用户名: 密码: 验证码:
基于生命周期的高速铁路能源消耗和碳排放建模方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路作为快速、大运量的城市间公共交通运输方式,能够较好地解决国内人口较多以及人均资源不足的矛盾。近年来,在国家政策支持下,高速铁路建设速度明显加快。然而,高速铁路基础设施建设工程量大、高速列车行驶的电力消耗高,特别是国内“以桥代路”的高速铁路建设思想和仍然以效率较低、排放较高的煤电为主的电力生产结构,导致从生命周期的角度重新审视高速铁路的环境影响具有重要的现实意义。
     为实现该目的,以环境影响中的能源消耗和碳排放为对象,在总结生命周期视角下高速铁路能源消耗和碳排放特征的基础上,提出高速铁路基础设施建设阶段的能源消耗和碳排放的分析框架和测算方法。基于机械做功,构建运营阶段高速列车牵引能耗的数值计算模型。从生命周期的视角,评估高速铁路的节能和碳减排效果。最后,从节能目标出发,建立了高速列车的运行速度优化模型。主要研究内容和结论如下:
     (1)将高速铁路按全生命周期划分为设计、建设、运营、维护和拆解5个阶段,分析了各阶段的典型活动。总结了生命周期视角下高速铁路的能源消耗和碳排放特征:第一,转移性,即以电力为主要能源的运营阶段的典型活动不直接造成碳排放,而是转移到了上游电力生产过程中;第二,隐藏性,即大规模基础设施建设导致高速铁路全生命周期的能源消耗和碳排放有较大比重隐藏在建设阶段。而不同地区高速铁路的生命周期评估结果具有明显的地域性特征:虽然不同地区的评估结果都表明建设阶段和运营阶段是全生命周期中能源消耗和碳排放的主要阶段,但建设阶段和运营阶段的相对比重在不同地区之间差异较大。
     (2)将高速铁路拆分成桥涵、隧道、路基、轨道和电气化系统5个子模型,通过计算各子模型的建筑材料使用总量和建设设备运转时间,结合具有地域性特征的生产数据清单,测算高速铁路建设阶段的能源消耗和碳排放。对京沪高速铁路的应用结果表明:京沪高速铁路建设造成的能源消耗为145502TJ,引起的碳排放为19154Kt C02e,两者90%以上都来自建筑材料使用。建设单位里程的隧道所造成的能源消耗最大,引起的碳排放也最多,分别是排名第2位的桥涵的1.9和1.7倍。不过,由于京沪高速铁路高达86%的桥涵比重,导致其建设能源消耗的67%和碳排放的66%来源于桥涵建设。水泥和钢材是影响高速铁路建设碳排放的显著要素,若两者生命周期碳排放系数分别降低20%,则高速铁路建设碳排放总量可以分别降低13%和7%。
     (3)基于机械做功,构建了高速列车牵引能耗的数值计算模型。模型兼顾高速列车因停站间距过短而达不到预定速度目标值的情形,通过引入发动机传动效率,提出在列车牵引力或电流曲线缺失条件下,能够满足一定精度要求的牵引能耗计算模型。模型表明,速度目标值对牵引能耗的影响主要表现在加速到的峰值上,从200到350km/h,不同停站方案下列车牵引能耗关于速度目标值的弹性系数为1.8-2.1。停站次数对牵引能耗的影响主要表现在加速的周期上,在169km、共9个客运站的高速铁路上运行的站站停列车的牵引能耗约是直达列车的1.7倍。
     (4)采用概率理论和蒙特卡洛方法评估了生命周期视角下高速铁路的节能和碳减排效果。以三角形分布描述客运方式的能源消耗强度和座位利用率及燃料(包括电力)生命周期能源消耗系数和碳排放系数的不确定性,以均匀分布描述客流转移比例的不确定性,在高速铁路客流发育的皮尔生长曲线基础上,评估高速铁路运营阶段每年的节能和碳减排水平及概率,以及因建设和维护基础设施所造成的能源消耗和碳排放在运营时所需要的偿还期。评估结果表明,从生命周期角度看,高速铁路的节能效果依然明显,但高速铁路的碳减排效果具有一定的不确定性,不如其节能效果明显。而电力生命周期碳排放系数、高速铁路座位利用率以及客流转移和诱增结构都是影响高速铁路碳减排效果的显著因素。
     (5)提出了基于节能考虑的高速列车运行速度优化模型。当高速铁路线路建成、列车型号确定后,通过优化运输组织是降低牵引能耗的重要手段。模型以铁路运输部门的利润最大和铁路旅客出行的广义费用最小为优化目标。运行速度通过影响列车的牵引能耗而对铁路运输部门的成本产生影响,通过与公路大巴和小汽车的客流竞争而对收入产生影响,并且运行速度也与旅客出行广义费用中的快速性直接相关。在运输供给、列车到发时间和列车数配置等约束下,建立运行速度优化的多目标非线性规划模型,并采用基于模糊折中思想的算法进行求解。模型优化结果表明:在一定经济发展程度下,一味地追求高速度并不能减少铁路旅客出行的广义费用,反而造成牵引能耗的大量增加。
As a rapid intercity public transit mode with large capacity, the high-speed railway (HSR) is expected to mitigate the contradiction between the numerous population and inadequate resources per capita in China. As a result, the HSR construction has accelerated significantly with the support of national policies in recent years. However, the infrastructure construction of the HSR involves a large amount of engineering quantity and the high-speed train (HST) also consumes high electricity to run. In addition, in China the infrastructure of bridges and culverts is built extensively along the HSR to replace the at-grade foundation. Besides China has a dominate ratio of low efficiency and high emissions coal-based electricity in generation, which is why the environmental impact of the HSR in China needs to be reexamined in the perspective of a life cycle.
