用户名: 密码: 验证码:
梯级水电系统短期优化调度与自动发电控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力工业的解除管制,电力市场的逐步形成,各发电实体实行竞价上网,
    其调度的目标也逐步发生了转变,以追究各自发电效益最大为目标,这样使得水电
    系统的独立调度成为可能,不再仅仅为火电系统的调度做“配套服务”。特别地,对
    于梯级水电系统,由于其调度目标的变化以及梯级各电站间的复杂的水、电联系,
    给梯级优化调度带来了新的研究内容。梯级电站的短期优化调度对整个梯级的实际
    运行具有非常重要的意义,因此,本文以三峡梯级水电系统短期优化调度和梯级自
    动发电控制为研究背景,结合《三峡梯级水电联合调度自动发电控制》和《三峡数
    字梯级调度决策支持系统》两个实际的科研课题,研究了梯级短期优化调度的模型
    和求解算法,提出了三峡梯级自动发电控制的基本方案,取得了一些有价值的研究
    成果。
    论文首先引出本文研究领域,回顾了最近几年来国内外学者在水电系统的短期
    优化调度领域研究取得新进展,阐述了梯级水电系统短期优化调度的关键和存在的
    不足,综合评述了各种优化算法及其在优化调度中的应用情况,在此基础上确立本
    文研究的重点。
    在第二章中,首先对梯级电站的基本参数,包括机组特性、水位与水头,水流
    时滞等,进行了详细地分析,并提出了一种用迭代法计算电站运行水头的方案。为
    满足不同的调度任务的要求,对梯级短期优化调度的优化准则进行了详细的分析,
    并提出一种综合考虑梯级发电量和运行周期末水位的优化目标。对于动态规划的维
    数问题,给出一种应用 Lagrange 方法进行降维的方案,并介绍了几种常用于水电系
    统优化的动态规划改进的算法。
    为了便于调度任务求解,必须对调度进行分析,在第三章中,分别建立了“给
    定用水量制定梯级发电计划”与“梯级电站间负荷优化分配”的数学模型。对于有
    航运要求的梯级电站而言,航运要求制约着发电计划的制定和实施,本章基于河道
    不稳定流计算,提出了发电-航运协调的四种方案,提出一种考虑航运不稳定流约束
    的分布式参数的协调模型,并基于大系统分解与协调思想,给出了相应的求解方案;
    本章还详细讨论了给定用水量的发电计划与梯级负荷优化分配计算方法,提出了在
    动态规划的框架下,利用线性插值的方法来减少计算规模,提高计算效率的方法。
    梯级联合调峰要求是电力系统对梯级水电系统的必然要求,本章最后也给出了梯级
    调峰优化的数学模型。
     I
    
    
    梯级短期优化调度的具体实施是通过梯级自动发电控制来完成的。第四章首先
    介绍了电网自动发电控制的控制方式,区域控制误差及其联络线控制策略的发展,
    引入电网自动发电控制下机组的几种运行状态。然后,详细介绍了电站自动发电控
    制的常规思路及控制方式。在此基础上,提出实现梯级自动发电控制的必要性。文
    中以三峡梯级为例,设计一套三峡梯级的自动发电控制基本框架,详细介绍了三峡
    梯级的控制方式和基本功能,构建出自动发电控制的分层控制方案,绘制出三峡梯
    级有功调度数据流。实现三峡梯级自动发电控制离不开对机组的调节,本文同时提
    出了机组负荷分配的梯度分配原则,并给出了机组的负荷调整策略。最后,将电力
    系统的动态优化调度概念引入梯级水电系统来,提出实现梯级水电系统动态优化调
    度的重要意义。
    第五章以三峡-葛洲坝梯级水电站组成的典型的梯级水电系统为例,考虑尽可能
    详细的约束,结合前文介绍的基本方法,进行实例计算。考虑航运要求,对给定用
    水量和给定梯级总负荷过程两个任务制定短期发电计划,并给出了相应的结果分析。
    最后,对本文的成果进行总结,并提出有待进一步研究的问题。
With the deregulation of the electric power industry, the electricity market is being
    gradually formed, the generator sells its energy with completive bidding, and its optimal
    scheduling objective is changing, therefore, the independent operation of the hydropower
    system is possible, and which is not merely an accessory service to the power system any
    longer. Extraordinary, in the cascade hydropower system, because of the variability of the
    objective and the complicated hydraulic and electric relationship among the cascade
    hydro power stations, the new field of research is come forth. As we know, the short-term
    optimal scheduling of the cascade hydropower plants is important to the whole power
    system, therefore, in this paper, based on short-time optimal scheduling of Three Gorges
    and the cascade Automatic Generation Control (AGC), the optimal scheduling model and
    its algorithm are studied and the scheme of Three Gorges (TG) AGC is presented
    according to the actual projects of the AGC and the DSS of the TG cascade generation
    scheduling. The major research work is outlines as follows:
     Firstly, the research field is established after reviewing the new research
    achievements by the domestic and international researchers in the field of short-term
    optimal operation of cascade hydro system in recent years, and the key field and
    shortcoming of which are described. And then, the optimal algorithms and their
    applications in optimal scheduling field are evaluated.
