用户名: 密码: 验证码:
垦殖与自然恢复黑土微生物群落结构及生态功能的季节变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北黑土有机碳含量较高,是土壤碳库的重要组成部分。土壤有机碳变化与土地利用方式、气候条件及土壤微生物群落结构关系密切。黑土区气候四季分明,土壤温湿度及地表覆盖物变化明显,这些都预示着土壤微生物群落结构及功能可能存在季节性差异。本论文以中国科学院海伦农业生态试验站为研究平台,选取垦殖3种不同的施肥处理(无肥NoF、化肥CF和化肥配施有机肥CFM)和自然恢复黑土(NR)为研究对象,于不同季节采集土壤样品,通过测定可溶性有机碳、微生物量碳研究土壤活性有机碳库季节性结构组成;采用PCR-DGGE和克隆测序相结合的方法研究土壤微生物群落结构季节性变化规律;通过Biolog法比较微生物对底物碳源利用上的差异,同时测定土壤呼吸和土壤酶活性,解析土壤微生物生态功能的季节性差异,主要研究结果如下:
     土壤微生物量碳的最高值都出现在积雪融化期,NR处理土壤微生物量碳5个采样时期平均值较NoF、CF和CFM处理分别提高102%、89%和52%;土壤可溶性有机碳含量总体表现为夏季比冬季高;同一处理在不同季节土壤呼吸差异显著,4种处理在不同温度条件下的土壤呼吸具有相似的变化趋势,均表现为NR处理高于垦殖处理。NR处理的过氧化氢酶、转化酶和磷酸酶活性在5个采样时期均具有较高活性,而NR处理的脲酶活性只在作物生长季节较高。单施化肥或化肥配施有机肥可以提高转化酶、磷酸酶和脲酶活性,而单施化肥有抑制过氧化氢酶活性的作用。除垦殖的3种施肥处理土壤转化酶活性较稳定、季节性变化不显著外,所有处理4种土壤酶活性均表现出明显的季节性变化。5个采样时期的土壤微生物量碳与土壤酶活性之间的正相关关系体现不明显。
     采用PCR-DGGE和克隆测序相结合的方法研究土壤细菌和真菌群落结构的季节性变化规律,结果表明,垦殖处理与自然恢复处理相比,前者改变了土壤微生物群落结构;土壤细菌群落结构在植物非生长季节3个采样时期相似度高而在植物生长季节相似度较低;真菌对植被、土壤理化性状和垦殖的敏感性要高于细菌,真菌在作物生长季节(2007年8月28日)和作物收获期(2006年10月15日)的土壤样品群落相似度较高。DGGE条带的测序结果显示,不可培养微生物比例较高,变形杆菌门(Proteobacteria(α-, β-and γ-))和放线菌门(Actinobacteria)是细菌的主要成员;担子菌门(Ascomycota)和子囊菌门(Basidiomycota)是真菌的主要成员。
     黑土区氨氧化细菌分布在目前已知的cluster1、cluster2、cluster3、cluster4、cluster7、cluster9和cluster10当中,其中Nitrosospira cluster3是黑土区农田当中的优势氨氧化细菌。土地利用方式改变了氨氧化细菌的群落结构,同时垦殖与自然恢复黑土当中的氨氧化细菌也存在季节性变化,表现为有作物生长季节之间以及非作物生长季节之间群落相似性较高。另外,本研究还发现一类目前尚不能分类到任何已知氨氧化细菌cluster当中的、黑土区特有的氨氧化细菌类群。
     对4℃、15℃和28℃培养温度下4个处理黑土微生物代谢功能研究表明,在同一采样时期不同培养温度下,随着培养温度的升高每个处理的微生物代谢活性提高,不同采样季节垦殖与自然恢复处理在3个培养温度下微生物对碳源的代谢能力总体均呈现NR>CFM>CF>NoF变化趋势。微生物在积雪融化期2009年3月27日对碳源的利用能力较强。28℃培养温度下,NoF处理较其它3种处理微生物代谢活性有较大不同,夏季作物生长季节CF、CFM和NR3个处理细菌群落对碳源的利用能力差异最大。
The black soils in Northeast China are commonly fertile and productive withhigh organic carbon content, which is closely related with soil management practice,climate and soil microorganisms. The climate in Northeast China is characterized bythe extreme annual variation in temperature and precipitation with hot and wet insummer and cold and dry in winter. Consequently, seasonal fluctuations of soiltemperature, soil water content and plant cover are very large for black soils, whichlead to the prediction that soil microbial communities show distinct seasonalvariations in this region. A long term fertilization experimental station which has threefertilizer treatments: no fertilizer (NoF), chemical fertilizers (CF) and chemicalfertilizers plus manure (CFM), and natural restoration (NR) was established in1985.Soil samples (0-20cm depth) were collected on different seasons. Soil dissolvedorganic carbon (DOC) and microbial biomass carbon (MBC) were measured toexplore the seasonal shifts of the active soil organic carbon pool. PCR, DGGE, cloneand sequencing were applied to compare the seasonal variations of microbialcommunities. Microbial metabolic activities (Biolog), soil respiration and soil enzymewere also measured to elucidate how microbial functions changed among differentseasons and treatments. The results were as follows:
