilmeniteconcentrates by alkaline leaching[J]. Hydrometallurgy,96(2009)327-332.
    [85]刘玉民,齐涛,王丽娜,初景龙,张懿. KOH亚熔盐法分解钛铁矿[J].过程工程学报,2009,9(2):319-323.
    [86]刘玉民,齐涛,张懿. KOH亚熔盐法分解钛铁矿的动力学研究[J].中国有色金属学报,2009,19(6):1142-1147.
    [87]金烁,盖鑫磊,张梅,郭敏,王习东.熔盐电脱氧法制备金属及合金的研究进展[J].材料导报,2007,21(11):64-67.
    [88] D. J. Fray, T. W. Farthing, G. Z. Chen. Removal of oxygen from oxides and solid solutionsby electrolysis in a fused salt from oxides and solid solutions by electrolysis in a fusedsalt[P]. UK Pat, PCT/GB99/01781.1998-06-05.
    [89] ChenGZ, FrayDJ, FarthingTW. A direct electrochemical reaction of titanium dioxide totitaniumin molten calcium chloride[J]. Nature,2000,407(21):361-363.
    [90] Pal U B, Woolley David E, Kenney George B. Emerging SOM technology for the greensynthesis of metals from oxides[J]. JOM,2001:32-34.
    [91]高筠,周正,王岭,戴磊,朱书全. FFC剑桥工艺及其应用研究[J].现代化工,2007(27):352-356.
    [92] Pal U B, Powell A C. The use of solid-oxide-membrane technology for electrometallurgy[J]. JOM,2007, May:44-49.
    [93] Krishnan A,Lu X G,Pal U B. Solid oxide membrane process for Magnesium productiondirectly from Magnesium oxide[J]. Metall Mater Trans B,2005(36B):463-473.
    [94]赵炳建,鲁雄刚,邹星礼,谷山林,陶伟.透氧膜法由SiO2直接制备Si[J].材料科学与工艺,2011,19(2):113-117.
    [95] Su-ChulLee, Jin-MokHur, Chung-Seok Seo. Silicon powder production by electrochemicalreduction of SiO2in molten LiCl-Li2O[J]. Journal of Industrial and Engineering Chemistry,14(2008):651-654.
    [96] Eimutis Juzeliunas, Antony Cox, Derek J.Fray. Silicon surface texturing byelectro-deoxidation of a thin silica layer in molten salt[J]. ElectrochemistryCommunications,2010(12):1270-1274.
    [97]赵炳建,鲁雄刚,王岭,崔广华.电脱氧法制备Ni基电池材料的研究[J].稀有金属材料与工程,2010,39(6):1089-1093.
    [98] Kamal Tripuraneni Kilby, Shuqiang Jiao, DerekJ.Fray. Current efciency studies forgraphite and SnO2–based anodes for the electro-deoxidation of metal oxides[J].Electrochimica Acta,2010,(55):7126-7133.
    [99]吴延科,李庆彬,徐志高,王力军,熊炳昆.金属锆的制备方法[J].稀有金属,2009,33(4):462-466.
    [100] ElenaGordo, GeorgeZ.Chen, DerekJ.Fray. Toward optimization of electrolytic reduction ofsolid chromium oxide to chromium powder in molten chloride salts[J]. ElectrochimicaActa,2004(49):2195-2208.
    [101]陈朝轶,鲁雄刚.固体透氧膜法与熔盐电解法制备金属铬的对比[J].金属学报,2008,44(2):145-149.
    [102] AmrM.Abdelkader, DerekJ.Fray. Direct electrochemical preparation of Nb-10Hf-1Tialloy[J]. Electrochimica Acta,2010(55):2924-2931.
    [103]程红伟,鲁雄刚,李谦,丁伟中,周国治.固体透氧膜法制备金属Ta[J].金属学报,2006,42(5):500-504.
    [104] Bingjian Zhao, Xionggang Lu, Qingdong Zhong, Chonghe Li, Shuanglin Chen. Directelectrochemical preparation of CeNi5and LaxCe1-xNi5alloys from mixed oxides by SOMprocess[J]. Electrochimica Acta,2010(55):2996-3001.