     In chapter 2, the basic parameters of cascade station, including characteristic of units,
    water level and water head, water delays and so on, are analyzed in details. And a scheme
    is brought forward which calculates the real-time operating water head of plant by a
    iterative means. To satisfy the needs of various operating tasks, the choice of optimal
    principle of the cascade short- term optimal scheduling is thoroughly analyzed, and a new
    optimal objective is put forward, which considers the cascade generation together with
    the station storied energy in the end operation period. In order to decrease the dimensions
    of the problem during the calculation, a scheme of Lagarage algorithm is presented and
    some improved methods to Dynamic Programming (DP) are introduced.
     In chapter 3, two models, the cascade generation scheduling when given the total
    water consumptions volume and cascade load optimal dispatching, are founded. When
    the shipping constraints are subject to the cascade generation scheduling, the unsteady
     III
    
    
    flow calculation of the riverway should be taken into consideration. Four schemes, which
    coordinate the cascade power station generation and shipping, are given, and a
    distributing parameters model considering the shipping constraints is presented, which is
    calculated based on the system decomposition and coordination. Then, a new method,
    based on the frame of DP and linear interpolation, is introduced in order to reduce the
    size and improve the compute efficiency. Finally, to meet the electricity system
    requirement to peak shaving, the optimal peak shaving model of cascade is described.
     As we know, the real-time operation of the cascade hydro power station is realized
    through the cascade AGC. In chapter 4, the control mode of power system AGC, the
    concept of Area Error Control (AEC) and the development of the control strategy of the
    tie-line, are introduced. Then, the power station AGC is described. On the base of which,
    the necessity to realize the cascade AGC is pointed out. In this paper, taking the TG
    cascade hydropower station as example, the basic frame, control scheme, basic function
    and so on of the TG AGC are presented and the delamination control solution is
    established, and the active power station dispatching data flow of the TG station is given.
    As to the regulation to the unit, a new grads load dispatching scheme is introduced
    together with the unit’s load regulating strategy. Finally, the concept of Dynamic
    Optimizing Operat
引文
[1] 叶秉如.水资源系统优化规划和调度. 中国水利水电出版社.2001 年:1-200
    [2] 王凌. 智能优化算法及其应用. 清华大学出版社.2001 年:1-230.
    [3] 韦柳涛.神经网络与基因遗传理论及其在水电能源系统中的应用研究[博士学
     位论文].华中科技大学图书馆.1993 年.
    [4] 尚金成.电力系统水电站群优化调度管理与控制理论、方法和应用研究[博士
     学位论文].华中科技大学图书馆.1995 年.
    [5] 朱敏.水火电系统中梯级水电厂短期(实时)优化运行控制研究[博士学位论文].
     华中科技大学图书馆.1997 年.
    [6] 伍永刚.双链态遗传算法及其在电力系统和梯级水电站优化调度中的应用研
     究[博士学位论文].华中科技大学图书馆.1997 年.
    [7] 文劲宇.模拟进化算法及其在电力系统运行与控制中的应用研究[博士学位论
     文].华中科技大学图书馆.1998 年.
    [8] 袁晓辉.混沌进化算法及其应用[博士学位论文].华中科技大学图书馆.2002 年.
    [9] 王金文.仿单纯形法及其在短期水电系统发电调度中的应用[博士学位论文].
     华中科技大学图书馆.2003 年.