     The value of MBC was highest in spring and the mean value of NR of fivesampling times was higher102%、89%and52%than NoF、CF and CFM, respectively.Soil organic carbon content was higher in samples collected in summer comparedwith those collected in winter. Soil respiration rate from a same treatment but differentseasons was significantly different, and NR was the highest compared with other threecultivated treatments regardless the incubation temperature. NR has the highestactivities of soil catalase, invertase and phosphatase in five sampling times, while thehighest urease activities of NR only appeared in plant growing season. Theapplication of fertilization increased the activities of soil invertase, phosphatase andurease, but the activities of catalase were decreased when only applied chemicalfertilizer. The activities of soil enzymes had obvious seasonal shifts except theactivities of soil invertase in NoF, CF and CFM. The positive relationship betweenMBC and soil enzymes was not obvious in five sampling times.
     The dominant members of the soil microbial communities were primarilyregulated by land use and also changed seasonally associated with plant growth inblack soils in the region. There was no distinct difference in dominant members ofboth bacterial and fungal communities among different fertilizer treatment plots incultivated black soils. The change of dominant members of fungal communities alongwith land use and season was more obvious than that of bacterial communities,suggesting greater sensitivity of fungi to vegetation, soil disturbance of tillage and soilphysico-chemical properties. Sequence analysis of the DGGE bands revealed thatbacteria belonging to Proteobacteria and Actinobacteria, and fungi of theBasidiomycota and Ascomycota inhabit predominantly in the black soil.
     Ammonia oxidizing bacteria (AOB) in black soils were distributed in cluster1,cluster2, cluster3, cluster4, cluster7, cluster9and cluster10by phylogeneticanalysis, while Nitrosospira cluster3was dominant in cultivated black soils andNitrosospira cluster1was dominant in NR. The PCoA analysis showed that AOBcommunities of plant growing seasons and no plant growing seasons had highsimilarities, respectively. We found a new cluster (defined as cluster NR in this study)which was not affiliated with any known AOB cluster.
     Biolog analysis revealed that the microbial metabolic activities (expressed asAWCD,average well color development) of samples from a same sampling time butunder different incubation temperature followed as the order of:28℃>15℃>4℃.Samples collected in spring had higher AWCD. For each incubation temperature,AWCD of samples from different sampling time followed as the order of:NR>CFM>CF>NoF. Principal component analysis (28℃,72h) showed that the metabolicactivities of NoF had low similarities with other treatments in four sampling time andmetabolic activities of CF、CFM and NR in plant growing season were obviousdifferent.
