用户名: 密码: 验证码:
取食转基因棉的棉蚜对中华草蛉的影响及Bt毒蛋白在三级营养链中的传递
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以生产上大规模商业化种植的转基因棉(国抗12,新棉33B和SGK321)及其对应常规棉(泗棉3号,新棉33,石远321)为材料,测定了各转基因棉不同生育期和不同部位的Bt毒蛋白含量;以取食各品种棉花的棉蚜(Aphis gossypii)饲喂中华草蛉(Chrysoperla sinica),研究不同品种转基因棉对中华草蛉生长发育与繁殖的间接影响以及中华草蛉对各品种棉田棉蚜的捕食功能反应及搜寻效应;依托生态系统的重要构成部分——食物链,研究Bt毒蛋白在棉花-棉蚜-蜜露-针毛收获蚁(Messor aciculatus)中的转移,以及在棉花-棉蚜-中华草蛉中的传递。主要研究结果如下:
     1.转基因抗虫棉Bt毒蛋白表达量的时空变化研究结果表明:Bt基因在所有转基因棉花器官中均有表达,不同生育期功能叶中的Bt毒蛋白含量差异显著,变化趋势为先高后低再略有回升,即苗期>蕾期>花期>吐絮期>铃期;蕾、花、铃各部位中的Bt毒蛋白含量的时间变化也有相同趋势。Bt毒蛋白在各时期的含量均表现为功能叶中最高,大于花、蕾等繁殖器官。不同叶位对Bt毒蛋白含量有直接影响。不同花器官中Bt毒蛋白含量有明显差异,表现为花瓣>花蕊>子房>苞片,其中苞片中Bt毒蛋白含量远远低于花瓣等其它花器官。GK12苞片中Bt毒蛋白含量最低,仅为147.9ng/g;最高Bt毒蛋白含量在SGK321功能叶中被检测到,达1630.1ng/g,为GK12苞片中含量的11.0倍。转基因棉叶中杀虫蛋白在土壤环境中的降解趋势表现为初期降解非常迅速,之后趋于平缓。试验开始的第一个月里(2010年9月~2010年10月),GK12、33B、SGK321三个品种中的杀虫蛋白分别降解了76.78%,82.03%和84.26%,至次年4月份,几乎检测不到Bt蛋白,到5月份已完全检测不到Bt蛋白存在。
     2.取食不同品种棉花的蚜虫对中华草蛉生长发育及繁殖的影响结果指出:中华草蛉捕食不同品种棉花上的棉蚜后,其死亡率、羽化率以及茧的发育历期、茧重和成虫性比在棉花品种间大多无显著差异;取食SGK321棉田棉蚜的草蛉幼虫1代死亡率为8.89%,还极显著低于对照处理(40.0%),2代死亡率为16.09%,也显著低于对照处理(75.9%);取食SGK321棉田棉蚜的草蛉幼虫1、2代羽化率较高,分别为对照品种的1.18倍和1.17倍。各处理间草蛉成虫的产卵前期无显著差异;产卵期表现为取食转基因棉田棉蚜的草蛉都显著长于对照处理,其中取食SGK321棉田棉蚜的草蛉1代产卵历期达33.01天,显著高于对照;用取食转基因棉的棉蚜饲喂草蛉,后者的产卵量高于对应处理。其中,取食转基因棉田棉蚜的草蛉1、2代单雌产卵量部分显著高于对照,且取食SGK321棉田棉蚜的草蛉幼虫1代单雌产卵量高达882粒,显著高于对照处理。各处理间草蛉卵的孵化率无显著差异。一系列研究结果均表明,转Bt基因抗虫棉对中华草蛉的生长发育和繁殖无不良影响。取食转基因棉,尤其是SGK321品种上的棉蚜对中华草蛉的生长发育与繁殖似有一定的促进作用。
     3.中华草蛉对不同品种棉田棉蚜的功能反应与搜寻效应结果发现,草蛉幼虫取食蚜虫的数量随猎物密度的增加而增大,虽然草蛉对转基因棉田蚜虫的捕食量大多高于常规棉田,但差异不显著。草蛉幼虫各虫龄对棉蚜的捕食功能反应均符合Holling Ⅱ型。功能反应方程指出,草蛉幼虫的最大日捕食量常规棉略低于转基因棉,捕食转基因棉田棉蚜的处理时间短于捕食常规棉田的棉蚜。草蛉2龄、3龄幼虫对SGK321棉田棉蚜的日平均捕食量高于对照29%和41%。研究指出,草蛉各龄幼虫对常规棉田棉蚜的捕食作用率要低于转基因棉处理。草蛉各龄幼虫捕食转基因棉田棉蚜的种内干扰强度高于对照常规棉处理。分摊竞争强度研究结果表明:中华草蛉对转基因棉田棉蚜的分摊竞争强度大于常规棉田,1龄、2龄、3龄中华草蛉对转基因棉田棉蚜的最高分摊竞争强度分别高于对照品种棉田棉蚜的29.6%,27.4%和69.6%。由此可见,转基因棉对中华草蛉的捕食作用无不良影响。
     4.Bt毒蛋白在棉花-棉蚜-蜜露-针毛收获蚁中的转移及在棉花-棉蚜-中华草蛉食物链中的传递结果发现:转基因棉叶中存在高浓度的Bt毒蛋白,三个转基因棉品种苗期功能叶的Bt毒蛋含量均达1000ng/g以上,而韧皮部汁液中的Bt毒蛋白含量非常低,苗期、花铃期分别仅为棉叶含量的0.36%和0.37%。取食转基因棉花的棉蚜体内也检测到了Bt毒蛋白,但含量甚微。连续、多代取食转基因棉的棉蚜,其体内Bt毒蛋白含量较高,是取食转基因棉一代棉蚜的1.16倍。表明随着取食代数的增加,毒蛋白在棉蚜体内似有一定的累积。取食各转基因棉的棉蚜分泌的蜜露量差异显著,常规棉田棉蚜泌蜜量达4.1g/d,是SGK321转基因棉棉蚜泌蜜量的2.28倍。取食转基因棉的棉蚜分泌的蜜露中检测到了Bt毒蛋白,但处理间无显著差异。围绕棉蚜的针毛收获蚁体内检测到微量的Bt毒蛋白。1代、2代中华草蛉幼虫捕食不同品种转基因棉田的棉蚜后,其体内均检测不出Bt毒蛋白,表明Bt毒蛋白不经过棉蚜传至其天敌中华草蛉体内。
Transgenic Bt cotton varieties have been commercialized in a large scale. In this study, transgenic cotton varieties (GK12, Xinmian33B, SGK321) and their corresponding conventional cotton controls (Simian3, Xinmian33and Shiyuan321) were used to determine Bt toxin content at different developmental stages and different parts of transgenic cotton. The effects of Aphis gossypii feeding in transgenic cotton on the growth, development, the reproduction, the predation functional responses and search effects of Chrysoperla sinica were evaluated. Transfer of Bt toxin protein among transgenic cotton-A. gossypii-honeydew and nature enemies was studied. The main results were as follows:
