用户名: 密码: 验证码:
太子参连作障碍及其分子生态学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以太子参连作障碍自毒效应为主线,采用大田和盆栽试验相结合的方法,研究了连作引起的太子参根、叶显微结构的变化、光合作用系统参数的变化、苗期叶片差异蛋白质表达的变化、产量和品质的变化。进一步用GC-MS鉴定了太子参根际土壤与对照土壤物质的差异,用微生物培养法和t-RFLP技术分析了太子参根际土壤与对照土壤微生物区系的变化,用差异蛋白质组学方法分析了太子参根际土壤与对照土壤差异蛋白质的表达。主要结果如下: (1)太子参根际土壤提纯物对莴苣的根和茎生长具有极显著(P<0.01)的抑制作用,且抑制程度随浓度升高也极显著(P<0.01)增大。说明太子参根际土壤提取纯化物有较强的化感作用潜力。
     太子参根际土壤提纯物处理正常长势的太子参,3周后太子参叶尖和叶缘发黄或枯萎,且发黄或枯萎的面积大小与受试的提取物浓度成正比。提纯物对太子参叶片光合作用系统起毒害作用,且毒害程度随受试提取纯化物浓度升高而趋向严重。盆栽模拟连作与水旱轮作结果也显示连作对太子参光合作用系统有毒害作用。
     盆栽生长45天的太子参苗期叶片和根的显微结构研究结果显示:连作导致太子参叶片和根部细胞排列更为疏松,单位面积内细胞密度降低,视野内有些细胞死亡而缺失。大田试验研究结果显示连作导致:太子参产量极显著(P<0.01)降低,约为水旱轮作的1/3;太子参分根数呈极显著(P<0.01)减少,约为水旱轮作条件下的一半;太子参根长显著(P<0.05)缩短,约比水旱轮作条件下的缩短8%;太子参品质下降极显著(P<0.01),其中多糖含量仅为轮作的88.08%,人参皂苷Rb1含量仅为轮作的44.33%。
     (2)太子参苗期叶片蛋白质差异表达分析结果显示:连作导致太子参叶片中与植物衰老或致病相关的5个蛋白表达量全部上调;与植物抗性相关的5个蛋白(磷脂氢谷胱苷肽过氧化物酶、植物性丝氨酸-苏氨酸蛋白激酶、钙依赖蛋白激酶、查尔酮合成酶和硫氧还相关蛋白)表达量上调,4个蛋白(细胞壁富含甘氨酸蛋白、SKP1同源蛋白、锌指蛋白和成熟酶K)表达量下调;与光合作用相关的2个蛋白表达量下调(Rubisco大亚基和细胞色素b6),2个蛋白表达量上调(核酮糖二磷酸碳酸酵素小链c和细胞色素b6/f复合体亚基VI);与能量代谢相关的蔗糖-UDP葡萄糖基转移酶和细胞分裂相关的NF-Y5表达量均下调,而蛋白酶1型β亚基、ATP合成酶β亚基、细胞分裂素组氨酸磷光体转移蛋白4和NAD依赖-3-磷酸甘油醛脱氢酶表达量均上调。
     (3)GC-MS鉴定结果显示:与对照土壤相比,太子参根际土壤中酚醌类、有机酸类、酯类和醇类相对含量较高,而醛酮类、胺类、苯类、烃类、杂环类含量较低。酚醌类、有机酸类、酯类和醇类化感作用物质。
     (4)稀释平板培养法测定结果显示:与正茬相比,太子参连作导致土壤中细菌数量减少,真菌和放线菌数量增多。特化培养基微生物培养方法测定结果显示:太子参连作导致土壤好气性自生固氮菌和好气性纤维素分解菌下降极显著(P<0.01),厌气性纤维素分解菌极显著(P<0.01)上升,硝化菌变化不显著,未检测出亚硝酸细菌。
     大田土壤的t-RFLP技术分析结果显示:对照土壤细菌涉及50个种(属),其中具有致病作用,或属于病原体的有19个种(属);太子参根际土壤细菌涉及45个种(属),其中具有致病作用,或属于病原体的有23个种(属);大田太子参根际土壤细菌物种多样性低于对照土壤的;太子参根际土壤真菌有28个种(属),除了腐生生物可能为植物致病菌或病原菌外,未发现其他直接对植物致病的菌;大田太子参根际土壤真菌物种多样性低于对照土壤的。
     盆栽土壤的t-RFLP技术分析结果显示:对照(CK)土壤共查询到84个种(属)片断,其中涉及病原菌或致病菌的种(属)片断为36个,轮作(Tr1)土壤共查询到122个种(属)片断,其中涉及病原菌或致病菌的种属片断为11个,连作(Tr2)土壤共查询到118个种(属)片断,其中涉及病原菌或致病菌的种(属)片断为23个,太子参盆栽连作土壤(Tr2)中检测到大量(28个片断)链霉菌属,盆栽模拟连作的土壤细菌多样性比轮作土壤的低。对照(CK)土壤真菌涉及24个种(属),轮作(Tr1)土壤真菌涉及34个种(属),连作(Tr2)土壤真菌涉及38个种(属),可见土壤真菌种(属)随太子参种植年限增加,有增多趋势。但是检索到的这些真菌中未发现有致病菌或病原菌。真菌多样性研究结果表明:随着太子参耕作年限的增加,土壤真菌多样性呈下降趋势。
     以盆栽土壤细菌MSPI酶切的细菌片断为例,采用主成份分析方法分析引起太子参连作障碍的主要土壤细菌种类。结果表明:引起太子参连作障碍的主要细菌种属有好酸性细菌等56个种(属)。引起太子参连作障碍的次要细菌种属有脂环酸芽孢杆菌等4个种(属)。
     (5)太子参根际与对照土壤差异蛋白质表达分析结果显示:太子参根际土壤中与氮素利用相关的天冬酰胺合酶和谷氨酸合酶表达量均下调;太子参根际土壤中与细胞分裂、蛋白质合成相关的4种蛋白质(脯氨酰-tRNA合酶、推测的RNA聚合酶δ-24亚基ECF家族蛋白、DNA聚合酶IIIα亚基和转录调节子)表达量均下调,而另两种蛋白质(DNA解链酶和延长因子Tu)表达量上调,这从总体上引起土壤中细菌数量减少,细菌物种多样性下降,与土壤微生物变化趋势研究结果相一致,是太子参连作障碍的一个重要原因;太子参根际土壤中含Zn的乙醇脱氢酶家族蛋白、多糖去乙酰酶、3,4-二羟基-2-丁酮-4-磷酸合酶、反应调节子和热激蛋白等与抗性相关的蛋白质表达量均上调,是太子参根际土壤中有毒有害物质积累后,土壤微生物产生应答反应的表现;太子参根际土壤中天冬氨酸转氨甲酰酶催化亚基和醋酸盐激酶表达量均上调,可能与太子参根际土壤有机酸类相对含量升高有关。
In this study, field experiment and pot experiment were used to reveal the mechanism of continuous cropping obstacle of Pseudostellariae heterophylla. The yield and quality of P. heterophylla were surveyed by field experiment. The microscopic structure of the leaf and root of P. heterophylla were surveyed with microscope through paraffin slice method. The relative chlorophyll content of leaf (SPAD) of P. heterophylla was measured with the SPAD-502 (made in Japan), the net photosynthetic rate of leaf was measured with Li-6400 (made in USA), the fluorescence kinetics parameters (F0、Fm、Fv、Fp、QY_max、Ft_Lss、NPQ_Lss、F0_Lss、Fm_Lss、qP_Lss、QY_Lss) were measured with FluorCam (made in Czech republic). The differential proteomics method was used to analyze the differential expression of proteins in P. heterophylla leaves under the circumstances of P. heterophylla-Rice-P. heterophylla crop rotation or P. heterophylla continuous cropping. The extract from the rhizospheric soil of P. heterophylla was identified by GC-MS after dissolved by methanol. The non-rhizospheric soil extract was used for control. The rhizospheric soil microbial flora and their variation trends under continuous cropping circumstance were surveyed through dilution plate method, microbe culture method and terminal restriction fragment length polymorphism (t-RFLP) technique. The citrate and SDS buffers sequential extraction method were respectively used to extract the soil protein from the rhizospheric soil and non-rhizospheric soil of P. heterophylla. By means of 2-dimensional electrophoresis and contrast with the dimensional gel map of total soil proteins, the data of differential proteins were searched through bioinformatics researching.
     The results could be summarized as follows: (1) the allelochemicals extremely significantly inhibited the growth of root and shoot of lettuce (P<0.01), and the inhibition degree was extremely significantly (P<0.01) proportional to the concentrations of allelochemicals. It was indicated that the allelochemicals from rhizospheric soil of P. heterophylla has strong allelopathic potential.