    [105]廖先杰,谢宏伟,翟玉春,许国强,张懿.低温熔盐电解制备Ni-Ti合金[J].轻金属,2009(2):53-57.
    [106] D.J.S.Hyslop, A.M.Abdelkader, A.Cox, D.J.Fray. Electrochemical synthesis ofabiomedically important Co-Cr alloy[J]. Acta Materialia,2010(58):3124-3130.
    [107]赵炳建,鲁雄刚,李重河,钟庆东.固体透氧膜法直接还原NiO-CeO2制备合金[J].金属学报,2009,45(10):1255-1260.
    [108] Xianjie Liao, Hongwei Xie, Yuchun Zhai, Yi Zhang. Preparation of Al3Sc intermetalliccompound by FFC method[J]. J.Mater.Sci. Technol.,2009,25(6):717-719.
    [109] Guoming Li, Dihua Wang, Zhen Chen. Direct Reduction of Solid Fe2O3in Molten CaCl2by Potentially Green Process[J]. J.Mater.Sci. Technol.,2009,25(6):767-771.
    [110] Geir Martin Haarberg, Eirin Kvalheim, Sverre Rolseth, Tsuyoshi Murakami, StanislawPietrzyk, Shulan Wang. Electrodeposition of Iron from Molten Mixed Chloride/FluorideElectrolytes[J]. ECS Transactions,2007,3(35):341-345.
    [111] C.Schwandt, D.J.Fray. Determination of the kinetic pathway in the electrochemicalreduction of titanium dioxide in molten calcium chloride[J]. ElectrochimicaActa,2005,(51):66-76.
    [112]汤胜博,李珍,彭晖,邢鹏飞,罗志涛. FFC法制备海绵钛的TiO2电极行为研究[J].材料开发与应用,2009,24(4):18-20.
    [113]李泽全,白晨光,陈小亮,陶长元. FFC工艺中阴极TiO2的导电性及影响因素分析[J].重庆大学学报,2008,31(11):1323-1326.
    [114]刘美凤,郭占成,卢维昌. TiO2直接电解还原过程的研究[J].中国有色金属学报,2004,14(10):1752-1758.
    [115] ShuLan Wang,Yingjun Li. Reaction mechanism of direct electro-reduction of titaniumdioxide in molten calcium chloride[J]. Journal of Electroanalytical Chemistry,2004(571):37-42.
    [116] D.T.L.Alexander, C.Schwandt, D.J.Fray. The electro-deoxidation of dense titanium dioxideprecursors in molten calcium chloride giving a new reaction pathway[J]. ElectrochimicaActa,2011(56):3286-3295.
    [117]陈朝轶,鲁雄刚,李重和,邹星礼,黄少卿.固体透氧膜法用于制备金属钛的研究[J].中国稀土学报,2008,26(专辑):370-374.
    [118]赵志国,鲁雄刚,丁伟中,周国治.利用固体透氧膜提取海绵钛的新技术[J].上海金属,2005,27(2):40-43.
    [119]廖先杰,翟玉春,谢宏伟,张懿.700℃熔盐电解制备固态钦铁合金化合物[J].材料研究学报,2009,23(2):133-137.
    [120]郭晓玲,郭占成,王志. TiO2和Fe2O3直接电解还原制备TiFe合金[J].北京科技大学学报,2008,30(6):621-624.
    [121]邹星礼,鲁雄刚,丁伟中.钛铁混合氧化物短流程直接制备钛铁合金[J].稀有金属材料与工程,2011,40(1):169-172.
    [122]叶晓苏.金属氧化物和天然钛铁矿直接制备TiFe基储氢合金的研究[D].上海:上海大学,2010.
    [123] XiaosuYe, Xionggang Lu, Chonghe Li, Weizhong Ding, Xingli Zou, Yonghui Gao,Qingdong Zhong. Preparation of Ti-Fe based hydrogen storage alloy by SOM method[J].International Journal of hydrogen energy,36(2011):4573-4579.