     1. Temporal and spatial variation of the Bt toxin protein content in transgenic cotton showed that Bt gene was expressed in all organs, and there were significant differences in different growth stages of functional leaves. The variation trend was that the Bt expression was high and then decreased, and rose up a little at last, and seedling stage> bud stage> flowering> boll opening period>boll stage; the temporal variation of the Bt toxin protein content of bud, flower, bell also had similar trends. The spatial dynamics of Bt toxin proteins in the same period were consistent. The Bt toxin protein content of functional leaves was highest, and it was more than flowers, buds and other reproductive organs. Different leaf positions had a direct impact on the protein content of the Bt toxin. Bt toxin protein were significantly different in the different floral organs, that is, petal> flower> ovary> bract, and the Bt toxin protein in the bracts was far below the petals and other floral organs. Bt toxin protein in GK12bracts was the lowest, only147.9ng/g; highest Bt toxin protein was detected in SGK321functional leaves,1630.1ng/g,11.0times as the minimum content. In natural environment, the insecticidal protein in Bt cotton degraded much rapidly in the initial period and then slowered, it reached76.78%,82.03%and84.26%in first month (2010.9~2010.10) respectively in GK12, Xinmian33B, SGK321, and undetectable in late May.
     2. Impact on the growth development and the reproduction of C. sinica feeding on A. gossypii in different varieties of cotton indicated that after preying on the A. gossypii on different varieties of cotton, the mortality rate, the emergence rate and cocoon developmental duration, cocoon weight and adult sex ratio of C. sinica in cotton varieties were almost no significant differences; only the mortality rate of the first generation of C. sinica larvae feeding on A. gossypii in SGK321was only8.89%, extremely lower than the control (40.0%). The mortality rate of the second generation was16.09%, significantly lower than the control (75.9%); and the emergence rate of the first and second generations of the C. sinica larvae feeding on the A. gossypii of SGK321was high,1.18and1.17times as the control. There was no significant difference among the treatments of C. sinica adult in preoviposition; The spawning period for C. sinica feeding on the A. gossypii of transgenic cotton were longer than the control; the oviposition duration of the first generation of C. sinica feeding on the A. gossypii in SGK321was up to33.01d, significantly longer than the control. The fecundity of C. sinica feeding on the A. gossypii in transgenic cotton was higher than the control. The fecundity of the first and second generation of the C. sinica feeding on the A. gossypii in33B and SGK321were significantly higher than control, and the fecundity of the first generation of C. sinica feeding on the A. gossypii in SGK321was up to882, which was extremely significantly higher than the control. There was no significant difference in egg hatchability between treatments. A series of studies showed that transgenic cotton had no adverse effects on the growth and reproduction of C. sinica. A. gossypii in transgenic cotton especially SGK321seems to have certain positive role in promoting the growth and development and reproduction of C. sinica.