引文
1崔雨新,王小明,分子生物学技术在环境生物学中的应用,自然杂志,1999,21(5):295-301。
    2方华军,杨学明,张晓平,农田土壤有机碳动态研究进展,土壤通报,2003,34(6):562-568。
    3关松荫,土壤酶及其研究法,农业出版社,1986,北京。
    4郭锐,汪景宽,李双异,长期地膜覆盖及不同施肥处理对棕壤水溶性有机碳的影响,安徽农业科学,2007,35(9):2672~2673。
    5何坤,高歌,DNA芯片技术简介,计算机教育,2006,9:19-23。
    6何振立,土壤微生物量及其在养分循环和环境质量评价中的意义,土壤,1997,(2):61-70。
    7侯雪莹,韩晓增,王树起等,土地利用方式对黑土酶活性的影响,中国生态农业学报,2009,17(2):215-219。
    8胡洪营,童中华,微生物醒指纹法在环境微生物群体组成研究中的应用,微生物学通报,2002,29(4):95-98。
    9焦晓丹,吴凤芝,土壤微生物多样性研究方法的进展,土壤通报,2004,35(6):789-792。
    10焦晓光,魏丹,隋跃宇,长期施肥对黑土和暗棕壤土壤酶活性及土壤养分的影响,土壤通报,2011,42(3):698-703。
    11李长生,土壤碳储量减少:中国农业之隐患-中美农业生态系统碳循环对比研究,第四季研究,2000,20(4):345-350。
    12李东坡,武志杰,陈利军等,长期不同培肥黑土磷酸酶活性动态变化及其影响因素,植物营养与肥料学报,2004,10(5):550-553。
    13李东坡,武志杰,陈利军等,长期培肥黑土脲酶活性动态变化及其影响因素,应用生态学报,2003,14(12):2208-2212。
    14李娟,长期不同施肥制度土壤微生物学特性及其季节变化,中国农业科学院农业资源与农业区划研究院博士学位论文,2008。
    15李娟、赵秉强、李秀英等,长期不同施肥制度下几种土壤微生物学特征变化,植物生态学报,2008,32(4):891-899。
    16李少生和杜有新,土壤可溶性有机质研究进展,江西林业科技,2010,3:23-26。
    17李振高,骆永明,滕应,土壤与环境微生物研究法,科学出版社,北京,2008。
    18林先贵,土壤微生物研究原理与方法,高等教育出版社,北京,2010。
    19刘恩科,长期定位不同施肥制度土壤功能衰退与修复研究,山东农业大学硕士学位论文,2004。
    20刘恩科,梅旭荣,赵秉等,长期不同施肥制度对土壤微生物生物量碳、氮、磷的影响,中国农业大学学报,2009,14(3):63-68。
    21刘鸿翔,王德禄,王守宇等,黑土长期施肥及养分循环再利用的作物产量及土壤肥力质量变化I.作物产量,2001,应用生态学报,12(1):43-46。
    22刘上峰,傅俊江,双向电泳技术原理及其应用,国外医学:生理病理科学与临床分册,2002,22(2):197-199。
    23鲁如坤,土壤农业化学分析方法,中国农业科技出版社,北京,1999。
    24陆雅海,张福锁,根际微生物研究进展,土壤,2006,38(2):113-121。
    25罗文邃,姚政,促进根系健康的土壤微生态研究,中国生态农业学报,2002,10(3):44-46。
    26孟庆杰,许艳丽,李春杰等,不同植被覆盖对黑土微生物功能多样性的影响,生态学杂志,2008,27(7):1134-1140。
    27米亮,王光华,金剑等,黑土微生物呼吸及群落功能多样性对温度的响应,应用生态学报,2010,21(6):1485-1491。
    28倪进治,徐建民,谢正苗,土壤水溶性有机碳的研究进展,生态环境,2003,12(1):71-75。
    29潘根兴,赵其国,蔡祖冲,《京都协议书》生效后我国耕地土壤碳循环研究若干问题,2005,(2):12-18。
    30隋跃宇,孟凯,张兴义等,农田黑土微生物量碳的研究,农业科学与综合研究,2003,19(1):305-307。
    31孙瑞莲,赵秉强,朱鲁生等,长期定位施肥田土壤酶活性的动态变化特征,生态环境,2008,17(5):2059-2063。