    [10] 黄文奇,金人超.求解 SAT 问题的拟物拟人算法.中国科学 E 辑.1997,27
     (2):179-186
    [11] Aihara K., Takabe T., Toyoda M. Chaotic neural networks. Phys Lett A.1990,144
     (6/7):333-340.
    [12] Zhou D, Yasuda K., Yokoyama R. A method to combine chaos and neural-network
     based on the fixed point theory. Trans. of IECE of Japan. 1997,117-C(5):599-665.
    [13] 王凌.一种基于退火策略的混沌神经元网络优化算法.控制理论与应用.
     2000,17(1):139-142.
    [14] Zhou C. S., Chen T. L. Chaotic annealing for optimization. Physical review E.
     1997, 55(3):2580-2587.
    [15] Poths J. C., Giddens T. D., Yadaw S. B. the development and evaluation for an
     improved genetic algorithm based on migration and artificial selection. IEEE
     Trans. on SMC. 1994,24(1):73-86.
    [16]王凌,郑大钟.一类 GASA 混合策略及其收敛性研究.控制与决策.
     88
    
    
    1998,13(6):669-672.
    [17] Wong K. P., Wong Y. W. Combined genetic algorithm-simulated annealing-fuzzy
     set approach to short-term generation scheduling with take-or-pay fuel contract.
     IEEE Trans. on Power Systems.1996,11(1):128-136.
    [18] Goldberg D. E. Genetic algorithm in search, optimization, and machine learning.
     1989,MA: Addison Wesley.
    [19] Blue J. A, Bennett K. P. Hybrid extreme point tabu search. European J. of
     operational research. 1998,106(2/3)676-688.
    [20] Gil C., Ortega J. Meta-heuristic for circuit partition in parallel test generation.
     Parallel and distributes processing. 1998:315-323.
    [21] 王惠冬,张金泉.混合优化算法.山东矿业学院学报.1998,17(3):306-308.
    [22] M.S.Salam, K.M.Nor, A.R.Hamdam, Hydrothermal Scheduling Based Lagrangian
     Relaxation Approach to Hydrothermal Coordination. IEEE trans. on Power
     Systems.1998,13(3):226-234.
    [23] H.Wei, H.Sasaki, J.Kubokawa. Large scale hydrothermal optimal power flow
     problems based on interior point nonlinear programming. IEEE Trans. on Power
     Systems. 2000, 15(1):396-403.
    [24] S.Ruzic, N.Rajakovic. Optimal distance method for Lagrangian multipliers
     updating in short term hydrothermal coordination. IEEE Trans. on Power Systems.
     1998, 13(4):1439-1444.
    [25] N.J.Redondo,A.J.Conejo. short-term hydrothermal coordination by langrangian
     relaxation: solution of the dual problem. IEEE Trans. on Power Systems. 1999,
     14(1):89-95.
    [26] Daoyuan Zhang, Yuanhui Zhang, A Bundle Method for Hydrothermal Scheduling.
     IEEE Trans. on Power Systems.1999,14(4):1355-1361.
    [27] 翟桥柱,管晓宏,赖菲.具有相同机组水火电调度问题的新算法.中国电机工程学
     报. 2002,22(3):38-42
    [28] T.G.Werner, J.F.Verstege. An evolution strategy for short-term operation planning
     of hydrothermal Power Systems. IEEE Trans. on Power Systems. 1999, 14(4):
     1362-1368.
    [29] Y-G Wu, C-Y Ho, D-Y Wang. A diploid genetic approach to short term scheduling
     of hydrothermal system. IEEE Trans. on Power Systems.2000,15(4):1268-1274.
    [30] R.Naresh, J.Sharma. Two-phase neural network based on solution technique for
     89
    
    
    short-term hydrothermal scheduling. Electric Power & Energy Systems.2002,24:
     583-590.
    [31] I.K.Yu,Y.H.Song. A novel short-term generation scheduling technique of thermal
     units using ant colony searching algorithm. Electric Power & Energy Systems.
     2001,23:471-479.
    [32] S-J Huang. Enhancement of hydroelectric generation scheduling using ant colony
     system based optimization approaches. IEEE Trans. on Energy conversion.2001,
     16(3):296-301.