    [124]张炳. FFC法制备钛硅合金的研究[D].沈阳:东北大学,2008.
    [125] Xingli Zou, Xionggang Lu, ChongheLi, Zhongfu Zhou. A direct electrochemical routefrom oxides to Ti-Si intermetallics[J]. Electrochimica Acta,2010(55):5173-5179.
    [126] Meng Ma, Dihua Wang, Wenguang Wang, Xiaohong Hu, Xiaobo Jin, George Z. Chen.Extraction of titanium from different titania precursors by the FFC Cambridge process[J].Journal of Alloys and Compounds,420(2006):37-45.
    [127]陈朝轶.金属氧化物直接制备难容金属及合金的新工艺[D].上海:上海大学,2008.
    [128]邹星礼,鲁雄刚.攀枝花含钛高炉渣直接制备钛合金[J].中国有色金属学报,2010,20(9):1829-1835.
    [129]邹星礼,鲁雄刚,丁伟中.攀枝花钛精矿短流程直接制备钛铁合金[J].第七届中国钢铁年会论文集(2009):7-15.
    [130] Richter H J, Knoche K F. Reversibility of Combustion Process, Efficiency and Costing,Second Law Analysis Processes[C]//Gaggioli R A. Washington DC: ACS SympositionSeries,1983(235):71-85.
    [131]黄振,何方,李海滨,赵增立.固体燃料化学链燃烧技术的研究进展[J].2010,33(4):83-89.
    [132] Henrik Leion, Anders Lyngfelt, Marcus Johansson. The use of ilmenite as an oxygencarrier in chemical-looping combustion[J]. Chemical Engineering Research and Design,2008(86):1017-1016.
    [133] Henrik Leion,Tobias Mattisson,Anders Lyngfelt. Solid fuels in chemical-loopingcombustion[J]. International Journal of Greenhouse Gas Control,2008,2(2):180-193.
    [134] A.Abad, T.Mattisson, A.Lyngfelt, M.Johansson. The use of iron oxide as oxygen carrier ina chemical-looping reactor[J]. Fuel,2007(86):1021-1035.
    [135] Henrik Leion,Anders Lyngfelt, Tobias Mattisson. Solid fuels in chemical-loopingcombustion using a NiO-based oxygen carrier[J]. Chemical Engineering Research andDesign,2009(87):1543-1550.
    [136] A.Abad, T.Mattisson, A.Lyngfelt, M.Ryden. Chemical-looping combustion in a300Wcontinuously operating reactor system using a manganese-based oxygen carrier[J].Fue,2006(85):1174-1185.
    [137] Alberto Abad, Juan Adanez, Ana Cuadrat, Francisco Garca-Labiano, PilarGayan. Kineticsof redox reactions of ilmenite for chemical-looping combustion[J]. Chemical EngineeringScience,2011(66):689-702.
    [138] Magnus Ryden, Marcus Johansson, Erik Cleverstam, Anders Lyngfelt, Tobias Mattisson.Ilmenite with addition of NiO as oxygen carrier for chemical-looping combustion[J]. Fuel,2010(89):3523-3533.
    [139] Nicolas Berguerand, Anders Lyngfelt. Batch testing of solid fuels with ilmenite in a10kWthchemical-looping combustor[J]. Fuel,2010(89):1749-1762.
    [140] A. Ortega. Asimulation of the mass-transfer sffects on the kinetics of solid-gas reactions[J].International Journal of chemical kinetics.
    [141] B. Poduit, M. Maciejewski, A. Baiker. Influence of experimental conditions on the kineticparameters of gas-solid reactions-parametric sensitivity of thermal analysis[J].Thermochimica Acta,282/283(1996)101-119.
    [142]王常珍.冶金物理化学研究方法[M].北京:冶金工业出版社,2006,435-436.
    [1] Y. Zhao, F. Shadman. Reduction of ilmenite with hydrongen[J]. Ind. Eng. Chem. Res.,30(1991)2080-2087.