    32倪进治,土壤水溶性有机碳的研究进展,生态环境,2003,12(1):71-75。
    33土壤微生物研究法,中国科学院南京土壤研究所微生物室,科学出版社,北京,1985。
    34王光华,金剑,韩晓增等,不同土地管理方式对黑土土壤微生物量碳和酶活性的影响,2007b,18(6):1275-128。
    35王光华,刘俊杰,齐晓宁等,Biolog PCR-DGGE技术解析施肥对德惠黑土细菌群落结构和功能的影响,生态学报,2008,28(1):220-226。
    36王光华,齐晓宁,金剑等,施肥对黑土农田土壤全碳、微生物量碳及土壤酶活性的影响土壤通报,2007a,38(4):661-666。
    37王晶,解宏图,张旭东等,施肥对黑土土壤微生物生物量碳的作用研究,中国生态农业学报,2004,12(2):118-120。
    38王小国,朱波,王艳强等,不同土地利用方式下土壤呼吸及其温度敏感性,2007,27(5):1960-1968。
    39吴金水,肖和艾,土壤微生物量碳的表观周转时间测定方法,土壤学报,2004,41(3):401-407。
    40吴昀卓,DNA芯片技术及其应用,畜禽业,2005,11:20-21。夏北成,植被对土壤微生物群落结构的影响,应用生态学报,1998,9(3):296-300。
    41谢龙莲,陈秋波,王真辉等。环境变化对土壤微生物的影响,热带农业科学,2004,24(3):39一47。
    42杨海君,肖启明,刘安元,土壤微生物多样性及其作用研究进展,南华大学学报(自然科学版),2005,4(19):2-26。
    43杨丽娟,李天来,付时丰等,施用有机肥和化肥对菜田土壤酶动态特性的影响,土壤通报,2005,36(2):223-226。
    44杨林章,徐琪,土壤生态系统,科学出版社,北京,2005。
    45姚槐应,黄昌勇,土壤微生物生态学及其实验技术,科学出版社,北京,2006。
    46姚健,杨永华,沈晓蓉等,农用化学品污染对土壤微生物群落DNA序列多样性影响研究,生态学报,2000,20(6):1021-1027。
    47于磊,张柏,中国黑土退化现状与防治对策,干旱区资源与环境,2004,18(1):99-103。
    48张金波,宋长春,杨文燕,土地利用方式对土壤水溶性有机碳的影响,中国环境科学,2005,25(3):43-347。
    49张景源,长期不同施肥措施下红壤旱地土壤微生物的生物量和多样性,华中农业大学硕士论文,2005。
    50张丽荣,康萍芝,沈瑞清等,不同作物种植模式对新垦农田土壤微生物群落功能多样性的影响,河南农业科学,2009,12:65-68。
    51章家恩,蔡燕飞,高爱霞等,土壤微生物多样性实验研究方法概述,土壤,2004,36(4):346-350。
    52赵光,王宏燕,土壤微生物多样性的分子生态学研究方法,中国林副特产,2006(1),54-56。
    53赵勇,应用分子生物学技术解析不同处理状况下土壤微生物群落结构的变化,南京农业大学大学博士论文,2005。
    54郑华,欧阳志云,方志国等,Biolog在土壤微生物群落功能多样性研究的应用,土壤学报,2004,41(3):456-461。
    55郑华,欧阳志云,方治国等,BIOLOG在土壤微生物群落功能多样性研究中的应用,2004,41(3):456-461。
    56周玉梅,韩士杰等,郑俊强等,CO2浓度升高对森林土壤微生物呼吸与根(际)呼吸的影响,植物生态学报,2007,31(3):386-393。
    57诸葛玉平,张旭东,刘启,土壤通报,长期施肥对黑土呼吸过程的影响,2005,36(3):391-394。
    58Aakra., Ut ker J.B., Nes I.F., RFLP of rRNA genes and sequencing of the16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: aphylogenetic approach, International Journal of Systematic Bacteriology,1999,49:123-130.