     3. Predation functional response and searching rate of C. sinica larvae on A. gossypii were studied in laboratory. Predating numbers of C. sinica each instar larva increased with the density increase of A. gossypii in different cotton varieties. Most of the predating numbers of C. sinica feeding on A. gossypii in transgenic cotton were higher than those in conventional cotton. Predatory functional response of C. sinica each instar larva was consistent with Holling Ⅱ model pattern. According to the predatory functional response equation, we found that the daily maximum predation of C. sinica feeding on A. gossypii in transgenic cotton were higher than those in conventional cotton, while the treating time of C. sinica feeding on A. gossypii in transgenic cotton were less than those in conventional cotton. The daily maximum predation of C. sinica2nd and3rd instar larva feeding on A. gossypii in SGK321was29%and41%higher than the control. Search rate of C. sinica of each instar larva feeding on A. gossypii in transgenic cotton were higher than those in conventional cotton, and intraspecific interference of C. sinica of each instar larva feeding on A. gossypii in transgenic cotton were stronger than the control. Intensity of scrambling competition of C. sinica1st,2nd and3rd instar larva feeding on A. gossypii in GK12,33B, SGK321was29.6%,27.4%and69.6%, higher than those feeding on A. gossypii in Simian3. Therefore, the transgenic cotton had no harmful effects to the predation of C. sinica larva.
     4. In the food chain of transgenic cotton-A. gossypii-honeydew-Messor aciculatus and transgenic cotton-A. gossypii-C. sinica larva, we found there were a very high Bt toxin protein concentration of more than1000ng/g in transgenic cotton leaves, while a relatively low concentration in phloem sap compared with that in cotton leaves, which was only0.36% and0.37%at the seedling stage and the flowering stage, respectively. We also detected the Bt toxin protein of a small content in the cotton aphids fed with transgenic cottons, however, this content became a bit larger (1.16times) in A. gossypii feeding on transgenic cottons continuously for multi-generations, which indicats that with the increase of generation,Bt toxin protein accumulated in A. gossypii. There were also remarkable differences in the amount of honeydew secreted by A. gossypii fed with various kinds of transgenic cottons, in the conventional cotton field, the honeydew secreted was4.1g/d, which was2.28times that of SGK321.Bt toxin protein was detected in honeydew secreted by A. gossypii fed with transgenic cottons, but there was no obvious difference between different treatments. A small amount of Bt toxalbumin was also detected in M. aciculatus around the A. gossypii. There was no Bt toxin protein detected in C. sinica larvae of first or second generation feeding on A. gossypii in each transgenic cotton varieties.
引文
American Society for Testing and Materials (AsTM). Standard guide for selection of resident species as test organisms for aquatic and sediment toxicity tests. Document E1850. American Society for Testing and Materials ASTM International, West Conshohocken, Pennsylvania, USA,2004.
    Bahar M H, Stanley J N, Gregg P C, Del Socorro A P, Kristiansenl P. Comparing the predatory performance of green lacewing on cotton bollworm on conventional and Bt cotton. Journal ofApplied Entomology,2011, ⅨⅠ:10.1111/j.1439-0418.2011.01652. X.
    Barrett K L, Grandy N, Harrison E G. Guidance document on regulatory testing procedures for pesticides with nontarget arthropods. From the ESCORT (European Standard Characteristics of Non-Target Arthropod Regulatory Testing) workshop. Society of Environmental Toxicology and Chemistry Europe, Brussels, Belgium,1994.
    Benedict J.H., Sachs E.S., Altman D.W, Deaton W.R., Kohel R.J., Ring D.R., Berberich S.A. Field performance of cottons expressing transgenic CrylA insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera:Noctuidae). Journal of Economic Entomology,1996,89:230-238.
    Beyer P, Al-Babili S, Ye X D, Lucca P, Schaub P, Welsch R, and Potrykus 1,2002, Golden Rice:In Voducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. The Journal of Nutrition,132(3):506S-510S.
    Candolfi M, Bigler F, Campbell P, et al. Principles for regulatory testing and interpretation of semi-field and field studies with non-target arthropods. Anzeiger Fur Schadlingskunde Journal of Pest Science,2000,73(6):141-147.
    Caro T M, O Doherty G. On the use of surrogate species in conservation biology. Conservation Biology,1999,13(4):805-814.
    Cattaneo M G, Yafuso c, Schmidt C, Huang C, Rahman M, Olson C, Ellers-Kirk C, J. Orr B, Marsh S E, Antilla L, Dutilleul P, Carriere Y. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proceedings of the National Academy of Sciences of the United States of America,2006,103 (20):7571-7576.
    Chen Mao, Ye Gongyin, Liu Zhicheng. Analysis of CrylAb toxin bioaccumulation in a food chain of Bt rice, and herbivore and a predator. Ecotoxicology,2009,18:230-238.
    D'adamo R, Pelosi S, Trotta P, Sansone G. Bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in aquatic organisms. Marine Chemistry,1997,56:45-49.
    Duelli P, Obrist M K. Biodiversity indicators:the choice of values and easures. Agriculture Ecosystems & Environment,2003,98(1-3):87-98.
    Dutton A, Klein H, Romeis J, Bigler F. Uptake of Bt-toxin by herbiovores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecological Entomology, 2002,27(4):441-447.
    Flint H M, Henneberry T J, Wilson F D, Holguin E, Parks N H, Buehler R E. The effects of transgenic cotton, Gossypium hirsutum L. containing Bacillus thuringiensis toxin genes for the control of the pink bollworm, Pectinophora gossypiella (Saunders) and other arthropods. Southwest Entomol,1995,20(3):281-292.