    [33] Wheimin Lin, Fusheng Cheng, Mingtong Tsay. An improved tabu search for
     economic dispatch with multiple minima. IEEE Trans. on Energy
     conversion.2002, 17(1):108-112.
    [34] S.Yin, W.Wong. Hybrid simulated annealing genetic algorithm approach to
     short-term hydrothermal scheduling with multiple thermal plants. Electric Power
     & Energy Systems.2001,23:565-575.
    [35] 许海平,朱奕,张彤等.变尺度混沌优化方法在电站经济运行中的应用. 哈尔滨
     工业大学学报.2000,32(4):52-57.
    [36] 唐巍,李殿璞. 电力系统经济负荷分配的混沌优化方法.中国电机工程学报.
     2000,20(10):36-40.
    [37] Z.K.Shawwash, T.K.Siu, S.O.Denis. The B.C. Hydro short-term hydro scheduling
     optimization model. IEEE Trans. on Power Systems. 2000, 15(3):1125-1131.
    [38] J.M.Pursimo, H.K.Antila, M.K.Vilkko, et al. A Short-term Scheduling for a
     Hydroelectric plant chain. Electric Power & Energy Systems.1998,20(8):525-532.
    [39] A.Arce, T,Ohishi, and S.Soares, Optimal Dispatch of Generating Units of the
     Itaipu Hydroelectric Plant. IEEE Trans. on Power Systems. 2002,17(1):154-158.
    [40] G.W.Chang, M.Aganagic, J.G.Waight, et al. Experiences with mixed integer linear
     programming based approaches on short-term hydro scheduling. IEEE Trans. on
     Power Systems. 2001, 16(4):743-749.
    [41] H.Wei, H.Sasaki, J.Kubokawa. A decoupled solution of hydro-thermal optimal
     Power flow problem by means of interior point method and network
     programming. IEEE Trans. on Power Systems. 1998, 13(2):286-292.
    [42]何光宇,邓琨,李祖毅.新的非线性最小费用循环流算法及其在电力系统经济影
     响中的应用.电网技术.1999,23(10):40-43.
    [43] R.Naresh, J.Sharma. Hydro system scheduling using ANN approach. IEEE Trans.
     90
    
    
    on Power Systems.2000,15(1):388-394.
    [44] R-H Liang. Application of Grey relation analysis to hydroelectric generation
     scheduling. Electric Power & Energy Systems.1999,21:357-364.
    [45] R-H Liang A noise annealing neural network for hydroelectric generation
     scheduling with pumped-storage units. IEEE Trans. on Power Systems. 2000,
     15(3) :1008-1013.
    [46] X.Yuan, Y.Yuan, Y.C.Zhang. A hybrid chaotic gentic algoritm for short-term
     hydro system scheduling. Mathematics & Computers in simulation.
     2002,59:319-327.
    [47] 罗予如.梯级水电厂群短期经济运行的探讨.水力发电.2000(2):57-58.
    [48] 李钰心.黄河上游梯级水电站短期调度软件研究.水力发电. 1997(9):53-55.
    [49] 尚金成.梯级电站短期优化运行的新模型及其最优性条件.水电能源科学.
     1998,16(3):1-9.
    [50] 王民有.梯级电站平稳和过渡调度期运行方式的优化.水电能源科学.1997,
     15(3):19-23.
    [51] 解建仓.黄河刘盐八梯级水电站群短期运行方案研究.系统工程理论与实践.
     1998(3):123-129.
    [52] 李伟.梯级水电站群短期经济运行研究.水电能源科学. 2000,18(1):13-15.
    [53] 朱敏,王孟毅,王定一.梯级水电站日经济运行研究.水电能源科学.1997,
     15(1):22-28.
    [54] 梅亚东.黄河上游梯级水电站短期优化调度模型及迭代解法.水力发电学报.
     2002,2:1-7.
    [55] 田峰巍,解建仓.梯级水电站群最优运行的递阶控制算法.西安理工大学学报
     1998, 14(2):118-122.
    [56] 王孟林,王天慧.梯级水电的确定性优化模式. 东北电力技术.1999,11:31-34.
    [57] 杨东方,马光文,过夏明.竞价上网环境下梯级水电厂的经济运行问题研究.东北
     水利水电. 2003,22(1):1-3.