    [2] M.L. Vries, I.E. Grey. Influence of pressrue non the kintics of synthetic ilmenite reductionin hydrogen[J]. Metallurgical and Materials Transactions B[J],37B(2006)199-208.
    [3] David G. Jones. Kinetica of gaseous reduction of ilmenite[J]. J. Appl. Chem. Biotechnol.,25(1975)561-582.
    [4]刘祥钧,吴佳龙,聊嘉庆.Ti-O系相图之建立[J].第十届全国相图学术会议论文,中国安徽芜湖,2000,38-43.
    [5]张鉴.Fe-V和Fe-Ti熔体的作用浓度计算模型.化工冶金,1991,12(2):173-179.
    [6] I.E. Grey, A.F. Reid. Reaction sequences in the reduction of ilmenite:3-reduction in acommercial rotary kiln; an X-ray diffraction study[J]. Trans. Instn. Min. Metall,83(1974)C39-C46.
    [7]肖春梅.钛铁矿固态还原法钛铁分离基础研究[D].中南大学,长沙.
    [8] Suresh K. Gupta, V. Rajakumak, P. Grieveson. Phase relationships in the systemFe-Fe2O3-TiO2at700and9000C[J]. Canadian MetallaurgicalQuarterly,1989,28(4):331-335.
    [9] I.E. Grey, A.F. Reid, D.G. Jones. Reaction sequences in the reduction of ilmenite:4-interpretation in terms of the Fe-Ti-O and Fe-Mn-Ti-O phase[J]. Trans. Instn. Min.Metall,83(1974)C105-C111.
    [10] I.E. Grey, D.G. Jones, A.F. Reid. Reaction sequences in the reduction of ilmenite:1-introduction[J]. Trans. Instn. Min. Metall,82(1973)C151-C152.
    [11] P. Chris Pistorius. The relationship between FeO and Ti2O3in ilmenite smelter slags[J].Scandinavian Journal of Metallurgy,31(2002)120-125.
    [12] Satoshi Itoh. Phase equilibria in the Titanium-Iron-Oxygen system in the temperaturerange of1173to1373K[J]. ISIJ International,39(1999)1107-1115.
    [13] Dominique Lattard, Ursula Sauerzapf, Martin Kasemann. New calibration data for theFe-Ti oxide thermo-oxybarometers from expetiments in the Fe-Ti-O system at1bar,1000-1300oC and a large range of oxygen fugacities[J]. Contrib MineralPetrol,149(2005)735-754.
    [14] Lawrence M. Anovitz, Allan H. Treiman, Eric J. Essene, Bruce S. Hemingway, Edgar F.Westrum Jr., Ranmon Burriel, Steven R. Bohlen. The heat-capacity of limonite and phaseequilibria in the system Fe-Ti-O[J]. Geochimica et CosmochimicaActa,49(1985)2027-2040.
    [15] Ian E. Grey, Richard. Merritt. Stability relations in the pseudobrookite solid solutionFeyTi3-yO5[J]. Journal of Solid State Chemistry,37(1981)284-293.
    [16] S. Akimtoto, T. Nagata, T. Natsura. The TiFe2O5-Ti2FeO5solid solution series[J]. Nature,179(1957)37-38.
    [17]孙康.钛提取冶金物理化学[M].北京:冶金工业出版社,31.
    [1] Chun Li. Effect of mechanical activation on the dissolution of Panzhihua ilmenite[J].Minerals Engineering,2006(19):1430-1438.
    [2]黄孟阳,彭金辉,张世敏等.微波加热还原钛精矿制取富钛料新工艺[J].钢铁钒钛,2005,26(3)24-28.
    [3] Yuming Wang, Zhangfu Yuan, Zhancheng Guo et al.. Redution of mechanium of naturalilmenite with graphite [J]. Trans. Nonferrous Met. Soc. China,2008(18):962-968.
    [4]黄宝贵.金属铁相的分析进展[J].分析实验室,1989,8(1):38-41.