    Forcada C, Akcacer E M, Garcera N D M. Resistance to Bacillus thuringiensis CrylAc toxin in three strains of Heliothis virescens: proteolytic and SEM study of the larval midgut. Archives of Insect Biochemistry and Physiology,1999,42:51-63.
    Gonzalez-zamora J E, Camunez S, Avilla E. Effects of Bacillus thuringiensis Cry toxins on developmental and reproductive characteristics of the predator Orius albidipennis (Hemiptera:Anthocoridae) under laboratory conditions. Environmental Entomology,2007, 36(5):1246-1253.
    Graham H, James B S, Jon A W, John W M, Jian J D. No detection of CrylAc protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environmental Entomology, 2002,31(1):30-36.
    Groot A T, Dicke M. Insect-resistant transgenic plants in amulti-trophic context. Plant Journal, 2002,31:387-406.
    Harwood J D, Samson R A, Obrycki J J. Temporal detection of Cry1Ab-endotoxins in coccinellid predators from fields of Bacillus thuringiensis corn. Bulletin of Entomological Research,2007,97:643-648.
    Head G, Moar M, Eubanks M, Freeman B, Ruberson J, Hagert y A, and Turnipseed S. A multiyear, large-scale comparison of arthropod populations on commercially managed Bt and non-Bt cotton fields. Environmental Entomology,2005,34(5):1257-1266.
    Herron G, Powis K, Rophail J. Baseline studies and preliminary resistance survey of Australian populations of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae). Australian Journal of Entomology,2000,39:33-38.
    Hilder V A, Gatehouse A M, Sheerman S E, Barker F, Boulter D. A novel mechanism of insect resistance engineered into tobacco. Nature,1987,330:160-163.
    Hill R A, Sendashonga C. General principles for risk assessmerit of living modified organisms: lessons from chemical risk assessment. Environmental Biosafety Research,2003, (2) 81-88.
    Hofter H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev, 1989,53(2):242-255.
    Huang J K, Rozelle S, Pray C, and Wang Q F. Plant biotechnology in China, Science,2002, 295(5555):674-676.
    James C. Global status of commercialized biotech/GM crops:2007. ISAAA Brief. No.37. ISAAA:Ithaca, NY.
    James C. Global status of commercialized biotech/GM crops:2011. ISAAA Brief. No.43. ISAAA:Ithaca, NY.
    Kalushkov P, Nedved Q. Genetically modified potatoes expressing Cry3A protein do not affect aphidophagous coecineUids. Journal of Applied Entomology,2005,129(8):401-406.
    Knowles B H. Mechanism of action of Bacillus thuringiensis insecticidal a-endotoxm. Adv Insect rhysiol,1994,24:113-118.
    Lawo N C, Wackers F L, Romeis J. Indian Bt cotton varieties do not affect the performance of cotton aphids. PloS ONE,2009,4(3):e4804.
    Liu X D, Zhai B P, Zhang X X, Min J.Jmpact of transgenic cotton plants on a non-target pest, Aphis gossypii Glover. Ecological Entomology,2005,30:307-315.
    Lu Y H, Qiu F, Feng H Q,Li H B, Yang Z C, Wyckhuys K A G, Wu K M. Species composition and seasonal abundance of pestiferous plant bugs(Hemiptera:Miridae)on Bt cotton in China. Crop Protection,2008,27(3-5):465-472.
    Lu Y H, Wu K M, Jiang Y Y, Xia B, Li P, Feng H Q, Wyckhuys K A G, Guo Y Y. Mirid bugoutbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science,2010,328:1151-1154.
    Me Shaffrey. Leaders in environmental activism-trophic levels.1995.9.7(P1-6). http://www.marietta.edu/-mcshaffd/lead/trophic.pdf
    Meissle M, Vojtech E, Poppy G M. Effects of Bt maize-fed prey on the generalist predator Poecilus cupreus L (Coleoptera:Carabidae). Transgenic Research,2005,14:123-132.
    Mellet M A, Schoeman A S. Effect of Bt-cotton on chrysopids, ladybird beetles and their prey: Aphids and whiteflies. Indian Journal of Experimental Biology,2007,45(6):554-562.
    Men X Y, Ge F, Edwards C A, Yardim E N. Influence of pesticide application on pest and predatory arthropods associated with transgenic Bt cotton and non-transgenic cotton plants. Entomology Phytoparasitica,2004,32(3):246-254.
    Navon A, Hare J D, Federici B A. Interactions among Heliothis virescens larvae, cotton condensed tannin and the Cry IA(c) delta-endotoxin of Bacillus thuringiensis. Journal of Chemical Ecology,1993,19:2485-2499.
    Palm C J, Schaller D L, Donegan K K. Persistence in soil of transgenic plant produced Bacillus thuringiensis var. kurstaki delta-endotoxin. Canadian Journal Microbiology,1996,42(12): 1258-1262.
    Pray C, Huang J K, Ma D, Qiao F B. Impact of Bt cotton in China. World Develop,2001,29: 813-825.
    Price D R, Gatehouse J A. RNAi-mediated crop protection against insects. Trends Biotechnology, 2008,26(7):393-400.
    Raps A, Kehr J, Gugerli P, Moar W J. Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the non-target herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1 Ab. Molecular Ecology,2001,10(2):525-533.