    [58] 汪党献.减轻梯级水电站群出力受阻的最优调度方式研究. 水利水电技术.
     2003, 24(2):48-51.
    [59] 朱敏,王定一.基于人工神经网络的梯级水电厂日优化运行.电力系统自动化.
     1999,23(10):35-40.
    [60] 梅亚东. 梯级水库优化调度的有后效性动态规划模型及应用.水科学进展.
     2000,11(2):194-198.
     91
    
    
    [61] 尹明万.三峡梯级水电站汛期日运行方式优化.水利学报.1998(2):79-83.
    [62] 汪党献,尹明万.减轻梯级水电站群出力受阻的最优调度方式研究.水利水电技
     术. 2003,34(2):49-51.
    [63] G.B.Sheble, G.B.Fahd. Unit Commitment literature synopsis. IEEE Trans. on
     Power Systems.1994,9(1):128-135.
    [64] 陈 皓 勇 , 王 锡 凡 . 机 组 组 合 问 题 的 优 化 方 法 综 述 . 电 力 系 统 自 动 化.
     1999,23(4):51-56
    [65] 陈 皓 勇 , 王 锡 凡 . 机 组 组 合 问 题 的 优 化 方 法 综 述 . 电 力 系 统 自 动 化.
     1999,23(5):51-56
    [66] 王承民,郭志忠.电力市场环境下解决机组组合问题的新方法.电力自动化设备.
     1999,21(11):14-17.
    [67] E.Radinskasia, F.D.Daliana. Generation scheduling and Switching curve law.
     IEEE Trans. on Power Systems.2000,15(2):546-551.
    [68] 王承民,郭志忠.机组组合问题的罚函数法.继电器.2001,29(11):9-12.
    [69] 王承民,郭志忠.确定机组组合的一种改进的动态规划方法.电网技术.
     2001,25(5):20-24.
    [70] 赖一飞,裴金勇,章峰等.基于遗传算法的机组优化组合的应用研究.中国管理科
     学 2000,8(2):28-32.
    [71] 李茂军.机组优化组合的协同变异遗传算法.电力系统及其自动化学报.
     2002,14(3):20-23.
    [72] 陈皓勇,张靠社,王锡凡.电力系统机组组合问题的系统进化算法.中国电机工程
     学报. 1999,19(12):9-13.
    [73] 赵子臣,相年德,夏清.应用启发式与逐步动态规划法进行机组最优组合.清华大
     学学报. 1997,37(1):57-60.
    [74] 倪二男.梯级水电系统组合优化调度方法研究.中国电机工程学报.
     1999,19(1):19-23.
    [75] A.Rudolf, R.Bayrlaithner. A Genetic algorithm for solving the unit commitment
     problem of a hydrothermal Power system. IEEE Trans. on Power Systems. 1999,
     14 (4):1460-1468.
    [76] C.C.A.Rajan, M.R.Mohan, K.Manivannan. Refined simulated annealing
     algorithm for solving unit commitment problem. International Joint Conf. On
     Neural Networks (IEEE CNF). 2002:333-338.
    [77] Z.Yu, F.T.Sparrow, b.bowen. On convexity of short-term hydrothermal scheduling.
     92
    
    
    Electric Power & Energy Systems.2000,22:451-457.
    [78] A.Borghetti, F.Ladcalandra, C.A.Nucci. Lagrangian Heuristics Based on
     Disaggregated Bundle Methods for Hydrothermal Unit Commitment. IEEE Trans.
     on Power Systems. 2003, 18(1):313-322.
    [79] A.H.Mnatawy, Y.L.Abdel-megid, S.Z.Selim. Integrating genetic algorithms, tabu
     search, and simulated annealing for the unit commitment problem. IEEE Trans. on
     Power Systems.1999,14(3):829-836.
    [80] 万永华,张祥,温鹏.水火电联合调峰方法的探讨.水力发电学报.2001,2:1-9
    [81] 裘杏莲,戴国瑞.水电站调峰运行态势分析模式和方法.武汉水利电力大学学报.
     1997, 30(4):10-12.
    [82] 江宁.基于电网总体发电成本最小原则的调峰负荷优化分配. 华东电力.
     1999,(6):4-7.