     To achieve the above-referred goals, of all the environmental impacts, the research focuses on energy consumption (EC) for and greenhouse gas (GHG) emissions from the HSR. Based on the characteristics of the life cycle EC of and GHG emissions from the passenger transport of the HSR, an analysis frame and measuring approach is presented to assess the EC and GHG emissions due to the infrastructure construction of the HSR. On account of the mechanical work, a numerical model is proposed to calculate the traction electricity requirement for the running of HST, which is a primary activity in the operation phase of the HSR. The abilities of saving. energy and reducing GHG emissions of the HSR are reappraised from the perspective of a life cycle. Finally, parts of energy-saving transport organization schemes of the HSR are raised for application. The main contents and conclusions of the dissertation are as follows.
     (1) The life cycle of the HSR is divided into five elementary phases including the conception, construction, operation, maintenance and disposal, where representative activities are illustrated. The characteristics of the life cycle EC of and GHG emissions from the passenger transport of the HSR consists of two aspects. On one hand, the operation phase of the HSR where energy requirements of its typical activities are highly dependent on the electricity does not usually cause GHG emissions, whereas they are transferred into the process of the electricity generation. On the other hand, as a result of building the large-scale infrastructure, a noticeable ratio of the life cycle EC of and GHG emissions from the HSR is hidden in the construction phase. Worldwide, the life cycle assessment of the HSRs has an obvious regional characteristic. The construction and operation phase are confirmed as the dominating phases for the EC and GHG emissions in the life cycle of the HSR, yet the proportions for the two phases are distinguishing in a different region.
     (2) The HSR line is split into five sub-models:bridge and culvert, tunnel, at-grade foundation, track as well as electrification system. Combined with the regional inventory of product data, the EC and GHG emissions due to the infrastructure construction of the HSR are estimated via evaluating the building materials requirements and equipment use of the five sub-models. The application of the approach in the Beijing-Shanghai HSR demonstrates the EC resulting from building its infrastructure reaches145,502TJ, while the GHG emissions are19,154Kt CO2-equivalent. Moreover,90%of the EC and GHG emissions are both from the use of building materials. Of all the five sub-models, the tunnel construction on a per-km basis consumes the most energy and emits the most GHG, which are respectively1.9and1.7times of the second place that is the bridge and culvert construction. Even so, the bridge and culvert construction of the Beijing-Shanghai HSR contributes67%of the EC and66%of the GHG emissions in view of the fact that its proportion of bridges and culverts is up to86%. Cement and steel have significant impacts on the GHG emissions from the HSR infrastructure construction. The GHG emissions are expected to be reduced by13%and7%respectively following a20%decrease of the carbon intensity for the cement and steel production.