    Rodrigo S A, Maagd R A, Avilla C, Bakker P L, Molthoff J, Gonzdlez-Zamora J E and Ferre J. Lack of detrimental effects of Bacillus thuringiensis cry toxins on the insect predator Chrysoperla carnea:a toxicological, histopathological, and biochemical analysis. Applied and Environmental Microbiology,2006,72(2):1595-1603.
    Romeis J, Bartsch D, Bigler F, Candolfi M P, Gielkens M M C, Hartley S E, Hellmich R L. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nature Biotechnology,2008,26(2):203-208.
    Romeis J, Dutton A. Bigler Bacillus thuringiensis toxin (CrylAb)has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera:Chrysopidae). Journal of Insect Physiology,2004,50:175-183.
    Romeis J, Hellmich R L, Candolfi M P. Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Research,2011,20(1):1-22.
    Ruan M B, Liao W B, Zhang X C, Yu X and Peng M. Analysis of the cotton sucrose synthase 3 (Sus 3) promoter and first intron in transgenic Arabidopsis, Plant Science,2008,176: 342-351.
    Rui Y K, Y i G X, Zhao J, Zhao J, Wang B M, Li Z H, Zhai Z X, He Z P, Li Q X. Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its in flu ence on soil functional bacteria. World Journal of Microbiology & Biotechnology,2005,21:1279-1284.
    Sachs E S, Benedict J H, Stelly D M, Taylor J F, Altman D W, Berberich S A & Davis S K. Expression and segregation of genes encoding Cry1 A insecticidal proteins in cotton. Crop Science,1998,38:1-11.
    Schnepf E, Crickmore N, Van R J, Lereclus D, Baum J, Feitelson J, Zeigler D R and Dean D H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiological Molecular Biological Review,1998,62:807-813.
    Schnepf H E, Whiteley H R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proceedings of the National Academy of Sciences,1981,78(5): 2893-2897.
    Schuler T H, Denholm I, Clark S J. Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera:Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera:Plutellidae). J Insect Physiol,2004,50:435-443.
    Sexana D, Flores S, Stotzky G. Vertical movement in soil of insecticidal CrylAb protein from Bacillus thuringiensis. Soil Biology and Biochemistry,2002,34:111-120.
    Sexana D, Stotzky G. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, and fungi in soil. Soil Biology and Biochemistry,2001,33:1225-1230.
    Sharma H C, Arora R, Pampapathy G. Influence of transgenic cottons with Bacillus thuringiensis cry 1 Ac gene on the natural enemies of Helicoverpa armigera. Biocontrol, 2007,52 (4):469-489.
    Sharma H C, Pampapathy G. Influence of transgenlc cotton on the relative abundance and damage by target and non-target insect pests under different protection regimes in India. Crop Protection,2006,25(8):800-813.
    Sims S R, Holden L R. Insect bioassay of determining soil degradation of Bacillus thuringiensis subsp. Kurstaki Cry1 A(b) protein in corn tissue. Environmental Entomology,1996,25: 659-664.
    Sisterson M S, Antilla L, Carriere Y, Ellers-Kirk C, Tabashnik B E. Effects of insect population size on evolution of resistance to transgenic crops. Journal of Economic Entomology,2004, 97(4):1413-1424.
    Sisterson M S, Biggs R W, Manhardt N M, Carriere Y, Dennehy T J, B E Tabashnietk. Effects of transgenic Bt cotton on insecticide use and abundance of two generalist predators. Entomologia Experimentalis et Applicata,2007,124(3):305-311.
    Sisterson M S, Biggs R W, Olson C, et al. Arthropod abundance and diversity in Bt and non-Bt cotton fields. Environmental Entomology,2004,33(4):921-929.
    Sujii E R, Togni P H B, Nakasu E Y T, Pires C S S, Paula D P, Fontes E M G. Impact of Bt cotton on the population dynamics of the cotton aphid in greenhouse. Pesquisa Agropecuaria Brasileira,2008,43(10):1251-1256.
    Torres J B, Ruberson J R. Abundance and diversity of ground dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields. Annals of Applied Biology,2007,150(1):27-39.
    Torres J B, Ruberson J R. Canopy-and ground-dwelling predatory arthropods in commercial Bt and non-Bt cotton fields:Patterns and mechanisms. Environmental Entomology,2005, 34(5):1242-1256.
    Torres J B, Ruberson J R. Interactions of Bacillus thuringiensis CrylAc toxin in genetically engineered cotton with predatory heteropterans. Transgenic Research,2008,17:345-354.
    Touart L W, Maciorowski A F. Information needs for pesticide registration in the United States. Ecological Applications,1997,7(4):1086-1093.
    Vaeck M R. Transgenic plants protected from insect attack. Nature,1987,328:33-37.
    Velders R M,崔金杰,夏敬源,等.中国北方棉区转基因抗虫棉对棉苗蚜及其两种天敌的影响.棉花学报,2002,14:175-179.
    Wang C R, Yang A F, Yue G D, Gao Q, Yin H Y and Zhang J R. Enhanced expression of phospholipase Cl (ZmPLCl) improves drought tolerance in transgenic maize. Planta, 2008a,227 (5):1127-1140.