     The allelochemicals, which were extracted from the rhizospheric soil of P. heterophylla, were used to treat the normal growth P. heterophylla. Three weeks after treatment, the leaf tip and the leaf rim of P. heterophlla was withered, the withered area of the leaf was proportional to the concentration of extract. The allelochemicals, had autotoxic effect on photosynthetic system of P. heterophylla, and the toxic effect degree been proportional to the concentrations of extract. The pot experiment was conducted to simulate continuous cropping and“P. heterophylla-Rice-P. heterophylla”rotation cropping was taken as the control. The results showed that continuous cropping led to autotoxic effect on photosynthetic system of P. heterophlla.
     After planted 45 days, the transverse sections of leaf of P. heterophylla showed that continuous cropping led to decreased cell density in the leaf, compared with control (The P. heterophylla was planted in pot with non-rhizospheric soil); cellulas were absence in some areas under microscope, compared with control. The transverse sections of root showed that continuous cropping also led to decreased cell density in the root, and cellulas were also absence in some areas under microscope. It suggested that continuous cropping resulted in some cell death occurred in the leaf and root of P. heterophylla. That is, the continuous cropping obstacle of P. heterophylla was occurred at cellular level.
     Continuous cropping led to extremely significantly (P<0.01) yield decreasing, the yield of the continuous cropping was only one third of the control. Compared the continuous cropping with the control experiment, the root numbers of P. heterophylla was extreme significantly (P<0.01) reduced, and the root length of P. heterophylla was significantly (P<0.05) shortened, the root numbers of the continuous cropping was about half of the control, the root length of the continuous cropping declined by 8% from that of the control. The polysaccharide content of the root from continuous cropping reduced to 88.08% of the control; the Ginseng saponins Rb1 of the root from continuous cropping reduced to 44.33% of the control. It was suggested that continuous cropping also decreased the medicinal quality of P. heterophylla.
     (2) The senescence-associated similar protein, the Ras-related protein, the senescence-related receptor-like kinase, the PR-protein and the Ras-related protein RHN1 were all upregulated, these proteins are related to plant senescence or disease; the phospholipid hydroperoxide glutathione peroxidase, the plant-type serine-threonine protein kinase, the calcium-dependent protein kinase, the chalcone synthase and the thioredoxin-related protein were all up-regulatively expressed, the cell wall glycine-rich protein, the homologue to SKP1, the zinc finger protein, and the maturase K were all down-regulated, these proteins are related to plant resistance; both the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and the cytochrome b6 were down-regulatively expressed, the ribulose bisphosphate carboxylase small chain c and the cytochrome b6/f complex subunit VI were up-regulatively expressed, these proteins are related to photosynthesis; the sucrose-UDP glucosyltransferase and the NF-YB5 were down -regulatively expressed, the proteasome subunit beta type 1, the synthase beta subunit, the cytokinin histidine phosphotransfer protein 4 and the NAD-dependent glyceraldehyde-3-phosphate dehydrogenase were all up-regulatively expressed, these proteins are related to plant metabolism of energy or cell division. It was suggested that the P. heterophylla replanting disease resulted from up-regulated expression of the proteins associated with senescence or disease, and resulted in disturbed expressions of the proteins, which are related to plant resistance or energy metabolism or cell division. It was also suggested that the continuous planting of P. heterophylla resulted in down-regulated expression of the important photosynthesis related protein; this is the molecular base of the declined photosynthesis rate in the replanted P. heterophylla.
     (3) The relative content of phenol quinines, organic acids, esters and alcohols in the rhizospheric soil were higher than that in non-rhizospheric soil, respectively. And the relative content of aldehyde ketones, amines, benzenes, hydrocarbons, and heterocycles in the rhizospheric soil were lower than that in non-rhizospheric soil, respectively. It was concluded that the phenol quinines, the organic acids, the esters and the alcohols were mainly autotoxins of the P. heterophylla.
     (4) The results based on the dilution plate method showed that the soil bacteria numbers of Tr2 (continuous cropping) were extremely significant more than that of Tr1 (rotation of P. heterophylla-Rice-P. heterophylla), the soil bacteria numbers of the CK (non-rhizospheric soil never planted P. heterophylla) were least, they were extremely significantly less than that of the Tr2, but non-significant (P>0.05) less than that of Tr1. As far as fungi and actinomycetes, their variation trends were both extremely significant (P<0.01) increased as the continuous cropping years. It was concluded that the continuous cropping of P. heterophylla led to the soil turning from bacterial types into fungal types.