     (3) A numerical model is proposed to estimate the traction electricity requirement for the running of HSTs via a calculation of mechanical work. The model is capable to manage the situation that the stopping section is too short to achieve the preliminarily set target speed for the HST. Besides, with an introduction of the transmission efficiency of the engines, the model is also effective in a certain level of accuracy requirements even lack of the traction force curve or the current curve of the HST. The application of the model indicates that the target speed influences the traction electricity consumption of the HST by acting on the peak speed it might accelerate to. Regarding the target speed raised from200to350km/h, the elasticity for the traction electricity consumption about the target speed is1.8to2.1approximately for all the stop schedules. The impact of the stopping times of the HST on its traction electricity consumption is expressed by the acceleration cycles, and the traction electricity requirement for an all-stop HST is around1.7times of that for a through HST while running on an HSR with a length of169km and9passenger stations totally.
     (4) The Monte Carlo Method is adopted to assess the abilities of the HSR in saving energy and reducing GHG emissions with the introduction of the probability theory. The triangular distribution describes the uncertainty of the EC intensities and load factors of passenger transport modes as well as the life cycle EC and GHG emission factors of fuels, including electricity. The uniform distribution is used regarding to the uncertainty of the shifted ratios of HSR passengers from other transport modes. Moreover, a R. Pearl growth curve is employed to fit the development of the HSR passengers. Consequently, the volume and probability of the HSR in saving energy and reducing GHG emissions yearly in the operation phase is assessed, and the recuperation times after operating for the EC and GHG emissions due to the construction and maintenance of the HSR infrastructure is also assessed. The assessment demonstrates that the ability of the HSR in saving energy is still strong examined from the perspective of the life cycle while its ability in reducing GHG emissions has some uncertainty and is not as strong as its ability in saving energy. As expected, the life cycle GHG emission intensity of the electricity, the load factor of the HSR and the ratios of the shifted and induced passengers of the HSR are all significant contributors to the ability of the HSR in reducing GHG emissions.
     (5) The speed optimization model of the HST is proposed considering its traction electricity. The transport organization scheme becomes an effective measure to improve the environmental benefits of the HSR after the line has been constructed and the HST has been selected. The objectives of the optimization model are the maximum profits for the HSR transport section and the minimum generalized travel cost for the HSR passengers. The speed has an influence on the cost of the HSR transport section by affecting the traction electricity requirement of the HST, and on the income by competing for the passengers with the bus and private car. Restrained by the transport supply, the departure and arrival time of the HSTs and the number of the HSTs, a multi-objective nonlinear model for the speed optimization is established, which is solved by the application of the algorithm based on fuzzy compromise programming. The results show that under a certain level of economic development, the HST with an ultrahigh speed is not able to reduce the generalized cost of passengers choosing the HSR, but result in a significant increase in electricity requirements for moving.
引文
[1]毛保华.轨道交通可有效解决人口与资源的矛盾[J].世界轨道交通,2013,6:53.
    [2]EIA. Monthly Energy Review [DB/OL]. http://www.eia.gov/totalenergy/data/monthly/, 2010.
    [3]国家统计局.中国统计年鉴2013[M].北京:中国统计出版社,2013.
    [4]王庆一.中国2007年终端能源消费和能源效率[J].节能与环保,2009,2:14-17.
    [5]贾顺平,毛保华,刘爽,孙启鹏.中国交通运输能源消耗水平测算与分析[J].交通运输系统工程与信息,2010,10(1):22-27.
    [6]国家发改委.中华人民共和国气候变化第二次国家信息通报[DB/OL].http://www.ccchina.gov.cn/archiver/ccchinacn/UpFile/Files/Default/20130218142020138656.pdf,2011.
    [7]OECD. Transport greenhouse gas emissions country data 2010 [DB/OL]. http://www.intern ationaltrans portforum.org/pub/pdf/10GHGCountry.pdf,2010.
    [8]朱晓峰.生命周期方法论[J].科学学研究,2005,22(6):566-571.
    [9]Hunt R G and Franklin W E. LCA-How it came about, personal reflections on the origin and the development of LCA in the USA [J]. The international Journal of Life Cycle Assessment,1996,1(1):4-7.