    [83] 黄岩,胡振鹏.调峰电量的上网电价和销售电价研究.南昌大学学报(工科版)
     1999,21(1):22-29
    [84] 胡振鹏,黄岩.调峰电量的上网电价与水火电调峰经济性比较.水电能源科学.
     1998,16(4):1-6
    [85] 李发政,袁梅.三峡电站汛期调峰对通航影响的研究.长江科学院院报.2002,
     19(5):10-13.
    [86] A.S.Malik, B.J.Cory, P.D.C.Wijayatonga. Applications of probabilistic peak
     shaving technique in generation planning. IEEE Trans. on Power Systems.
     1999,14(4):1543-1548.
    [87] J.M.Berg, J.Malouf, P.N.Johnson.Optimal peak shaving capacity and control for a
     known load curve: Application to irrigated agriculture. Proceedings of the
     American control conf., Chicago, Illinois, June, 2000.
    [88] 陈森林.水库(群)调度基本理论及自动化系统研究[博士学位论文].武汉大学
     图书馆.2001 年.
    [89] 刑文训,谢金星.现代优化方法.清华大学出版社.2000:40-87.
    [90] 陈志平,徐宗本.计算机数学.科学出版社.2001:1-250.
    [91] 张勇传.水电站经济运行原理.中国水利水电出版社.1998,10:87-181.
    [92] 李钰心.水电站经济运行.中国电力出版社.1999:15-121.
    [93] 张英贵.电力系统水电厂群日优化运行.华中理工大学出版社.1994,12:32-90.
    [94] G.G.Javier, A.C.Guillermo Short-term hydro-scheduling with cascaded and
     head-dependent reservoirs based mixed-integer linear programming. IEEE Porto
     93
    
    
    Power Tech. Conf. 10th-13th Sept.2001. Porto,Portugal.
    [95] D.L.Beng, B.H.Amir. Optimal Operational Planning for a Hydroelectric
     Generation System. IEE Proceedings.1988,135(3):169-181.
    [96] 何士华.水电站经济运行研究中电源模型的分析与计算.云南工业大学学报.
     1995,12(3):5-8.
    [97] 徐鼎甲.进行日调节时水电站下游水位的计算.水利水电技术.1995,(4):2-4.
    [98] 陈森林.水电系统短期优化调度的一般性准则—基本概念与数学模型,武汉水
     力电力大学学报. 1999,32(3):34-37.
    [99] 张高峰,权先璋,余波等.三峡梯级日优化运行模型及算法.长江科学院院报.
     2003,20(3):10-12.
    [100] Naccarino J, Cheung R, Briggs W, et al. Real-Time Monitoring, Optimization and
     Control of a Hydroelectric Complex. IEEE Trans. on Power Systems,
     1988,3(4):1769-1783.
    [101] 朱敏.电力系统中梯级水电站实时优化运行控制新算法.电力系统自动化.
     1997(4):30-33.
    [102] 张英贵.水电厂及水电厂群日经济运行课题解算方法评析.水力发电.2000
     (7):49-50.
    [103] 董子敖.水库群调度与规划的优化理论和应用.山东科学技术出版社.
     1989 :25-50.
    [104] 张玉新,冯尚友.多目标动态规划逐次迭代算法.武汉水利电力学院学报.1988,
     21(6):72-82.
    [105] 畅建霞,黄强,王义民,水电站水库优化调度几种方法的探讨,水电能源科学.
     2000,3(18):19-22.
    [106] 张勇传.水库群优化调度理论的研究—SEPOA 方法.水电能源科学.1987,5(3).
    [107] 张勇传.多阶段决策问题 POA 算法收敛于最优解问题.水电能源科学.1990,
     8(1):44-48.
    [108] Jin-Shyr Yang, Nan-ming Chen. Short term Hydrothermal Coordination Using
     Multi-Pass Programming. IEEE Trans. on Power Systems, 1989,4(3):1050-1056.
    [109] 姚华明.BSDP 优化算法及其在水库群补偿调节中的应用[硕士学位论文]. 华
     中科技大学图书馆.1986 年.
    [110] 刘胡.东江水电站厂内经济运行动态规划算法.水电能源科学.2000,18(4):
     14-15.
    [111] Shi-Chung Chang, Chun-Hung Chen, I-Kong Fong ect., Hydroelectric Generation
     94
    
    
    Scheduling with an Effective Differential Dynamic Programming Algorithm.