     The results based on the specialized culture method showed that the nitrobacteria in the soil was not influenced by continuous cropping of P. heterophylla; the aerobic nitrogen-fixing bacteria numbers increased in the first year of cropping of P. heterophylla, abrupt decreased as the continuous cropping of P. heterophylla, less than the numbers of CK; the aerobic cellulose decomposition bacteria numbers also increased in the first year of cropping of P. heterophylla, and extremely significanty (P<0.01) decreased as the continuous cropping of P. heterophylla; the anaerobic cellulose decomposition bacteria numbers extremely significanty increased as the continuous cropping of P. heterophylla. It was concluded that continuous cropping of P. heterophylla would destroy the balance of rhizosphere soil microbial flora.
     The field survey results based on t-RFLP technique showed that there were 45 genera of bacteria in the rhizospheric soil of P. heterophylla, and 23 genera of them belonged to pathogens; there were 50 genera of bacteria in the non-rhizospheric soil, and 19 genera of them belonged to pathogens; there were 28 genera of fungi in the rhizospheric soil of P. heteropylla, none of them belonged to pathogens exempt for the Saprotroph.
     The pot experiment survey results based on t-RFLP technique showed that there were 118 genera of bacteria in the Tr2 (continuous cropping rhizospheric soil of P. heterophylla), and 23 genera of them belonged to pathogens; there were 122 genera of bacteria in the Tr1 (“P. heterophylla-Rice-P. heterophylla”rotation cropping rhizospheric soil of P. heterophylla), and 11 genera of them belonged to pathogens; there were 84 genera of bacteria in the CK (non-rhizospheric soil never planted P. hetrophylla), and 36 genera of them belonged to pathogens; there were 28 genera of Streptomyces in the Tr2 were detected. The pot experiment survey results based on t-RFLP technique also showed that there were 24 genera of fungi in the CK, 34 genera of fungi in the Tr1 and 38 genera of fungi in the Tr2, that is, the fungi numbers increased with the continuous cropping of P. heterophylla. Neither there were pathogens in rhizospheric soil, nor pathogens in non-rhizospheric soil of P. heterophylla. The diversity of soil bacteria analyzed results based on t-RFLP technique showed that the bacteria diversity of Tr2 was worse than that of Tr1, but the bacteria diversity of CK was the worst. The diversity of soil fungi analyzed results based on t-RFLP technique showed that the fungi diversity of Tr2 was the worst, and the fungi diversity of CK was the best. In light of t-RFLP technique survey results, it also indicated that continuous cropping of P. heterophylla would destroy the balance of rhizosphere soil microbial flora.
     Which kinds of microbes were mainly related to the toxic potential of rhizospheric soil of P. heterophylla was an issue in this research. The principal component analysis was used to reveal this issue based on t-FRLP profiles digested by MspI enzyme of the bacterial flora. The results showed that the first principal component (the first main microbes) related to the toxic potential of rhizospheric soil of P. heterophylla had 56 genera, e.g. Acidosphaera rubrifaciens str., the second principal component (the second main microbes) related to the toxic potential of rhizospheric soil of P. heterophylla had 4 genera, e.g. Alicyclobacillus sp. str..
     (5) The Asparagine synthase and Glutamate synthase content of rhizospheric soil were both lower than that of non-rhizospheric soil, these enzymes are related to nitrogen cycle; the prolyl-tRNA synthetase, putative RNA polymerase sigma-24 subunit ECF subfamily, DNA polymerase III subunit alpha and transcriptional regulator content of rhizospheric soil were all lower than that of non-rhizospheric soil, DNA helicase II and elongation factor Tu content of rhizospheric soil were higher than that of non-rhizospheric soil, these proteins are related to cell division or protein synthesis. The results of these cell division or protein synthesis related protein might result in the decrease of bacteria numbers and its biodiversity. The results also showed that the zinc-containing alcohol dehydrogenase superfamily protein, polysaccharide deacetylase, 3,4-dihydroxy-2-butanone 4-phosphate synthase, response regulator and heat shock protein HtpG content of rhizospheric soil were all higher than that of non-rhizospheric soil, these proteins, which are related to resistance of organism, resulted from response of soil microbe to the accumulation of allelochemicals in rhizospheric soil of P. heterophylla. The results finally showed that the aspartate carbamoyltransferase catalytic subunit and acetate kinase content of rhizospheric soil are both higher than that of non-rhizospheric soil; it might be relative to the higher of organic acid in the rhizospheric soil.
引文
[1].柴强,冯福学,2007.玉米根系分泌物的分离鉴定及典型分泌物的化感效应[J].甘肃农业大学学报,42 (5):43-48
    [2].柴强,黄高宝,黄鹏,等,2005.鹰咀豆根系分泌物的分离鉴定及典型分泌物苯甲醛的化感效应[J].草业学报,(2):106-111
    [3].陈长宝,王艳艳,张连学,等,2006.人参根际土壤中化感物质鉴定[J].特产研究,(2):12-14
    [4].陈丹生,丁有雄,马瑞君,等,2007.五爪金龙茎的解剖结构[J].云南植物研究,29 (2):189-192
    [5].陈德恩,刘田才,吴有吕,1985.地黄病毒病及对退化影响研究[J].中草药,16(9):28-29
    [6].陈冬梅,林文雄,2000.水稻化感作用研究现状与展望[J].福建农业大学学报,29 (3):281-285
    [7].陈慧,郝慧荣,熊君,2007.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报,18(12):2755-2759
    [8].陈强,刘亚刚,杨雪,等,2005.蛋白质组学的研究进展[J].西南民族大学学报(自然科学版),31(2):257-260
    [9].陈硕,陈珈,2001.植物中钙依赖蛋白激酶(CDPKs)的结构与功能[J].植物学通报,18(2):143-148
    [10].陈万利,刘宗旨,李文华,2005.植物富含甘氨酸蛋白质(GRP)及其基因研究进展[J].东北农业大学学报,36(4):512-519
    [11].陈文龙,顾丁,柳琼友,等,2009.斑潜蝇及天敌复合生态系统的主成份分析方法[J].生物数学学报,24(1):157-165
    [12].陈芝兰,张涪平,周小英,2004.不同作物根际土壤微生物的初步研究[J].西藏科技,(7):8210.