    [10]王飞儿,陈英旭.生命周期评价研究进展[J].环境污染与防治,2001,23(5):249-252.
    [11]姜金龙,吴玉萍,马军,元丽华,徐金城.生命周期评价的技术框架及研究进展[J].兰州理工大学学报,2005,31(4):23-26.
    [12]Curran M A. Using LCA-based approach to evaluate pollution prevention [J]. Environmental progress,1995,14(4):247-253.
    [13]韩润平,魏爱卿,陆雍森.环境影响评价的工具—生命周期评价[J].郑州大学学报(理学版),2003,35(2):83-88.
    [14]ISO.14040:Environmental management-Life cycle assessment-Principles and framework [S]. London:British Standards Institution,2006.
    [15]ISO.14044:Environmental management-Life cycle assessment-Requirements and guidelines [S]. London British Standards Institution,2006.
    [16]国家标准化管理委员会.环境管理生命周期评价原则与框架[s].北京:中国标准出版社,2008.
    [17]国家标准化管理委员会.环境管理生命周期评价要求与指南[S].北京:中国标准出版社,2008.
    [18]Tzeng G H, Lin C W and Opricovic S. Multi-criteria analysis of alternative-fuel buses for public transportation [J]. Energy Policy,2005,33(11):1373-1383.
    [19]Zhao J and Melaina M W. Transition to hydrogen-based transportation in China:Lessons learned from alternative fuel vehicle programs in the United States and China [J]. Energy Policy,2006,34(11):1299-1309.
    [20]Collantes G and Sperling D. The origin of California's zero emission vehicle mandate [J]. Transportation Research Part A:Policy and Practice,2008,42(10):1302-1313.
    [21]张继宏.对中国未来车用能源发展的几点思考[J].国际石油经济,2010,7:16-19.
    [22]Wang Q, Luo J, Zhong Z, and Borgna A. CO2 capture by solid adsorbents and their applications:current status and new trends [J]. Energy and Environmental Science,2011, 4(1):42-55.
    [23]陈吴.车用替代能源综合评价与发展策略[J].中国能源,2013,35(1):31-43.
    [24]Wang M. GREET1.5:Transportation fuel-cycle model (Vol.1:Methodology, development, use, and results) [R]. Argonne:Center for Transport Research, Argonne National Laboratory, 1999.
    [25]Wang M. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies [R]. Argonne:Center for Transport Research, Argonne National Laboratory,2001.
    [26]Wang M, Lee H and Molburg J. Allocation of energy use in petroleum refineries to petroleum products [J]. The International Journal of Life Cycle Assessment,2004,9(1): 34-44.
    [27]欧训民.中国道路交通部门能源消费和GHG排放全生命周期分析[D].北京:清华大学,2010.
    [28]Stratton R W, Wong H M and Hileman J I. Life cycle greenhouse gas emissions from alternative jet fuels [R]. Cambridge:Massachusetts Institute of Technology,2010.
    [29]Van Mierlo J, Maggetto G and Lataire P. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles [J]. Energy Conversion and Management,2006,47(17):2748-2760.
    [30]Chen F, Fernandes T R C, Yetano Roche M and da Graca Carvalho M. Investigation of challenges to the utilization of fuel cell buses in the EU vs transition economies [J]. Renewable and Sustainable Energy Reviews,2007,11(2):357-364.
    [31]Ally J and Pryor T. Accelerating hydrogen implementation by mass production of a hydrogen bus chassis [J]. Renewable and Sustainable Energy Reviews,2009,13(3), 616-624.
    [32]张天舒.美国车用替代燃料发展现状政策及启示[J].能源与节能,2013,5:43-45.
    [33]胡京南,郝吉明,傅立新.应用燃气汽车对北京市机动车排放的影响[J].清华大学学报(自然科学版),2006,46(3):350-354.
    [34]谭力红.废餐饮油制备生物柴油研究现状与应用前景[J].化工生产与技术,2007,14(1),30-33.
    [35]王贵明,王金懿.电动微型轿车:中国节能环保的“国民车”[J].汽车工业研究,2008,11:2-6.
    [36]Wang Y, Teter J, and Sperling D. China's soaring vehicle population:Even greater than forecasted? [J]. Energy Policy,2011,39(6):3296-3306.