    Wang L, Luo Y Z, Zhang L, Jiao X M, Wang M B and Fan Y L. Rolling circle amplification-mediated hairpin RNA (RMHR) library construction in plants. Nucleic Acids Research,2008b,36 (22):e149.
    Whitehouse M E A, Wilson L J, Fitt G P. A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environmental Entomology,2005,34(5): 1224-1241.
    Wu K M, Guo Y Y, Lv N, Greenplate J T, Deaton R et al. Efficacy of transgenic cotton containing a cry 1 Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera:Noctuidae) in northern China. Journal of Economic Entomology,2003,96: 1322-1328.
    Wu K M, Li W, Feng H, et al. Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera:Miridae), on Bt cotton in northern China. Crop Protection, 2002,21:997-1002.
    Wu K M, Lu Y H, Feng H Q. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science,2008,321:1676-1678.
    Zhang G f, Wan F H, Lovei G L, Liu W X, Guo J Y. Transmission of Bt toxin to the predator Propylaea japonica (Coleoptera:Coccinellidae) through its aphid prey feeding on transgenic Bt cotton. Environmental Entomology,2006,35(1):143-150.
    Zhang G F, Wan F H, Gabor L L, Liu W X, Guo J Y. Transmission of Bt toxin to the predator Propylaea japonica (Coleoptera:Coccinellidae) through its aphid prey feeding on transgenic Bt cotton. Environmental Entomology,2006,35(1):143-150.
    Zwahlen C, Andow D. Field evidence for the exposure of ground beetles to CrylAb from transgenic corn. Environmental Biosafety Research,2005,4:113-17.
    陈德华,杨长琴,陈源,聂安全,吴云康.高温胁迫对Bt棉叶片杀虫蛋白表达t和氮代谢的影响.棉花学报,2003,15(5):288-292.
    成文禄.中华草蛉防治白粉虱的研究.生物学教学,2004,29(11):63.
    崔金杰,王春义,李春花.转双价基因棉对棉田主要捕食性天敌捕食功能反应.中国棉花学会2004年年会论文汇编.宜昌:2004.
    崔金杰,王春义,李树红,雒珺瑜,李春花.转双价基因棉对主要捕食性天敌生长发育的影响.农网络信息,2006(5):162-163.
    崔金杰,夏敬源,马丽华,董双林,崔学芬.转Bt基因抗虫棉在害虫综合治理种的作用研究.棉花学报,1999a,11(2):57-64.
    崔金杰,夏敬源.麦套夏播转Bt基因棉田主要害虫及其天敌的发生规律.棉花学报,1998,10(5):255-262.
    崔金杰,夏敬源.一熟转Bt基因棉田主要害虫及其天敌的发生规律.植物保护学报,2000,22(1):141-145.
    崔金杰,夏敬源.转Bt基因棉对棉田主要捕食性天敌捕食功能的影响.棉花学报,1997a,24(2):19.
    崔金杰,夏敬源.转Bt基因棉对棉田主要害虫及其天敌种群消长的影响.河南农业大学学报,1997b,31(4):351-356.
    崔金杰,夏敬源.转Bt基因棉对天敌种群动态的影响.棉花学报,1999,11(2):84-91.
    邓曙东,徐静,张青文,周世文,徐冠军.湖北棉区转Bt基因棉对棉铃虫的控制作用.昆虫学报,2003,46(5):584-590.
    丁岩钦,陈玉平.中华草蛉对棉蚜与棉铃虫的捕食作用研究.生物防治通报,1986,2(3):97-102.
    董亮,万方浩,张桂芬.转Bt基因抗虫棉对中华草蛉发育及繁殖的影响研究.中国生态农业学报,2003,11(3):16-18.
    方诗龙,夏风.转Bt基因棉田棉叶螨发生规律及药剂防治试验.安徽农业科学,2004,32(4):680-681.
    丰嵘,张宝红,丰嵘,郭香墨.外源Bt基因对棉花产量性状及抗虫性的影响.棉花学报,1996,8 (1):10-13.
    郭慧芳,孙洪武,朱述钧,方继朝.转基因棉上非靶标害虫棉蚜取食行为的EPG研究.江苏农业学报,2003,19(1):9-12.
    郭慧芳,朱述钧,孙洪武,方继朝.转基因棉上非靶标害虫棉蚜取食行为的EPG研究.西南农业大学学报(自然科学版),2004,26(2):155-159.
    郭慧芳,孙洪武,朱述钧,方继朝.转基因棉对非靶标害虫棉蚜适合度研究.江苏农业学报,2003,19(1):9-12.
    郭建英,万方浩,董亮,闪慧月,韩召军.取食转Bt基因棉花上的棉蚜对丽草蛉发育和繁殖的影响.昆虫知识,2005,42(2):149-154.
    郭荣,杨焱杰.转Bt基因棉田害虫发生动态及防治对策.世界农业,2000(9):31-33.
    郭三堆.CrylA基因的人工合成.中国农业科学,1992,26(2):85-86.
    贾士荣,曹冬阳.转基因植物.植物学通报,1992,9(2):3-15.
    姜永幸,郭予元.棉蚜在不同棉花品种上的取食行为及相对取食量的研究.植物保护学报,1996,23(]):1-7.