    [13].邓岩,王兴春,杨淑华,等.2006.细胞分裂素:代谢、信号转导、交叉反应与农艺性状改良[J].植物学通报,23 (5):478-498
    [14].丁金城,喻衣蓉,1989.西瓜连作障碍及其对策的初步研究[J].华北农学报,4(4):82-87
    [15].杜忠潮,苟战军,金萍,2009.基于主成分分析的关中地区城市人居环境质量评价[J].宁夏大学学报(自然科学版),30(3):290-293
    [16].封海胜,卢俊玲,1996.解除花生连作障碍的对策研究:Ⅰ.模拟轮作的增产效果[J].花生科技,(1):22-24
    [17].冯红贤,杨逞李,欣允,等,2004.蔬菜连作对土壤生物化学性质的影响[J].长江农业,(11):40-43
    [18].郭兰萍,黄璐琦,蒋有绪,等,2006.苍术根茎及根际土水提物生物活性研究及化感物质的鉴定[J].生态学报,26(2):528-535
    [19].郭兰萍,黄璐琦,蒋有绪等,2006.药用植物栽培种植中的土壤环境恶化及防治策略[J].中国中药杂志, 31(9):714-717
    [20].郭天财,宋晓,马冬云,等.施氮量对冬小麦根际土壤酶活性的影响[J].应用生态学报,2008,19 (1):110-114
    [21].韩丽梅,王树起,鞠会艳,等,2000.大豆根系分泌物的鉴定及其化感作用的初步研究[J].大豆科学,19 (2):119-125
    [22].韩丽梅,王树起,肖丽华,2005.重迎茬大豆根区土壤有机化合物的GC-MS分析[J].吉林农业科学,30(4):6-8
    [23].郝慧荣,李振方,熊君,等,2008.连作怀牛膝根际土壤微生物区系及酶活性的变化研究[J].中国生态农业学报,16(2):307-311
    [24].郝群辉,刘红彦,王飞,等,2007.怀地黄根际土壤水提物的GC-MS分析[J].河南农业科学,(2):78-80
    [25].何大澄,肖雪媛,2002.差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版),38(4):558-562
    [26].何海斌,陈祥旭,林瑞余,等,2005.化感水稻P1312777苗期根系分泌物中化学成分分析[J].应用生态学报,16(2):2383-2388
    [27].候永侠,周宝利,吴晓玲,等,2006.土壤灭菌对辣椒抗连作障碍效果[J].生态学杂志,25(3):340-342
    [28].胡江春,薛德林,王书锦,2002.大豆连作障碍研究Ш.海洋放线菌促MB-97促进连作大豆增产机理[J].应用生态学报,13(9):1095-1098
    [29].胡开辉,2004微生物学实验[M].北京:中国林业出版社
    [30].胡汝晓,赵松义,谭周进,等,2007.烟草连作对稻田土壤微生物及酶的影响[J].核农学保,21(5):494-497
    [31].胡元森,李翠香,杜国营,等,2007.黄瓜根分泌物中化感物质的鉴定及其化感效应[J].生态环境,16(3):954-957
    [32].胡元森,吴坤,刘娜,等,2004.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学,37(10):15212-1526
    [33].贾捷,金由辛,2004.氨酰-tRNA合成酶的分子网络和功能[J].生物化学与生物物理进展,31(4):291-295
    [34].简在友,王文全,孟丽,等,2008.人参属药用植物连作障碍研究进展[J].中国现代中药,10(6):3-5
    [35].孔垂华,徐效华,梁文举,等,2004.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性[J].生态学报,2⑷(7):1317-1322
    [36].雷明光,张舒,张冰,等,2005.谷胱甘肽磷脂氢过氧化物酶研究进展[J].生物学通报,40(5):1-3
    [37].李佰良,1998.功能蛋白质组学[J].生命的化学,18(6):1-4
    [38].李潮海,王小星,王群,等,2007.不同质地土壤玉米根际生物活性研究[J].中国农业科学, 40(2):412-418
    [39].李春龙,贺阳冬,陈华,2007.辣椒连作障碍机制初探及其下茬作物的初选[J].安徽农业科学,35(26):8187-8188
    [40].李进学,段红平,张乃明,等,2007.不同生态区水稻根际微生物数量分析[J].耕作与栽培,(1):3-5
    [41].李景秀,管开云,大宫,等,2007.云南秋海棠属植物叶片横切面比较解剖研究[J].广西植物,27(4):543-550
    [42].李林,2000.蛋白质组学的进展[J].生物化学与生物物理进展,27(3):227-230
    [43].李琼芳,2006.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,37(3):563-565
    [44].李素丽,孙倩,郑启恩,等,2009.飞机草、紫茎泽兰与两种近缘植物叶片解剖结构比较研究[J].广西农业科学,40(8):972-975
    [45].李小玲,华智锐,2009.药用植物化感作用研究进展[J].安徽农业科学,37(5):2022-2023,2031
    [46].李拥军,陈实,李春远,等,2008.薇甘菊化感活性成分的分离与鉴定[J].华南农业大学学报,29(4):26-30
    [47].李玉占,梁文举,姜勇,2004.苜蓿化感作用研究进展[J].生态学杂志,23(5):186-191
    [48].李兆伟,熊君,李振方,等,2008.水稻灌浆期叶鞘蛋白质差异表达分析[J].作物学报,34(4):619-62
    [49].李兆伟,熊君,齐晓辉,等,2009.水稻灌浆期叶片蛋白质差异表达及其作用机理分析[J].作物学报,35(1):132-139
    [50].林深源,向文胜,范志金,2006.除草剂靶酶-天冬酰胺合成酶特性及其抑制剂的研究进展[J].农药,45(6):378-380,384
    [51].林文雄,何海斌,林瑞余等,2006.水稻化感作用及其分子生态学研究进展[J].生态学报,28(8):2687-2694
    [52].刘红彦,王飞,王永平等,2006.地黄连作障碍因素及解除措施研究[J].华北农学报,21(4):131-132
    [53].刘均霞,陆引罡,远红伟,等,2007.玉米、大豆间作对根际土壤微生物数量和酶活性的影响[J].贵州农业科学,35(2):60-61
    [54].刘卫群,李浩,2006.差异蛋白质组学在植物研究中的应用[J].安徽农业科学,34(17):4201-4203
    [55].刘卫群,李浩,郭红祥,等.2008.烤烟打顶前后差异表达蛋白分析[J].烟草农业科学,4(1):30-35
    [56].刘秀芬,马瑞霞,袁光林,等,1996.根际区他感化学物质的分离、鉴定与生物活性的研究[J].生态学报,16(1):1-10
    [57].刘亚峰,孙富林,周毅,等,2006.黄瓜连作对土壤微生物区系的影响Ⅰ.基于可培养微生物种群的数量分析[J].中国蔬菜,(7):4-7
    [58].卢龙斗,常生辉,高武军,等,2008.木犀属植物叶片微形态结构[J].南京林业大学学报(自然科学版),32(6):52-56
    [59].吕卫光,余廷园,诸海涛,2006.黄瓜连作对土壤理化性状及生物活性的影响研究[J].中国生态农业学,14(2):119-121
    [60].马瑞霞,刘秀芬,袁光林,等,1996.小麦根区微生物分解小麦残体产生的化感物质及其生物活性的研究[J].生态学报,16(6):632-639
    [61].马祥庆,2001.杉木人工林连栽生产力下降研究进展[J].福建林学院学报,21(4):380-384.