    [37]Neef H J. International overview of hydrogen and fuel cell research [J]. Energy,2009,34(3): 327-333.
    [38]Jaramillo P, Samaras C, Wakeley H and Meisterling K. Greenhouse gas implications of using coal for transportation:Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways [J]. Energy Policy,2009,37(7):2689-2695.
    [39]Lee J Y, Yoo M, Cha K, Lim T W and Hur T. Life cycle cost analysis to examine the economical feasibility of hydrogen as an alternative fuel [J]. International Journal of Hydrogen Energy,2009,34(10):4243-4255.
    [40]Yao F, Jia Y and Mao Z. The cost analysis of hydrogen life cycle in China [J]. International Journal of Hydrogen Energy,2010,35(7):2727-2731.
    [41]Martinez P, Dawidowski L, Gomez D and Pasquevich D. Life cycle greenhouse emissions of compressed natural gas-hydrogen mixtures for transportation in Argentina [J]. International Journal of Hydrogen Energy,2010,35(11):5793-5798.
    [42]Ou X, Zhang X and Chang S. Scenario analysis on alternative fuel/vehicle for China's future road transport:Life-cycle energy demand and GHG emissions [J]. Energy Policy, 2010,38(8):3943-3956.
    [43]Hacatoglu K, Rosen M A and Dincer I. Comparative life cycle assessment of hydrogen and other selected fuels [J]. International Journal of Hydrogen Energy,2012,37(13),9933-9940.
    [44]Hoffrichter A, Miller A R, Hillmansen S and Roberts C. Well-to-wheel analysis for electric, diesel and hydrogen traction for railways [J]. Transportation Research Part D:Transport and Environment,2012,17(1):28-34.
    [45]Wang H. Progress of Chinese Life Cycle Database (CLCD) [DB/OL]. http://lcacenter.org/l caxi/final/357.pdf, Chengdu:Sichuan University,2011.
    [46]刘夏璐,王洪涛,陈建,何琴,张浩,姜睿,陈雪雪,侯萍.中国生命周期参考数据库的建立方法与基础模型[J].环境科学学报,2010,30(10):2136-2144.
    [47]Ou X, Xiaoyu Y, and Zhang X. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China[J]. Applied Energy,2011,88(1): 289-297.
    [48]国家工业和信息化部.乘用车燃料消耗量(第三批][DB/OL]. http://www.miit.gov.cn/n11 293472/n11293832/n11293952/12221001.html,2009.
    [49]Granovskii M, Dincer I and Rosen M A. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles [J]. Journal of Power Sources, 2006,159(2):1186-1193.
    [50]Granovskii M, Dincer I and Rosen M A. Life cycle assessment of hydrogen fuel cell and gasoline vehicles [J]. International Journal of Hydrogen Energy,2006,31(3):337-352.
    [51]王寿兵,董辉,王如松,杨建新,吴千红.中国某轿车生命周期内能耗和环境排放特性[J].复旦学报(自然科学版),2006,45(3):328-334.
    [52]Thomas C E. Fuel cell and battery electric vehicles compared [J]. International Journal of Hydrogen Energy,2009,34(15):6005-6020.
    [53]Offer G J, Howey D, Contestabile M, Clague R and Brandon N P. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system[J]. Energy Policy,2010,38(1):24-29.
    [54]Kyle P and Kim S H. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands [J]. Energy Policy,2011, 39(5):3012-3024.
    [55]Veziroglu A and Macario R. Fuel cell vehicles:state of the art with economic and environmental concerns [J]. International Journal of Hydrogen Energy,2011,36(1):25-43.
    [56]Rose L, Hussain M, Ahmed S, Malek K, Costanzo R and Kjeang E. A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city [J]. Energy Policy,2013,52:453-461.
    [57]高玉冰,毛显强,杨舒茜,吴烈,董刚.基于LCA的新能源轿车节能减排效果分析与评价[J].环境科学学报,2013,33(5):1504-1512.
    [58]Baron T, Tuchschmid M, Martinetti G and Pepion D. High speed rail and sustainability Background report:methodology and results of carbon footprint analysis [R], Paris: International Union of Railways (UIC),2011.