    59Anderson I.C., Campbell C.D., Prosser J.I., Diversity of fungi in organic soilsunder a moorland-Scots pine (Pinus sylvestrisL.) gradient, EnvironmentalMicrobiology,2003,5:1121–1132.
    60Avrahami S., Conrad R., Braker G., Effect of Soil Ammonium Concentration onN2O Release and on the Community Structure of Ammonia Oxidizers andDenitrifiers, Applied and Environmental Microbiology,2002,68:5685-5692.
    61Avrahami S., Liesack W., Conrad R., Effects of temperature and fertilizer onactivity and community structure of soil ammonia oxidizers, EnvironmentalMicrobiology,2003,5:691-705.
    62Bardgett R.D., Shine A., Linkages between plant litter diversity, soil microbialbiomass and ecosystem function in temperate grasslands, Soil Biology andBiochemistry,1999,31:317-321.
    63Bending G.D., Turner M.K., Jones J.E., Interactions between crop residue and soilorganic matter quality and the functional diversity of soil microbial communities,Soil Biology and Biochemistry,2002,34:1073-1082.
    64Carnol, M., Kowalchuk, G.A., and De Boer, W., Nitrosomonas europaea-likebacteria detected as the DOCinant β-subclass Proteobacteria ammonia oxidisersin reference and limed acid forest soils. Soil Biology and Biochemistry,2002,34:1047-1050.
    65Choi K., Dobbs F.C., Comparison of two kinds of Biolog microplates (GN andECO) in their ability to disiguish among aquatic microbial communities, Journalof Microbiological Methods,1999,36:203-213.
    66Classen A.T., Boyle S.I., Haskins K.E., Overby S.T., Hart S.C., Community-levelphysiological profiles of bacteria and fungi: plate type and incubationtemperature influences on contrasting soils, FEMS Microbiology Ecology,2003,44:319-328.
    67Couteaux M.M., Bottner P., Berg B., Litter decomposition, climate and litterquality, Trends in Ecology&Evolution,1995,10:63-66.
    68Darrah P.R., Measuring the diffusion coefficient of rhizosphere exudates in soil I.The diffusion of non-sorbing compounds, Journal of Soil Science,1991a,42,(3):413-420.
    69Darrah P.R., Measuring the diffusion coefficient of rhizosphere exudates in soil II.The diffusion of sorbing compounds Journal of soil science,1991b,42,(3):421-434.
    70Fan F., Yang Q., Li Z., Wei D., Cui X.A., Liang Y., Impacts of Organic andInorganic Fertilizers on Nitrification in a Cold Climate Soil are Linked to theBacterial Ammonia Oxidizer Community, Microbial Ecology,2011,62:982-990.
    71Fierer N., Jackson R.B., The Diversity and Biogeography of Soil BacterialCommunities, Proceedings of the National Academy of Sciences of the UnitedStates of America,2006,626-631.
    72Fierer N., Jackson R.B., The Diversity and Biogeography of Soil BacterialCommunities, Proceedings of the National Academy of Sciences of the UnitedStates of America,2006,103:626-631.
    73Fisher M.M., Triplett E.W., Automated approach for ribosomal inter-gene spaceranalysis of Microbial diversity and its application to freshwater bacterialcommunities, Applied and Environmental Microbiology,1999,65:4630-4636.
    74Gardes M., Bruns T.D., ITS primers with enhanced specificity for basidiomycetesapplication to the identification of mycorrhizae and rusts, Molecular Ecology,1993,2:113-118.
    75Garland J.L., Mills A.L. A community-level physiological approach for studyingmicrobial communities. In: Ritz K, Dighton J, Giller ICE (eds) Beyond theBiomass: compositional and functional analysis of soil microbial communities[M]. Vol., John Wiley and Sons Ltd., Chichester, UK,1994,77-83.