    [62].马云华,魏珉,王秀峰,2004.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,15(6):1005-1008
    [63].苗果园,贾志红,杨珍平,等,2004.不同作物根际微生物差异的研究[J].山西农业大学学报(自然科学版),24(2):93-96
    [64].苗淑杰,乔云发,韩晓增,2007.大豆连作障碍的研究进展[J].中国生态农业学报,15(3):203-206
    [65].潘叶,冯永庆,马焕普,2008.种适用于植物组织的快速石蜡制片法[J].中国农学通报,24(3):112-115
    [66].普燕,李琦涵,2004.KRAB锌指蛋白的研究进展[J].生命的化学,24(4):144-147
    [67].秦民坚,余永邦,黄文哲,等,2005.不同产地太子参的品质分析[J].现代中药研究与实践,19(5):29-32
    [68].任南琪,赵阳国,高崇洋,等,2007.T-RFLP在微生物群落结构与动态分析中的应用[J].哈尔滨工业大学学报,39(4):552-556
    [69].阮维斌,李小鸣,2001.溴甲烷土壤灭菌对大豆苗期根系生长的影响[J].生态学报,21(5):759-764
    [70].阮维斌,赵紫娟,薛健,等,2001.高效液相色谱法检测与化感现象相关的5种酚酸[J].应用与环境生物学报,7(6):609-612
    [71].邵彩虹,林文雄,2007.水稻生育后期蛋白质组差异表达的图谱分析[J].中国农学通报,23(9):139-143
    [72].邵彩虹,王经源,林文雄,2008.苗期水稻叶片发育进程的差异蛋白质组学分析[J].中国农业科学,41(11):3831-3837
    [73].申建波,张福锁,1999.根分泌物的生态效应[J].中国农业科技导报,2(4):21-27
    [74].申卫收,林先贵,张华勇,等,2008.不同栽培条件下蔬菜塑料大棚土壤尖孢镰刀菌数量的变化[J].土壤学报,45(1):137-142
    [75].沈萍,范秀蓉,李广武.微生物实验[M].高等教育出版社,1999年6月,49-57
    [76].施卫明,1993.根系分泌物与养分有效性[J].土壤,25(5):252-256
    [77].史娟,邱艳,王红玲,等,2001.黄瓜几丁酶活性与其对枯萎病抗性的关系[J].宁夏农学院学报,22(4):4-5
    [78].史玲玲,王莉,张艳霞,等,2008.红景天甙的生物合成及其关键代谢酶研究[J].生命科学,20(2):287-290
    [79].宋君,1990.植物间的他感作用[J].生态学杂志,9(6):43-47
    [80].苏正标,王维中,1994.杉木连作障碍研究综述[J].江苏林业科技,21(4):39-42
    [81].孙海明,刘宝岩,张荣昌,2007.羊草根际微生物数量动态及其与地上生物量关系的研究[J].北华大学学报(自然科学版),8(6):501-503
    [82].孙文浩,余叔文,1992.相生相克效应及其应用[J].植物生理学通讯,28(2):81-87
    [83].孙言伟,姜颖,贺福初,2005.差异蛋白质组学的研究进展[J].生命科学,17(2):137-140
    [84].汪家政,范明主编.蛋白质技术手册[M].科学出版社(北京),2000:42-46
    [85].王建刚,于英川,2004.城市综合经济实力的主成份分析研究[J].商业研究,(1):8-10
    [86].王经源,陈舒奕,梁义元,等,2006.ISO-DALT双向电泳方法的优化与改进[J].福建农林大学学报,35(2):187-190
    [87].王明道,吴宗伟,原增艳,等,2008.怀地黄连作对土壤微生物区系的影响[J].河南农业大学学报,42(5):532-538
    [88].王清海,齐勇,亓立云,等,2006.链霉菌R15菌株鉴定及作用机制[J].山东农业大学学报(自然科学版),37(1):11-16
    [89].王树起,韩晓增,乔云发,2007.根系分泌物的化感作用及其对土壤微生物的影响[J].土壤通报,38(6):1220-1224
    [90].王太霞,司源,李景原等,2005.怀地黄块根内含梓醇结构的组织化学和超微结构研究.西北植物学报,25(5):928-931
    [91].王晓楠,付连双,李卓夫,等,2009.低温下东农冬麦1号地下茎处差异蛋白的分析[J].麦类作物学报,29(3):484-490
    [92].王燕,许锋,程水源,2007.植物查尔酮合成酶分子生物学研究进展[J].河南农业科学,(8):5-9
    [93].王幼宁,刘孟雨,李霞,2005.植物3-磷酸甘油醛脱氢酶的多维本质[J].西北植物学报,25(3):607-614
    [94].王玉萍,赵杨景,邵迪等,2005.西洋参根系分泌物的初步研究[J].中国中药杂志,30(3):229-231
    [95].王玉萍,赵杨景,杨峻山,等,2005.西洋参根系分泌物的初步研究[J],中国中药杂志,30(3):229-231
    [96].韦红群,邓建珍,曹建华,等,2009.柱花草根系与根际微生物类群的研究[J].草业科学,26(1):69-73
    [97].卫丽,黄晓书,里鹏坤,等,2006.植物硫氧还蛋白研究进展[J].贵州农业科学,34(6):129-131,123
    [98].魏兰芳,董艳,汤利,等,2008.小麦蚕豆间作条件下不同施氮量对作物根际微生物数量的影响[J].云南农业大学学报,23(3):368-374
    [99].文圣梅,吴祖泽,张成刚,2006.谷氨酰-脯氨酰-tRNA合酶(EPRS)结构与功能新认识[J].军事医学科学院院刊,30(2):166-200