     IEEE Trans. on Power Systems. 1990, 5 (3):737-741.
    [112] 马振华.现代应用数学手册之运筹学与最优化理论卷.清华大学出版社.1998,4:
     254-306.
    [113] 程吉林,郭元裕,金兆森等.大系统数学规划试验选优方法及其应用.中国科学.
     1998,28(3):254-258.
    [114] J.H.Holland. Adaptation in Natural and Artificial Systems.1st ed., 1975,2nd ed.,
     Cambridge, MA:MIT PRESS 1992.
    [115] D.E.Goldberg. Genetic Algorithms in Search, Optimization and Machine
     Learning. Reading, MA: AddisonWesley, 1989,3.
    [116] Le Riche, R.Haftka. Optimization of Laminate Stacking Sequence for Buckling
     Load Maximization by Genetic Algorithm. AIAA Journal, 1993,31(5):951-970.
    [117] Zbigniew Michalewicz. Genetic Algorithms, Numerical Optimization, and
     Constraints. Proceedings of the Sixth ICGA. Morgan Kaufmann, 1995,151-158.
    [118] Janikow C Z, Michalewicz Z. An experimental comparison of binary and floating
     point representations in genetic algorithms. Proc of the 4th Int Conf on Genetic
     Algorithms. CA: Morgan Kaufmann, 1991,31-36.
    [119] Srinivas M, Patnaik L.M. Adaptive Probabilities of Crossover and Mutationin
     Genetic Algorithms. IEEE Trans. System and Cybernetics. 1994, 24(4):656-6675.
    [120] Fogel David B. Evolutionary Computation-Toward a New Philosophy of Machine
     Intelligence. IEEE Press. 1995.11.
    [121] Stender Joachim. Parallel Genetic Algorithms: Theory & Applications. IOS Press,
     1993,12.
    [122] M.R.Piekutowski, T.Litwinowicz, R.J.Frowd. Optimal Short-term Scheduling for
     a Large-Scale Cascaded Hydro System. IEEE Trans. on Power Systems, 1994,
     9(2):805-811.
    [123] P.H.Chen, H.C.Chang. Genetic aided scheduling of hydraulically coupled plants
     in hydrothermal coordination. IEEE Trans. on Power Systems. 1996,11(2):
     975-981.
    [124] D.C.Walters, G. B. Sheble. Genetic algorithm solution of economic dispatch with
     valve point loading. IEEE Trans. on Power Systems. 1993,8(3):1325–1332.
    [125] B. Sheble, K. Brittig. Refined genetic algorithms Economic dispatch example.
     IEEE Trans. on Power Systems. 1995,l0(1):117-123.
     95
    
    
    [126] 傅湘,纪昌明.三峡电站日调节非恒定流对航运得影响分析.武汉水利电力大学
     学报. 2000,33(6):6-10.
    [127] 章坚民.主航道水电厂梯级考虑非稳定流影响的发电-航运最优日运行数学模
     型及计算方法研究[硕士学位论文]. 华中科技大学图书馆.1987 年.
    [128] 朱敏.电力系统中梯级水电站的日优化运行研究.华中理工大学学报. 1997(1):
     47-50.
    [129] 张玉山,李继清,纪昌明等.市场环境下水电运营方式的探讨.水电自动化与大坝
     监测. 2003,27(5):8-10.
    [130] 周京阳,于尔铿.能量管理系统-自动发电控制.电力系统自动化.1997,21(5):
     75-78.
    [131] 王剑奇,张伯明.综合的自动发电控制.电力系统自动化.1994,18(6):41-46.
    [132] 李晖.委内瑞拉 EDELCA 电力公司梯级与三峡-葛洲坝梯级 AGC 比较.华中电
     力.2003 (1):31-34.
    [133] N.Jaleeli, L.S.Vanslyck. NERCS New Control Performance Standards. IEEE
     Trans. on Power Systems. 1999,l4(3):1092-1096.
    [134] T.Sasaki, K.Enomota. Statistical and Dynamic Analysis of Generation Control
     Performance Standards. IEEE Trans. on Power Systems. 2002,l7(2):476-481.
    [135] 第二十八届中国电网调度运行会议论文选集. 中国电力出版社. 2003,
     10 :495-881.