    [5]杨隽,雷清如.碘-乙醇分离钒钛高炉渣中金属铁的研究[J].无机盐工业,2004,36(6)54-56.
    [6]雷清如,杨隽,李海拉.钒钛高炉渣中金属铁的分析方法研究[J].重庆大学学报,1988(5):24-29.
    [7] Minghua Wang, Kee-Do Woo, In-Yong Kim, Woong-Ki, Zhitong Sui.Separation ofFe3+during hydrolysis of TiO2by addition of EDTA[J]. Hydrometallurgy,2007,89:319-322
    [8] Bear I J,strode P R.determination of metallic iron in presence of fayalite[J].Talanta,1976,23(5):400-402.
    [9] Sant B R,Prasad T P.Determination of metallic iron, iron(II) oxide, and iron(III) oxide ina mixture[J].Talanta,1968,15(12):1483-1486.
    [10]候嘉丽,龚美菱.铁矿石和人造富矿中金属铁的测定[J].冶金分析,1987,7(2):31-34.
    [11]陶俊,郑玲.三氯化铁分解重铬酸钾滴定法测定直接还原铁中金属铁[J].冶金分析,2009,29(6):65-68.
    [12]武汉大学主编.分析化学[M].北京,高等教育出版社,1995:200-433.
    [1]黄柱成.冷固结球团直接还原技术及其应用[D].湖南长沙:中南大学博士论文,2002.
    [2] Terence E.D.. The development of direct reduction procecss[J]. Scandinavian Journal ofMetallurgy,22(1993)100-108.
    [3]菜钢生(编译).直接还原和熔融还原新技术[J].南方钢铁,1994(6):15-17.
    [4] Ali Basdag, Ali Ihsan Arol. Coating of iron oxide pellets for direct reduction[J].Scandinavian Journal of Metallurgy,31(2002)229-233.
    [5]刘国根,王淀佐,邱冠周.国内外直接还原现状及发展[J].矿产综合利用,2001(5):20-24.
    [6]庞建明,郭培民,赵培,曹超真,张殿伟.低温下氢气还原铁氧化物的动力学研究[J].钢铁,2008,43(7):7-11.
    [7] Guangqing Zhang, O. Ostrovski. Deduction of ilmenite concentrates by methanecontaining gas: Part1. effects of ilmenite composition, temperature and gas composition[J].Canadian Metallrugical Quarterly,2001,40(3):317-326.
    [8] Guangqing Zhang, O. Ostrovski. Deduction of ilmenite concentrates by methanecontaining gas: Part2. effects of preoxidation and sintering[J]. Canadian MetallrugicalQuarterly,2001,40(4):489-498.
    [9] L.H. Zhou, F.H. Zeng. Reduction mechanisms of vanadium-titanomagnetite-non-cokingcoal mixed pellet, Ironmaking and Steelmaking,(38)2011, No.1, p.59.
    [10] Parviz Pourghahramani, Eric Forssberg. Reduction kinetics of mechanically activatedhematite concentrate with hydrogen gas using nonisothermal methods[J]. ThermochimicaActa,454(2007)69-77.
    [11] Jerzy Zielinski, Ilona Zglinicka, Leszek Znak, Zbigniew Kaszkur. Reduction of Fe2O3withhydrogen[J]. Applied Catalysis A: General,381(2010)191-196.
    [12] A. Pineau, N. Kanari, I. Gaballah. Kinetics of reduction of iron oxides by H2Part I: Lowtemperature reduction of hematite[J]. Thermochimica Acta,447(2006)89-100.
    [13] A. Pineau, N. Kanari, I. Gaballah. Kinetics of reduction of iron oxides by H2Part II: Lowtemperature reduction of magnetite[J]. Thermochimica Acta,456(2007)75-88.
    [14] A.A. Francis, A.A. El-Midany. An assessment of the carbothermic reduction of ilmeniteore by statistical design[J]. Journal of materials processing technology,199(2008)279-286.