    [100].吴统贵,李艳红,吴明,等,2009.芦苇光合生理特性动态变化及其影响因子分析[J].西北植物学报,29(4):789-794
    [101].向曙光,刘思俭,朱万洲,等,1984.应用苯酚法测定植物组织中的碳水化合物[J].植物生理学通讯,(2):1-3
    [102].徐晓燕,郑蕊,李春梅,等,2006.大豆种子萌发过程中的差异蛋白质组研究[J].生物化学与生物物理进展,33(11):1106-1112
    [103].许大全,1990.光合作用“午睡”现象的生态、生理与生化[J].植物生理学通讯,(6):5-10
    [104].许大全,2002.光合作用效率[M].上海:上海科技出版社
    [105].许珂,曹墨菊,朱英国,等,2008.玉米C型细胞质雄性不育系C48-2及其保持系线粒体差异蛋白分析[J].作物学报,34(2):232-237
    [106].许茜,王红芳,周小羽,2001.太子参皂苷提取工艺优选[J].中草药,32(9):799-800
    [107].薛炳烨,罗新书,1990.克服苹果苗圃地连作障碍的初步研究[J].山东农业科学,(4):18-20
    [108].严昶升,1988.土壤肥力研究法[M].北京:农业出版社
    [109].阎飞,韩丽梅,2000.论大豆连作障碍研究中有关化感作用研究的若干问题[J].大豆科学,19(3):269-274
    [110].阎飞,杨振明,韩丽梅,2000.植物化感作用及其作用物的研究[J].生态学报,20(4):692-696
    [111].杨梅,李海蓝,谢晋,等,2007.核酮糖-1,5-二磷酸羧化酶/甲氧酶(Rubisco)[J].植物生理学通讯,43(2):363-369
    [112].杨明挚,陈小兰,尹梅,等,2005.黑子南瓜中STK类抗病基因同源序列的克隆及序列分析[J].云南大学学报(自然科学版),27(2):176-170
    [113].杨晓红,陈晓阳,刘克锋,2006.细胞分裂素对植物衰老的延缓作用[J].热带亚热带植物学报,l4(3):256-262
    [114].印东生,杨贺,颜范悦,等,2009.解决辽宁百合生产问题的关键技术[J].新农业,(2):38
    [115].喻敏,余均沃,曹培根等,2004.百合连作土壤养分及物理性状分析[J].土壤通报,35(3):377-379
    [116].袁龙刚,张军林,张朝阳,等,2006.连作对辣椒根际土壤微生物区系影响的初步研究[J].陕西农业科技,(2):49-51
    [117].袁宜如,杨芳,李晓云,2009.芒萁化感作用研究进展[J].现代农业科技,(3):16,19
    [118].翟彩霞,张彦才,王占武,等,2006.土壤生态调控剂缓解酚酸类物质对番茄苗期生长抑制作用的效果[J].华北农学报,21(B11):54-58
    [119].翟中和,王喜忠,丁明孝主编,2007.细胞生物学[M].北京:高等教育出版社,第三版,151
    [120].张辰露,孙群,叶青,2005.连作对丹参生长的障碍效应[J].西北植物学报,25(5):1029-1034
    [121].张付云,赵小明,白雪芳,等,2009.烟草SKP1基因的原核表达[J].西北植物学报,29(8):1544-154
    [122].张海艳,2009.盐胁迫下不同棉花品种叶片细胞结构的变化[J].中国农学通报,25(4):122-123
    [123].张欢强,慕小倩,梁宗锁,等,2007.附子连作障碍效应初步研究[J].西北植物学报,27(10):2112-2115
    [124].张俊英,王敬国,许永利,2007.连作土壤盆栽大豆的根际酸度和微生物数量变化[J].中国土壤与肥料,(3):63-65
    [125].张丽艳,杨玉琴,高言明,2003.贵州引种栽培太子参的品质分析[J].中药材,26(7):479-480
    [126].张齐凤,石明杰,刘春来,等.4种种衣剂对大豆根际微生物消长的影响[J].东北农业大学学报,2008,39(3):1-4
    [127].张瑞福,曹慧,崔中利,等,2003.土壤微生物总DNA的提取和纯化[J].微生物学报,43(2):276-282
    [128].张守仁,1999.叶绿素荧光参数及其意义讨论[J].植物学通报,16(4):444-448
    [129].张淑香,高子勤,2000.连作障碍与根际微生态研究Ⅱ.根系分泌物与酚酸物质[J].应用生态学报,11(1):152-156
    [130].张树生,杨兴明,茆泽圣,等,2007.连作土灭菌对黄瓜(Cucumis sativus)生长和土壤微生物区系的影响[J].生态学报,27(5):1809-1817
    [131].张文霖,2005.主成份分析在SPSS中的操作应用[J].市场研究,(12):31-34
    [132].张晓珂,姜勇,梁文举,等.2004.小麦化感作用研究进展[J].应用生态学报,15(10):1967-1972
    [133].张新慧,张恩和,2009.不同植龄啤酒花根际土壤中有机化合物的初步分离鉴定[J].土壤学报,46(2):368-371
    [134].张重义,2009.地黄连作障碍机理研究[D].福建农林大学博士后出站报告
    [135].赵松岭,李凤民,张大勇,等,1997.作物生产是一个种群过程[J].生态学报,17(1):100-104
    [136].赵杨景,杨峻山,王玉萍等,2004.西洋参、紫苏籽和薏苡根水提物的化感作用[J].中草药,35(4):452-455
    [137].赵永娟,王傲雪,贾琪,等,2005.番茄衰老相关蛋白SENU3在大肠杆菌中的表达及其抗体制备[J].植物生理学通讯,41(2):208-210
    [138].中国科学院南京土壤研究所微生物室,1985.土壤微生物研究法[M].北京:科学出版社, 67-73.