    [136] Dingyi Wang, Yonggang Wu,Chengke Zhou,Application of operations research in
     Automatic Generation Control of Hydropower Plants. IEEE Trans. on Power
     Systems. 1989,4(3):375-380.
    [137] 张高峰,权先璋,陈建国.三峡梯级水电站自动发电控制.水电自动化与大坝监测,
     2002,26(2):1-4.
    [138] 权先璋.水电站 AGC 中的惩罚函数及虚拟机组技术.华中理工大学学报.2000,
     28(7):90-94.
    [139] 高宗和.自动发电控制算法的几点改进.电力系统自动化.2001(11):49-51.
    [140] 伍永刚.水电站 AGC 中负荷调节策略的研究.华中理工大学学报.2000(2):
     56-58.
    [141] 韩学山.水火电联合系统短期动态优化调度,哈尔滨工业大学学报.1995,27(2):
     75-78.
    [142] 韩学山.动态优化调度研究的回顾与展望.武汉水力电力大学学报.1999,32(3):
     34-37.
     96
    
    
    [143] 傅湘,纪昌明.三峡电站日调节非恒定流对航运的影响分析 武汉水利电力大学
     学报. 2000,33(6):6-10.
    [144] 李发政,袁梅.三峡电站汛期调峰对通航影响的研究.长江科学院院报.2002,
     19(5):10-12.
    [145] Willuam W., G. Yeh. Reservoir management and operations Models: A
     State-of-the-Art Review. Water resource Research. 1985, 21(12):1797-1818.
    [146] P.B.Luh, D.Zhang, R.N.Tomastik. An Algorithm for Solving the Dual Problem of
     Hydrothermal Scheduling. IEEE Trans. on Power Systems. 1998,13(2):593-600.
    [147] 潘理中,芮孝芳.水电站水库优化调度的研究的若干进展.水文.1999(6):37-40.
    [148] 刘鑫卿,张士军.梯级水电站流量滞后性影响研究.华中理工大学学报.1999,5
     (27):46-48.
    [149] 马光文,王黎.G.A.Walters.水电站群优化调度的 FP 遗传算法.水力发电学报.
     1996,4(55):21-28.
    [150] 潘春国.流域综合发展及梯级电站经济运行.东北电力技术,2002(1):18-22.
    [151] 赵子臣.利用启发式与逐步动态规划法确定机组的最优组合,清华大学学报(自
     然科学版) 1997,37(1):57-60.
    [152] 梅亚东.一类含有 0-1 变量的厂内经济运行模型及解法.武汉水力电力大学学
     报. 1999, 32(3):27-30.
    [153] 尚金成.电力系统中梯级电站短期优化运行的新理论与方法,红水河.
     1998,17(4):56-60.
    [154] 王黎,马光文.基于遗传算法的水电站优化调度新方法.系统工程理论与实
     践,1997, 7:65-69.
    [155] N.Tufegdzic, R.J.Frowd, W.O.Stadlin. A Coordinated Approach for Real-Times
     Short-Term Hydro Scheduling. IEEE Trans. on Power Systems. 1996,11(4):
     1698-1704.
    [156] H.Z.Yan, P. B. Luh, X. H. Guan, Schedule of Hydrothermal Power System. IEEE
     Trans. on Power Systems. 1993,8(3):1358-1365.
    [157] W.L.Peterson, S.R.Brammer, A Capacity Based Lagrangian Relaxation Unit
     Commitment with Ramp Rate Constraints. IEEE Trans. on Power Systems. 1995,
     10(2):1077-1083.
    [158] S.K.Tong, S.M.Shahidehpour. An Innovative to Generation Scheduling in
     Large-scale Hydrothermal Power Systems with Fuel Constrained Units. IEEE
     Trans. on Power Systems.1990,5(2):665-673.
     97
    
    
    [159] O.Nilsson, D.Sjelvgren. Variable Splitting Applied to Modelling of Start-up Costs
     in Short Term Hydro Generation Scheduling. IEEE Trans. on Power Systems.
     1997,12(2):770-775.
    [160] Chao-an Li, R.B.Johnson, A.J.svoboda. A Robust Unit Commitment Algorithm
     for Hydrothermal Optimization. IEEE Trans. on Power Systems. 1998,13(3):
     1051-1056.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700