    [15] Wang Yu-ming, Yuan Zhang-fu, Guo Zhan-cheng, Tan Qiang-qiang, Li Zhao-yi, JiangWei-zhong. Redution mechanism of natural ilmenite with graphite[J]. Trans. NonferrousMet. Soc. China18(2008)962-968.
    [16] C.S. Kucukkaragoz, R.H. Eric. Solid state reduction of a natural ilmenite[J]. MineralsEngineering19(2006)334-337.
    [17] Rayi H.S., Kundu N. Thermal analysis studies on the initial statages of iron oxidereduction [J]. Thermochimi. Acta,1986,101,107-118.
    [18] WANG Yumning, YUAN Zhangfu, GUO Zhancheng, TAN Qiangqiang, LI Zhaoyi, JIANGWeizhong. Reduction mechanism of natural ilmenite with graphite[J]. Trans. NonferrousMet. Soc. China,2008,18,962-968.
    [19] WANG Yumning, YUAN Zhangfu. Reduction kinetics of the reaction between a naturalilmenite and carbon [J]. Int J. Miner. Process.2006,81,133-140.
    [20] Coats A.W., Redferm J.P.. Kinetic parameters from thermo gravimetric data[J].Nature,1964,201,68.
    [1] Kang Sun, Reijiro Takahashi, Jun-ichiro Yagi. Reduction kinetics of cement-bondednatural ilmenite pellets with hydrogen[J]. ISIJ International,1992,32(4):496-504.
    [2] P.L.Vijay, Ramani Venugopalan, D.Sathiyamoorthy. Preoxidation and hydrogen reductionof ilmenite in a fluidized bed reactor[J]. Metallurgical and Materials Transactions B,1996,27B:731-738.
    [3] R.Merk, C.A. Pickles. Reduction of ilmenite by carbon monoxide[J]. CanadianMetallurgical Quarterly,1988,27(3):179-185.
    [4] David G. Jones. Kinetics of gaseous reduction of ilmenite[J]. J. Appl. Chem. Biotechnol,1975,25,561-582.
    [5] Kang Sun, Reijiro Takahashi, Jun-ichiro Yagi. Kinetics of the oxidation and reduction ofsynthetic ilmenite[J]. ISIJ International,1993,33(5):523-528.
    [6] Ying Chen. Low-temperature oxidation of ilmenite induced by high energy ball milling atroom temperature[J]. Journal of Alloys and Compounds,1977,257,156-160.
    [7]党玉华,王海风,齐渊洪.烧结过程SO2脱除的研究[J].钢铁,2010,45(5):88-92.
    [8]刘凤娟,苍大强,李春增,娄军芳.温度对烧结脱硫影响的实验研究[J].兰州:中国机械工程学会,第七届全国工业炉学术年会论文集,2006:65-67.
    [9]郭宇峰,吕亚男,姜涛,邱冠周.预氧化在攀枝花钛铁矿固态还原过程中的作用[J].北京科技大学学报,2010,32(4):413-419.
    [10] Xiao Fu, Yao Wang, Fei Wei. Phase transitions and reaction mechanism of ilmeniteoxidation[J]. Metallurgical and Materials Transactions A,2010,41A,1338-1348.
    [11] Guangqing Zhang, O.Ostrovski. Effect of preoxidation and sintering on properties ofilmenite concentrates[J]. Int. J. Miner. Process,2002,64,201-218.
    [12] Sun Kang. Mathematical simulation on oxidation of ilmenite in Fluidized Bed [J]. Raremetals,1996,15(1):51-58.
    [13] Sun Kang. Nonisothermal behavior of oxidation of natural ilmenite pellet [J]. Rare metals,2000,19(3):222-226.
    [14] Sun Kang, Liu Yinhu, Cui Yaru. Oxidation kinetics of ilmenite powder in Fluidized Bed [J].Rare metals,1995,14(1):26-32.
    [15] D.Bishop, A.Calka. Phase transformations in ilmenite induced by electric dischargeassisted mechanical milling[J]. Journal of Alloys and Compounds,2009,469,380-385.