    [139].钟霈霖,乔荣,王天文,2003.克服草莓连作障碍对策[J].耕作与栽培,(2):48
    [140].周凯,郭维明,王智芳,2008.菊花不同部位水浸液自毒作用的研究[J].西北植物学报,28(4):759-764
    [141].周勤华,周盛梅,2009.氨酰-tRNA合成酶的研究进展[J].中国生物工程杂志,29(6):130-134
    [142].周志红,骆世明,牟子平,1997.番茄(Lycopersicon)的化感作用研究[J].应用生态学报,8(4):445-449
    [143].朱国鹏,沈宏,2002.根系分泌物研究方法(综述)[J].亚热带植物科学,31(增刊):15-21
    [144].禚鹏基,赵卫红,2007.海洋微藻之间的化感作用研究进展[J].海洋科学集刊,(48):114-126
    [145]. Ashrafi, Zoheir, Y., Rahnavard A., et al., 2008. Study of the Allelopathic Potential of Extracts of Azadirachta Indica (Neem)[J]. OnLine J. Biol. Sci., 8 (3): 57-61
    [146]. Balke N.E., 1985. Effects of allelochemicals on mineral uptake and associated physiological processes[J].ACS Symp Ser, 268:161-178
    [147]. Blackwood C.B., Marsh T., Kim S.H., et al., 2003. Terminal Restriction Fragment Length Polymorphism Data Analysis for Quantitative Comparison of Microbial Communities[J]. Applied and Environmental Microbiology, 69(2):926-932
    [148]. Bradford M.M., 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding[J]. Analytical biochemistry, 72:248-252
    [149]. Campos A.D., Ferreira A.G., Hampe M.M.V. et al., 2003. Induction of chalcone synthase and phenylalanine ammonia-lyase by salicylic acid and Colletotrichum lindemuthianum in common bean[J]. Braz. J. Plant Physiol., 15(3):129-134
    [150]. Chen L.C., Wang S.L., Yu X.J., 2005. Effects of phenolics on seedling growth and N-15 nitrate absorption of Cunninghamia lanceolata[J]. Allelopathy J., 15: 57-65
    [151]. Chon S.U., Choi S.K., Jung S., et al., 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass[J]. Crop Prot., 21: 1077–1082
    [152]. Cui S.X., Huang F., Wang J., et al., 2005. A proteomics analysis of cold stress responses in riceseedlings[J].Proteomics, 5:3162-3172
    [153]. Dickie I.A., Xu B., Koide R.T., 2002.Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis[J].New Phytologist,156:527-535.
    [154]. Dove A., 1999.Proleomics:translation genomics into products?[J] . Nature Biotechnol, 17(3):233-236
    [155]. Einbellig F. A. and Souza I. F., 1992. Phytotoxicity of sorgolene found in grain sorghum root exudates[J]. Journal of Chemical Ecology,18:1-11
    [156]. Einhellig F.A., 1985. Effects of allelopathic chemicals on crop productivity[J].ACS Symp Ser, 276:109-130
    [157]. Einhellig F.A., 1996. Interactions involving allelopathy in cropping systems[J].Agronomy Journal, 88:886-893
    [158]. Einhellig F.A.,1995.Mechanism of action of allelochemicals in allelopathy[J].ACS Symp Ser.582:96-l16
    [159]. Fujii Y., Parvez S.S., Parvez M.M., et al., 2003. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method[J]. Weed Biol. Management 3: 233–241
    [160]. Genty B., Bruntais J.M., Baker N.R., 1989.The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica and Biophysica Acta 990: 87-92
    [161]. Hajduch M., Rakwal R., Agarawal G.K., et al., 2001. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L)leaves:drastic reductions/ fragmentation of ribulose-1, 5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins[J]. Electrophoresis, 22(13):2824-283l
    [162]. Hao Z.P., Wang Q., Christie P., et al., 2007. Allelopathic potential of watermelon tissues and root exudates[J].Scientia Horticulturae, 112(3): 315-320
    [163]. Hong Z.L., Zhang Z.M., Olson J.M., et a1., 2001. A novel UDP-glucosetransferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate[J].Plant Cell, 13:769-780
    [164]. Imin N., Kerim L. Weiman J.J., et al., 2001.Characterization of rice anther proteins expressed at the young microspore stage[J].Proteomics, 1:1149-1161
    [165]. Inderjit, Callaway R.M., Vivanco J.M., 2006. Can plant biochemistry contribute to understandingof invasion ecology?[J] Trends in Plant Science, 11(12):574-580
    [166]. Inderjit, 2001.Soils: environmental effect on allelochemical activity[J]. Agron J., 93:79–84
    [167]. Inderjit, 2005.Soil microorganisms: An important determinant of allelopathic activity[J]. Plant and Soil, 274:227-236
    [168]. Inderjit. 2006. Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: A case study[J]. Soil Biology & Biochemistry, 38: 256-262
    [169]. Ishihama A,1999.Globel control of gene expression in bacteria1[M].In: Ishihama A. and Yoshikwa H., Control of cell growth and division, Springer-verlag.Berlin.121-140
    [170]. Jasicka-Misiak I., Wieczorek P.P., Kafarski P., 2005. Crotonic acid as a bioactive factor in carrot seeds (Daucus carota L.)[J]. Phytochemistry 66: 1485-1491
    [171]. Joanne G.R., Stephen O.D., Franck E.D., 2000.Inhibition of Plant Asparagine Synthetase by Monoterpene Cineoles[J].Plant Physiol.,123(2):725-732
    [172]. Johansson J.F., Paul L.R., Finlay R.D., 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. FEMSMicrobiol. Ecol., 48(1):1-13
    [173]. Brant J.B., Sulzman E.W., Myrold D.D., 2006. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation[J].Soil Biology and Biochemistry, 38(8):2219-2232
    [174]. Kent A D, Smith D J, Benson B J, et al., 2003.Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities[J].Appl Environ Microbiol, 69(11):6768-6776
    [175]. Kerim T., Imin N., Weinman J.J., et al., 2003. Proteome analysis of male gametophytes development rice anthers[J].Proteomics, 3:738-751
    [176]. Khan A.L., Hamayun M., Hussain J., et al., 2009. Watanabe KN, Assessment of allelopathic potential of selected medicinal plants of Pakistan[J]. Afr. J. Biotechnol. 8:1024-1029
    [177]. Kitazawa H., Asao T., Ban T., et al., 2005. Autotoxicity of root exudates from strawberry in hydroponic culture[J]. The Journal of Horticultural Science and Biotechnology, 80(6):677-680
    [178]. Kottapalli K.R.,Satoh K., Rakwal R., et al, 2007. Combining in silico mapping and arraying: an approach to identifying common candidate genes for submergence tolerance and resistance to bacterial leaf blight in rice[J].Mo1.Cell, 24(3):394-408