    李彩霞,高丽锋,高玲玲,李润植.全纯人工营养液饲养蚜虫的研究.山西农业大学学报,1997,17(3):225-228.
    李代芹,赵敬钊.棉田蜘蛛群落及其多样性研究.生态学报,1993,13(3):205-213.
    李飞,韩召军.2001.棉蚜饲养技术笼罩法.昆虫知识,38(3):225-227.
    李淑梅.2000.人工饲养中华草蛉防治棉田害虫的操作技术.农业与技术,20(2):41-42.
    李云河,张永军,吴孔明,原国辉,郭予元.转Bt-crylAc基因棉花叶片中杀虫蛋白在环境中的降解动态.中国农业科学,2005,38(4):714-718.
    林克剑,吴孔明,刘山蓓,张永军,郭予元.中华草蛉、龟纹瓢虫和异色瓢虫对B型烟粉虱的捕食功能反应.昆虫知识,2006,43(3):339-343.
    林良斌,官春云.Bt毒蛋白基因与植物抗虫基因工程.生物工程进展,1997,17(2):51-56.
    刘杰,陈建,李明.转Bt棉花对蜘蛛生长发育和捕食行为的影响.生态学报,2006,26(3):945-949.
    刘向东,翟保平,张孝羲,崔金杰.南京农业大学学报,2002,25(3):27-30.
    刘小侠,张青文,蔡青年.Bt杀虫蛋白对不同品系棉铃虫和中红侧沟茧蜂生长发育的影响.昆虫学报,2004,47:461-466.
    刘悦秋,江幸福.甜菜夜蛾的生物防治.植物保护,2002,28(1):54-56.
    马艳.转基因抗虫棉生物安全研究进展.棉花学报,2003,15(1):59-64.
    孟凤霞,沈晋良,褚姝频.棉叶对棉铃虫抗虫性的时空变化及气象因素的影响.昆虫学报,2003,46(3):299-304.
    牟吉元,李照会,徐洪富,陈天业,牟少敏.春直播棉不同时期主要害虫和天敌群落特征的研究.昆虫天敌,1996,18(4):159-162.
    农业转基因生物知识100问.北京:中国农业出版社,2011.
    彭于发.2010, http://www.moa.gov.cn/ztzl/zjyqwgz/zjyxwbd/201007/t201007191601861.htm.
    秦秋菊,李国平,杨向东.转Bt基因棉对棉铃虫及其天敌发生的影响.河北农业大学学报,2002,25(2):56-60.
    任璐,杨益众,苗麟,余月书,秦启联.转基因抗虫棉对棉铃虫及其内寄生蜂的双重效应.昆虫学报,2004,47(1):1-7.
    芮玉奎.转基因抗虫棉生产安全性的研究.北京:中国农业大学,2003.
    束春娥,孙洪武,孙以文.转基因棉Bt毒性表达的时空动态及对棉铃虫生存、繁殖的影响.棉花学报,1998,10(3):131-135.
    唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002.
    万鹏,黄民松,吴孔明,吴金萍.转CrylA基因棉对棉蚜生长发育及种群动态的影响.中国农业科学,2003,36(12):1484-1488.
    王保民,何钟佩,赵继勋.抗虫棉Bt杀虫晶体蛋白免疫检测方法的研究.棉花学报,1998,10(4):220-221.
    王保民,李召虎,李斌,田晓莉,段留生,翟志席,何钟佩.转Bt抗虫棉各器官毒蛋白的含t及表达.农业生物技术学报,2002,10(3):215-219.
    王春义,夏敬源.Bt抗虫棉与常规棉棉铃虫及其主要天敌种群动态差异.中国棉花,1997,24(6):13-15.
    王国红,涂小云.瓢虫柄腹姬小蜂对茄二十八星瓢虫功能反应的研究.生态学杂志,2005,24(7):736-740.
    王继磊,刘迪秋,丁元明,葛锋,李文娴,田荣欢.Bt转基因抗虫植物研究进展.生物学杂志,2010,27(4):75-78.
    王淑民.影响Bt转基因棉花抗虫效果的因素.棉花学报,1999,3311(6):336.
    王顺建,朱克响,王向阳,李宗奇.淮北棉田节肢动物的群落结构.昆虫知识,2000,37(5):268-274.
    王万群,李宁.抗虫棉遭遇甜菜夜蛾严重危害的初步观察.安徽农业科学,2002,30(1):84-84.
    王文娟,贺达汉.三种主要天敌对二斑叶螨的控制作用研究.农业科学研究,2006,27(1):16-19.
    王延年,郑忠庆.1984,昆虫人工饲养手册.上海科学技术出版社.
    王智广,刘少芳,崔书瑞.黄河流域棉区甜菜夜蛾的发生规律及防治技术.中国棉花,2006,33(10):29.
    魏伟,马克平,石纪成.GMOs:生态学研究中的新热点.科学通报,2003,48(17):1890-1892.
    文学,张宝红.转基因抗虫棉研究现状与展望.农业生物技术学报,2000,8(2):194-199.
    吴孔明,郭予元,王武刚.部分GK系列Bt棉对棉铃虫抗性的田间评价.植物保护学报,2000,27(4):317-321.