    [59]Chester M V. Life-cycle environmental inventory of passenger transportation in the United States [D]. Berkeley:University of California, Berkeley,2008.
    [60]Morita Y, Shimizu K, Yamasaki T, Kato H and Shibahara N. A study on the life cycle assessment for evaluating carbon impact from construction of rail [C]. Proceedings of European Transport Conference:1-16,2012.
    [61]Spielmann M and Scholz R. Life cycle inventories of transport services:Background data for freight transport [J]. The International Journal of Life Cycle Assessment,2005,10(1): 85-94.
    [62]Loftus J and Purcell J. Product life cycle analysis in the airline industry [J]. Asia Pacific Centre for Environmental Accountability (APCEA) Journal,2006,12(3):11-18.
    [63]Spielmann M, Bauer C, Dones R and Tuchschmid M. Transport services data v2.0 [R]. Dubendorf:Swiss Center for Life Cycle Inventories,2007.
    [64]Elgowainy A, Han J, Wang M, Hileman J and Carter N. Development of life-cycle analysis module of aviation fuel/aircraft systems in GREET [DB/OL]. http://greet.es.anl.gov/files/2 012ws_aviation,2012.
    [65]Witik R A, Gaille F, Teuscher R, Ringwald H, Michaud V and Manson J A E. Economic and environmental assessment of alternative production methods for composite aircraft components [J]. Journal of Cleaner Production,2012,29:91-102.
    [66]Lewis T. A life cycle assessment of the passenger air transport system using three flight scenarios [D]. Trondheim:Norwegian University of Science and Technology,2013.
    [67]Dray L. An analysis of the impact of aircraft lifecycles on aviation emissions mitigation policies [J]. Journal of Air Transport Management,2013,28:62-69.
    [68]Howe S, Kolios A J and Brennan F P. Environmental life cycle assessment of commercial passenger jet airliners [J]. Transportation Research Part D:Transport and Environment, 2013,19:34-41.
    [69]Lopes J V. Life cycle assessment of the airbus A330-200 aircraft [D]. Lisboa:Universidade Tecnica de Lisboa,2010.
    [70]Halstead W J. Energy use and conservation in highway construction and maintenance [R]. Charlottesville:Virginia Highway and Transportation Research Council,1978.
    [71]Trusty W B. Life cycle embodied energy and global warming emissions for concrete and asphalt roads [R]. Merrickville:The ATHENATM Sustainable Materials Institute,1999.
    [72]Tukker A. Life cycle assessment as a tool in environmental impact assessment [J]. Environmental Impact Assessment Review,2000,20(4):435-456.
    [73]Stripple H. Life cycle assessment of road:A pilot study for inventory analysis [R]. Goteborg: IVL Swedish Environmental Research Institute Ltd.,2001.
    [74]Horvath A. A life-cycle analysis model and decision-support tool for selecting recycled versus virgin materials for highway applications [R]. Berkeley:University of California, Berkeley,2004.
    [75]Birgisdottir H. Life cycle assessment model for road construction and use of residues from waste incineration [D]. Kongens Lyngby:Technical University of Denmark,2005.
    [76]Meil J. A life cycle perspective on concrete and asphalt roadways:Embodied primary energy and global warming potential [R]. Merrickville:The Athena Research Institute, 2006.
    [77]尚春静,张智慧,李小冬.高速公路生命周期能耗和大气排放研究[J].公路交通科技,2010,27(8):149-154.
    [78]Milachowski C, Stengel T and Gehlen C. Life cycle assessment for road construction and use [R]. Brussels:European Concrete Paving Association,2011.
    [79]Horvath A and Chester M. Environmental life-cycle assessment of passenger transportation: An energy, greenhouse gas, and criteria pollutant inventory of rail and air transportation [R]. Berkeley:University of California, Berkeley,2008.
    [80]Chester M and Horvath A. Environmental life-cycle assessment of passenger transportation: A detailed methodology for energy, greenhouse gas and criteria pollutant inventories of automobiles, buses, light rail, heavy rail and air [R]. Berkeley:University of California, Berkeley,2008.
    [81]Chester M V and Horvath A. Environmental assessment of passenger transportation should include infrastructure and supply chains [J]. Environmental Research Letters,2009,4(2): 024008.