    [179]. Liu Z., Wang Q., Wang J., et al., 2003. The structure, expression pattern and chrosemallocalization of the rice Osgrp-2 gene[J]. Science in China Series C, 33:215-223
    [180]. Machenzie A., Ball A.S., Virdee S.R., 1998. Ecology[M]. BIOS Scientific Publishers Limited, London, 214-217
    [181]. Macias F.A., 1995.Allelopathy in search for natural herbicide mode1[J].ACS SymP Ser, 582:310-329
    [182]. Mackenzie P.I., Owens I.S., Burchell B., et a1., 1997.The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence[J].Pharmacogenetics, 7(4):255-269
    [183]. Margaret Mccully, 2007. Rhizosphere allelopathy[J]. Allelopathy Journal. 19(1): 75-84
    [184]. Marsh T.L., 1999.Terminal Restriction Fragment Length Polymorphism (T-RFLP ):an emerging method for characterizing diversity among homologous populations of amplicons[J].Curr Opin Microbiol, 2(3):323-327
    [185]. Mith?fer A.., 2002.Suppression of plant defense in rhi- zobia-legume symbiosis[J]. Trends Plant Sci., 7:440-444
    [186]. Molish H., 1937. Der einfluss einer Pflanze auf die andere-Allelopathic[M]. Gustav Fischer Verlag Jena, 106
    [187]. Pandey A., Mann M., 2000. Proteomics to study genes and genomes[J] . Nature, 405(6788):837-846
    [188]. Peng X.X., Peng S.B., 2000.Degradation of Ribulose 1,5-Bisphosphate carboxylase/Oxygenase in naturally senescing rice leaves[J]. Acta phytophysiologica sinica, 26(1):46-52
    [189]. Perry L.G., Thelen G.C., Ridenour W.M., et al., 2005. Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment[J]. J. Ecol. 93: 1126-1135
    [190]. Marschner P., Timonen S., 2005.Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere[J]. Applied Soil Ecology. 28: 23-36
    [191]. Pramanik M.H.R., Asao T., Yamamoto T., et al., 2001.Sensitive bioassay to evaluate toxicity of aromatic acids to cucumber seedlings[J]. Allelopathy J. 18: 161-169
    [192]. Reinecke A., Muller F., Hilker M., 2008. Attractiveness of CO2 released by root respiration fades on the background of root exudates[J]. Basic Appl. Ecol. 9: 568-576
    [193]. Rice E.L., 1984. Impact of allelopathy on agriculture[M]. In: Allelopathy, Academic Press,Orlando
    [194]. Rice E.L., 1986. Allelopathic growth stimulation[M]. In: A.R. Putnam and C.S. Tang, Editors, The Science of Allelopathy, John Wiley, New York
    [195]. Roshchina V.V., Roshchina V.D., 1993.The Excretory Function of Higher Plant[M].New York:Springer-Verlag.213-215
    [196]. Sanchez-Moreiras A.M., Reigosa M.J., 2005. Whole plant response of lettuce after root exposure to BOA(2(3H)-benzoxazolinone)[J]. J. Chem. Ecol. 31: 2689-2703
    [197]. Sharma R., Gupta R., 2007. Cyperus rotundus extract inhibits acetylcholinesterase activity from animal and plants as well as inhibits germination and seedling growth in wheat and tomato[J]. Life Sciences, 80: 2389-2392
    [198]. Shevchenko A., Wilm M., Vorm O., et al., 1996.Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels[J]. Anal Chem,68(5):850-858
    [199]. Shimazaki T., Kikuchi A., Matsunaga E., et al., 2009.Establishment of a homogenized method for environmental biosafety assessments of transgenic plants[J]. Plant Biotechnol. 26: 143-148
    [200]. Smalla K., Oros-Sichler M., Milling A., et al., 2007. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results?[J]. Journal of Microbiological Methods, 69(3):470-479
    [201]. Takao M., Akazawa T., Fukuchi S., 1970.Enzymic mechanism of starch breakdown in germination rice seeds[J].A-amylase. Physiol, 46:650-654
    [202]. Trisiriroj A., Jeyachok N., Chen S.T., 2004. Proteomics characterization of different bran proteins between aromatic and nonaromatic rice(Oryza sativa L.ssp.indica)[J].Proteomics, 4:2047-2057
    [203]. Vogel J., Hubsehman T., Borner T., et a1., 1997. Splicing andintron-internal RNA editing of trnK-matK transcripts in barley plastids:support for MarK as an essential splice facto[rJ].J. Mol. Biol., 270(2):179-187
    [204]. Weston L.A., 2005. History and Current Trends in the Use of Allelopathy for Weed Management[C]. In: Allelopathy: establishing the scientific base (Fourth world congress on allelopathy). Australian
    [205]. Widmer F., Hartmann M., Frey B., et al., 2006.A novel strategy to extract specific phylogenetic sequence information from community T-RFLP[J]. Journal of Microbiological Methods, 66(3):512-520
    [206]. Willis R.J., 2000.Juglans spp., juglone and allelopathy[J]. Allelo. J.7, 1-55
    [207]. Yang C.H., Crowley D.E., Menge J.A.., 2001. 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots[J].FEMS microbiology ecology, 35(2):129-136
    [208]. Yang P.F., Liang Y., Shen S.H., et al., 2006.Proteome analysis of rice upperm ost internodes at the milky stage[J].Proteomics, 6:3330-3338
    [209]. Ye S.F., Yu J.Q., Peng Y.H., et al., 2004. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates[J]. Plant Soil 263:143-150
    [210]. Yu J.Q., 1994. Phytotoxic substances in root exudates of cucumber[J]. Chem. Eco1., 20(1):21-30
    [211]. Yu J.Q., 1996. Effects of root excudates and allelopathicals on the ion update by cucumber seeding[J].Chem. Eco1., 22(6):817-834
    [212]. Yu J.Q., Su F.Y., Ming F.Z., 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus)and allelochemicals on photosynthesis and autioxidant in cucumber[J]. Biochemical Systematics and Ecology, 31(2):129-139
    [213]. Zhang Y.P, Jin F., Chai X.Q., et al., 2004. 2-DE Method and proteomic map nanlysis in rice leaves under iron deficient stress[J]. China Journal of Bioinformatics, 2(3):6-10
    [214]. Zhao X.Q., Hu J.F., Yu J., 2006. Comparative Analysis of Eubacterial DNA Polym erase III Alpha Subunits[J]. Geno. Prot. Bioinfo., 4(4):203-211
    [215]. Zhou J.Z., Bruns M.A., Tiedje J.M., 1996. DNA recovery from soils of diverse composition[J].Applied and Environmental Microbiology,62(2):316-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700