    [16] Chun Li, Bin Liang. Study on the mechanochemical oxidation of ilmenite[J]. Journal ofAlloys and Compounds,2008,459,354-361.
    [17]周兰花.钛铁矿流态化氧化机理研究[J].有色金属(冶炼部分),2003,4,12-14.
    [18] Kang Sun, Reijiro Takahashi, Jun-ichiro Yagi. Reduction kinetics of cement-bondednatural ilmenite pellets with hydrogen [J]. ISIJ International,1992,32(4):496-504.
    [19] R. Merk, C. A. Pickles. Reduction of ilmenite by carbon monoxide [J]. Canadianmetallurgical quarterly,1988,27(3):179-185.
    [20] N. El-Hazek, T.A. Lasheen, R. El-Sheikh, Salah A. Zaki. Hydrometallurgical criteria forTiO2leaching from Rosetta ilmenite by hydrochloric acid [J]. Hydrometallurgy87(2007)45-50.
    [21] I. E. Grey, A. F. Reid. Recation sequencesin the reduction of ilmenite:3-reduction in acommercial rotary kiln; an X-ray diffraction study [J]. Trans. Instn. Min. Metall,83(1974)C39-C46.
    [1] Li Zhang, Huiping Hu, Liangping Wei, Qiyuan Chen, Jun Tan. Hydrochloric acid leachingbehaviour of mechanically activated [J]. Separation and Purification Technology,73(2010)173-178.
    [2] Yuming Wang, Zhangfu Yuan. Reductive kinetics of the reaction between a naturalilmenite and carbon [J]. Int. J. Miner. Process.81(2006)133-140.
    [3] J. Pesl, R.H. Eric. High temperature carbothermic reduction of Fe2O3–TiO2–MxOyoxidemixtures [J]. Minerals Engineering15(2002)971–984.
    [4] Suresh K. Gupta, V. Rajakumar, P. Grieveson. Kinetics of reduction of ilmenite withgraphite at1000to1100oC [J]. Metallurgical Transactions B, Volume18B, December1987,713-717.
    [5] Yuming Wang, Zhangfu Yuan, Hiroyuki Matsuura, Fumitaka Tsukihash. Reductionexraction kinetics of titania and iron from an ilmenite by H2-Ar gas mixture [J]. ISIJInternational, Vol.49(2009), No.2, pp.164-170.
    [6] R. Merk, C. A. Pickles. Reduction of ilmenite by carbon monoxide [J]. CanadianMetallurgical Quarterly, Vol.27, No.3, pp.179-185,1988.
    [7] Yuming Wang, Zhangfu Yuan, Zhancheng Guo, Qiangqiang Tan, Zhaoyi Li, WeizhongJiang. Reduction mechanism of natural ilmenite with graphite [J]. Trans. Nonferrous Met.Soc. China18(2008)962-968.
    [8] I.E. Grey, A.F. Reid. Reaction sequences in the reduction of ilmenite:3-reduction in acommercial rotary kiln; an X-ray diffraction study [J]. Trans. Instn. Min. Metall,83(1974)C39-C46.
    [9] Ricardo Aragon, Robert H. McCallister. Phase and point defect equilibria in thetitanomagnetite solid solution [J]. Phys Chem Minerals8(1982)112-120.
    [10] Satoshi Itoh. Phase equilibria in the titanium-iron-oxygen system in the temperature rangeof1173K to1373K [J]. ISIJ International, Vol.39(1999), No.11, pp.1107-1115.
    [11] I.E. Grey, A.F. Reid, D. G. Jones. Reaction sequences in the reduction of ilmenite:4-inerpretation in terms of the Fe-Ti-O and Fe-Mn-Ti-O phase diagrams [J]. Trans. Instn.Min. Metall,83(1974)C105-C111.
    [12] I.E. Grey, R.R. Merritt. Stability relations in the pseudobrookite solution FeyTi3-yO5[J].Journal of Solid State Chemistry,37(1981)284-293.
    [13] D.M. Xirouchakis. Pseudobrookite-group oxide solutions and basaltic melts [J]. Lithos,95(2007)1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700