    76Gu Y., Zhang X., Tu S., Lindstr m K., Soil microbial biomass, crop yields, andbacterial community structure as affected by long-term fertilizer treatmentsunder wheat-rice cropping, European Journal of Soil Biology,2009,45:239-246.
    76Guo J.H., Liu X.J., Zhang Y., Shen J.L., Han W.X., Zhang W.F., Christie P.,Goulding K.W.T., Vitousek P.M., Zhang F.S., Significant Acidification in MajorChinese Croplands, Science,2010,327:1008-1010.
    77Hastings, R.C., Ceccherini, M.T., Miclaus, N., Saunders, J.R., Bazzicalupo, M.,and McCarthy, A.J. Direct molecular biological analysis of ammonia oxidisingbacteria populations in cultivated soil plots treated with swine manure. FEMSMicrobiology Ecology,1997,23:45-54.
    78Hedlund K., Soil microbial community structure in relation to vegetationmanagement on former agricultural land, Soil Biology and Biochemistry,2002,34:1299-1307.
    79Heuer H., Krsek M., Baker P., Analysis of actinomycete communities by specificamplification of genes encoding16S rRNA and gel electrophoresis separation indenaturing gradients. Applied and Environmental Microbiology,1997,63:3233-3241.
    80Ibekwe, A.M., Grieve, C.M., and Lyon, S.R., Characterization of MicrobialCommunities and Composition in Constructed Dairy Wetland WastewaterEffluent. Applied and Environmental Microbiology,2003,69:5060-5069.
    81Johns M.M., Soil organic matter testing and labile carbon identification bycarbonaceous resin capsules, Soil Science Society of America Journal,1994,58:75l-758.
    82Katafina H.S., Erland B., The influence of nitrogen fertilization on bacterialactivity in the rhizosphere of barley, Soil Biology and Biochemistry,2004,36:195-198.
    83Kennedy N.M., Gleeson D.E., J. Connolly, N.J.W. Clipson, Seasonal andmanagement influences on bacterial community structure in an uplandgrassland soil, FEMS Microbiology Ecology,2005,53:329-337.
    84Kong W.D., Zhu Y.G., Fu B.J., Han X.Z., Zhang L., He J.Z., Effect of long-termapplication of chemical fertilizers on microbial biomass and functional diversityof a black soil, Pedosphere,2008,18:801-808.
    85Kowalchuk G.A., Naoumenko Z.S., Derikx P.J.L., Felske A., Stephen J.R.,Arkhipchenko I.A., Molecular Analysis of Ammonia-Oxidizing Bacteria of the βSubdivision of the Class Proteobacteria in Compost and Composted Materials,Applied and Environmental Microbiology,1999,65:396-403.
    86Kowalchuk G.A., Stephen J.R., Ammonia-oxiding bacteria: A Model forMolecular Microbial Ecology, Annual Review of Microbiology,2001,55:485.
    87Kowalchuk, G.A., Stienstra, A.W., Heilig, G.H.J., Stephen, J.R., and Woldendorp,J.W. Molecular analysis of ammonia-oxidising bacteria in soil of successionalgrasslands of the Drentsche A (The Netherlands). FEMS Microbiology Ecology,2000b,31:207-215.
    88Kowalchuk, G.A., Stienstra, A.W., Heilig, Stephen, J.R., and Woldendorp, J.W.,Changes in the community structure of ammonia-oxidizing bacteria duringsecondary succession of calcareous grasslands, Environmental Microbiology,2000a,2:99-110.
    89Lal R., J Kimble&R Follett, Land Use and soil C pool in terrestrial ecosystems.InLal R, J Kimbkle,R.Fortes&B A,Stewarteds, Management of carbonsequestration in soil.Boca Raton: CRC Press.1998,1-10.
    90Lemenih M., Itanna F., Soil carbon stocks and turnovers in various vegetationtypes and arable lands along an elevation gradient in southern Ethiopia,Geoderma,2004,123:177-188.
    91Lipson D.A., Schadt C.W., Schmidt S.K., Changes in soil microbial communitystructure and function in an alpine dry meadow following spring snow melt.Microbial Ecology,2002,43:307-314.