    吴孔明.我国所棉花商业化的环境影响与风险管理策略.农业生物技术学报,2007,15(1):1-4.
    谢道听,范云六,倪万潮,黄俊麒.苏云金杆菌(Bacillus thuringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学(B辑),1991,4(2):367-373.
    刑朝柱,靖深蓉,崔立平,郭学芬,王海林,袁有禄.转Bt基因棉杀虫蛋白含t时空分布及对棉铃虫产生抗性的影响.棉花学报,2001,13(1):11-15.
    徐静,张青文,邓曙东,周世文.湖北棉区转Bt基因棉对烟粉虱种动态的影响研究.植物保护,2003,29(5):38-40.
    薛丽,肖达,卢延,宋敦伦,高希武.转基因棉对棉蚜生长发育及其主要代谢物质含量的影响.华北农学报,2011,26(4):115-120.
    薛垄,张文国.转基因植物的非靶标效应--以转Bt基因棉为例.中央民族大学学报(自然科学版),2008,17(S1):40-50.
    杨益众,陆宴辉,薛文杰,刘洋,杨海燕,李晓慧,王峰,余月书.转基因棉田棉蚜种群动态及相关影响因子分析.昆虫学报,2006,49(1):80-85.
    杨益众,陆宴辉,薛文杰,余月书,李晓慧,王峰,杨海燕,刘洋.转基因棉花中糖类和游离氨基酸含量的变化对棉蚜泌蜜量及蜜露主要成分的影响.昆虫学报,2005,48(4):491-497.
    杨益众,余月书,任璐,邵益栋,钱坤,王建军,戴志一.转基因棉花对棉铃虫天敌寄生率的影响.昆虫知识,2001,38(6):435-437.
    叶恭银,陈洋,田俊策,彭于发.转Bt基因抗虫作物对非靶标生物的影响.植物保护,2011,37(6):1-10.
    余月书,杨益众,印毅,邵益栋,康晓霞.转Bt棉花对棉铃虫幼虫选择性行为的影响.昆虫知识,2003,40(5):423-425.
    袁海滨.转基因棉对龟纹瓢虫影响的研究.硕士学位论文,吉林农业大学,2004.
    张桂芬,万方浩,郭建英,侯茂林.2004.Bt毒蛋白在转Bt基因棉中的表达及其在害虫.天敌间的转移.昆虫学报,2004,47(3):334-341.
    张晖,王长永,陈建群.基于食物链关系评价转Bt基因棉对寄生性天敌的非靶效应.农村生态环境,2003,19(2):55-57.
    张继红,王深柱,钦俊德.苏云金芽抱杆菌a一内毒素的杀虫机理及其增效途径.昆虫学报,1998,41(3):323-332.
    张炬红.2006.转t基因抗虫棉对棉蚜的生态风险评价.中国农业科学院博士学位论文.
    张丽娜,叶武威,王俊娟,樊保香,王德龙.棉花耐盐相关种质资源遗传多样性分析.生物多样性,2010,18(2):137-144.
    张明辉,史修柱,李照会.转Bt基因抗虫棉田棉盲蝽的发生规律及防治.山东农业科学,2006(3):64-65.
    张小丽,陈萍,陈翠芳,杨益众.转Bt基因抗虫棉对甜菜夜蛾实验种群增长的影响.植物保护学报,2007,34(4):391-395.
    张永军,郭予元,吴孔明,王武刚.转Bt基因棉花主要抗虫黄酮类化合物时空动态的HPLC分析.应用生态学报,2003,14(2):246-248.
    张永军,吴孔明,郭予元.转Bt基因棉花杀虫蛋白含量的时空表达及对棉铃虫的毒杀效果.植物保护学报,2001,28(1):1-6.
    张永军,吴孔明,彭于发,郭予元.转基因植物的生态风险.生态学报,2001,22(11):1951-1959.
    张永军,吴孔明,彭于发,郭予元.转抗虫基因植物生态安全性研究进展.昆虫知识,2002,39(5):321-327.
    赵建周,赵奎军,范贤林,卢光美,茵昌辉,张慧珍,郭三堆.Bt棉不同品系对棉铃虫杀虫效果的比较.中国农业科学,2000,33(5):100-102.
    赵奎军,赵建周,卢美光,范贤林.转基因抗虫棉花对棉铃虫生长发育影响的系统评价.植物保护学报,2000,27(3):205-209.
    周冬生,吴振廷,王学林,倪春耕,郑厚今,夏静.施肥盆和环境温度对转Bt基因棉抗虫性的影响.安徽农业大学学报,2000,27(4):352-357.
    周冬生,吴振廷,王学林,郑厚今,夏静.土壤胁迫与温度对转Bt基因棉抗生性的影响.棉花学 报,2001,13(4):290-292.
    周福才,任顺祥,陈德华,李传明.外源Bt基因导入对棉花叶片维管束汁液的生化物质含量及烟粉虱种群增殖的影响.中国生态农业学报,2008,16(6):1508-1512.
    周伟儒,刘志兰,程武,邱式邦.1981.用干粉饲料饲养中华草蛉成虫的研究.植物保护,7(5):2-3.
    朱传经.棉田捕食性天敌群落结构的研究.昆虫天敌,1994,16(1):27-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700