    92Lipson D.A., Schmidt S.K., Seasonal changes in an alpine soil bacterialcommunity in the Colorado Rocky Mountains. Applied and EnvironmentalMicrobiology,2004,7:2867-2879.
    93Liu E., Yan C., Mei X., He W., Bing S.H., Ding L., Liu Q., Liu S., Fan T.,Long-term effect of chemical fertilizer, straw, and manure on soil chemical andbiological properties in northwest China, Geoderma,2010,158:173-180.
    94Liu X., Han X.Z., Song C.Y., Herbert S., Xing B., Soil Organic Carbon Dynamicsin Black Soils of China Under Different Agricultural Management Systems,Communications in Soil Science&Plant Analysis,2003,34:973-984.
    95Liu X., Liu J.D., Xing B.S., Herbert S., Meng K., Han X.Z., Zhang X.Y., Effectsof Long-Term Continuous Cropping, Tillage, and Fertilization on Soil OrganicCarbon and Nitrogen of Black Soils in China, Communications in Soil Science&Plant Analysis,2005,36:1229-1239.
    96Marschner P., Yang C.H., Lieberei R., Soil and plant specific effects on bacterialcommunity composition in the rhizosphere. Soil Biology and Biochemistry,2001,33:1437-1445.
    97Marzorati M., Wittebolle L., Boon N., Daffonchio D., Verstraete W., How to getmore out of molecular fingerprints: practical tools for microbial ecology,Environmental Microbiology,2008,10:1571-1581.
    98Muyzer G., De Waal E.D., Uitterlinden A.G., Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerasechain reaction amplified genes coding for16S rRNA. Applied andEnvironmental Microbiology,1993,59:695-700.
    99Nemergut D.R., Costello E.K., Meyer A.F., Monte Y.P., Michael N.W., StevenK.S., Structure and function of alpine and arctic soil microbial communities.Research in Microbiology,2005,156:775-784.
    100Nicolaisen M.H., Ramsing N.B., Denaturing gradient gel electrophoresis(DGGE) approaches to study the diversity of ammonia-oxidizing bacteria,2002,Journal of Microbiological Methods,2002,50:189-203.
    101Phillips, C.J, Harris, D, Dollhopf, S.L, Gross, K.L, Prosser, J.I, Paul, E.A.Effects of agronomic treatments on structure and function ofammonia-oxidizing communities,2000, Applied and EnvironmentalMicrobiology,66:5410-5418.
    102Post W.M., Kwon K.C., Soil carbon sequestration and land use change: processesand potential. Global Change Biology,2000,6:317-327.
    103Purkhold U., Pommerening-R ser A., Juretschko S., Schmid M.C., Koops H.P.,Wagner M., Phylogeny of All Recognized Species of Ammonia OxidizersBased on Comparative16S rRNA and amoA Sequence Analysis: Implicationsfor Molecular Diversity Surveys, Applied and Environmental Microbiology,2000,66:5368-5382.
    104Rotthauwe, J. H., Witzel, K. P.&Liesack, W. The ammonia monooxygenasestructural gene amoA as a functional marker: molecular fine-scale analysis ofnatural ammonia-oxidizing populations. Applied and EnvironmentalMicrobiology,1997,63:4704-4712.
    105Roumet C., Urcelay C., D-az S., Suites of root traits differ between annual andperennial species growing in the field, New Phytologist,2006,170:357-368.
    106Rovira A.D., Plant Root Exudates, Botanical Review,1969,35:35-57.
    107Saggar S., Yeates G.W., Shepherd T.G., Cultivation effects on soil biologicalproperties, microfauna and organic matter dynamics in Eutric Gleysol andGleyic Luvisol soils in New Zealand, Soil and Tillage Research,2001,58:55-68.
    108Schadt C.W., Martin A.P., Lipson D.A., Steven K.S., Seasonal dynamics ofpreviously unknown fungal lineages in tundra soils. Science,2003,301:1359-1361.
    109Schimel J.P., Bilbrough C., Welker J.M., Increased snow depth affects microbialactivity and nitrogen mineralization in two Arctic tundra communities. SoilBiology and Biochemisty,2004,36:217-227.
    110Shen J., Zhang L.M., Zhu Y., Zhang J., and He J., Abundance and compositionof ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities ofan alkaline sandy loam. Environmental Microbiology,2008,10:1601-1611.
    111Shen J.P., Zhang L.M., Guo J.F., Ray J.L., He J.Z., Impact of long-termfertilization practices on the abundance and composition of soil bacterialcommunities in Northeast China, Applied Soil Ecology,2010:119-124.
    112Stephen J.R., McCaig A.E., Smith Z., Prosser J.I., Embley T.M., Moleculardiversity of soil and marine16S rRNA gene sequences related to beta-subgroupammonia-oxidizing bacteria. Applied and Environmental Microbiology,1996,62:4147-4154.
    113Templer P.H., Groffman P.M., Flecker A.S., Power A.G., Land use change andsoil nutrient transformations in the Los Haitises region of the DOCinicanRepublic, Soil Biology and Biochemistry,2005,37:215-225.
    114Tiedje J.M., Asuming-Brempong S., Nusslein K., Terry L.M., Shannon J.F.,Opening the black box of microbial diversity. Applied Soil Ecology,1999,13:109-122.
    115Varma A., Buscot F., Microorganisms in Toxic Metal-Polluted Soils, in:Microorganisms in Soils: Roles in Genesis and Functions, Springer BerlinHeidelberg,2005.
    116Wakelin S.A., Macdonald L.M., Rogers S.L., Gregg A.L., Bolger T.P., BaldockJ.A., Habitat selective factors influencing the structural composition andfunctional capacity of microbial communities in agricultural soils, Soil Biologyand Biochemistry,2008,40:803-813.
    117Wakelin S.A., Macdonald L.M., Rogers S.L., Gregg A.L., Bolger T.P., BaldockJ.A., Habitat selective factors influencing the structural composition andfunctional capacity of microbial communities in agricultural soils, Soil Biologyand Biochemistry,2008,40:803-813.
    118West T.O., Post W.M., Soil organic carbon sequestration by tillage and croprotation: A global data analysis. Soil Science Society of America Journal,2002,66:1930-1946.
    119Wieland G., Neumann R., Backhaus H., Variation of microbial communities insoil, rhizosphere and rhizoplane in response to crop species, soil type, and cropdevelopment. Applied and Environmental Microbiology,2001,67:5849-5854.
    120Yang C., Crowley D.E., Rhizosphere microbial community structure in relationto root location and plant iron nutritional status, Applied and EnvironmentalMicrobiology,2000,66(1):345-351.
    121Yue X., Zhu Y.G., Gu Q., He J.Z., Does long-term fertilization treatment affectthe response of soil ammonia-oxiding bacterial communities to Zncontamination? Plant and soil,2007,301:245-254.
    122Zak D.R., Holmes W.E., White D.C., Plant diversity, soil microbial communities,and ecosystem function: Are there any links? Ecology,2003,84:2042-2050.
    123Zelles L., Fatty acid patterns of phosphlipids and lipopolysaccharides in thecharacterization of microbial communities in soil: A review. Biology andFertility of Soils,1999,29:111-129.
    124Zhang C.L., Huang Z., Cantu J.,. Pancost R.D, Brigmon R.L., Lyons T.W.,Sassen R., Lipid Biomarkers and Carbon Isotope Signatures of a Microbial(Beggiatoa) Mat Associated with Gas Hydrates in the Gulf of Mexico, Appliedand Environmental Microbiology,2005,71:2106-2112.
    125Zornoza R., Guerrero C., Mataix-Solera J., Scow K.M., Arcenegui V.,Mataix-Beneyto J., Changes in soil microbial community structure followingthe abandonment of agricultural terraces in mountainous areas of Eastern Spain,
    Applied Soil Ecology,2009,42:315-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700