    [82]Chester M and Horvath A. Environmental assessment of California high speed rail [J]. Access,2010,37:25-30.
    [83]Chester M and Horvath A. High-speed rail with emerging automobiles and aircraft can reduce environmental impacts in California's future [J]. Environmental Research Letters, 2012,7(3):034012.
    [84]Chester M and Horvath A. Life-cycle assessment of high-speed rail:the case of California [J]. Environmental Research Letters,2010,5(1):014003.
    [85]Chang B. Initial greenhouse gas emissions from the construction of the California High Speed Rail infrastructure:a preliminary estimate [D]. Davis:University of California, Davis, 2010.
    [86]Chang B and Kendall A. Life cycle greenhouse gas assessment of infrastructure construction for California's high-speed rail system [J]. Transportation Research Part D: Transport and Environment,2011,16(6):429-434.
    [87]Stripple H and Uppenberg S. Life cycle assessment of railways and rail transports: Application in environmental product declarations (EPDs) for the Bothnia Line [R]. Goteborg:IVL Swedish Environmental Research Institute Ltd.,2010.
    [88]Kageson P. Environmental aspects of inter-city passenger transport [R]. Stockholm:Nature Associates,2009.
    [89]Akerman J. The role of high-speed rail in mitigating climate change-The Swedish case Europabanan from a life cycle perspective [J]. Transportation Research Part D:Transport and Environment,2011,16(3):208-217.
    [90]Grossrieder C. Life-cycle assessment of future high-speed rail in Norway [D]. Trondheim: Norwegian University of Science and Technology,2011.
    [91]Hekkert M P, Hendriks F H, Faaij A P and Neelis M L. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development [J]. Energy Policy,2005,33(5):579-594.
    [92]Odeh N A and Cockerill T T. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage [J]. Energy Policy,2008,36(1):367-380.
    [93]Van Vliet O P, Faaij A P and Turkenburg W C. Fischer-Tropsch diesel production in a well-to-wheel perspective:a carbon, energy flow and cost analysis [J]. Energy Conversion and Management,2009,50(4):855-876.
    [94]Carlson A. Life cycle assessment of roads and pavements:studies made in Europe [R]. Linkoping:The Swedish National Road and Transport Research Institute,2011.
    [95]Feng X, Zhang H, Ding Y, Liu Z, Peng H and Xu B. A Review Study on Traction Energy Saving of Rail Transport [J]. Discrete Dynamics in Nature and Society,2013.
    [96]Howlett P G, Milroy I P and Pudney P J. Energy-efficient train control [J]. Control Engineering Practice,1994,2(2):193-200.
    [97]何鸿云,朱金陵.列车牵引计算及操纵意图计算机软件的开发[J].西南交通大学学报,2000,35(5):513-516.
    [98]毛保华,何天键,袁振洲,刘海东,赵立宁,陈志英.通用列车运行模拟软件系统研究[J].铁道学报,2000,22(1):1-6.
    [99]马大炜,康熊,王成国,周忠良.关于列车牵引计算的研究[J].中国铁路,2001,9:15-20.
    [100]Lukaszewicz, P. Energy consumption and running time for trains:Modelling of running resistance and driver behaviour based on full scale testing [D]. Stockholm:Royal Institute of Technology,2001.
    [101]丁勇.列车运行计算与操纵优化模拟系统的研究[D].北京:北京交通大学,2004.
    [102]石红国,彭其渊,郭寒英.城市轨道交通牵引计算模型[J].交通运输工程学报,2005,5(4):20-26.
    [103]石红国,彭其渊,郭寒英.城市轨道交通牵引计算算法[J].交通运输工程学报,2004,4(3):30-33.
    [104]曾宇清,于卫东,扈海军,康熊.高速铁路牵引计算层次约束方法[J].中国铁道科学,2009,30(6):97-103.
    [105]陈涛.高速列车运行能耗测算方法及其影响因素量化分析[D].北京:北京交通大学,2011.
    [106]蒲浩,李伟,龙喜安.高速铁路牵引计算与三维运行仿真研究[J].铁道科学与工程学报,2011,8(5):1-5.
    [107]Yang L, Li K, Gao Z and Li X. Optimizing trains movement on a railway network [J]. Omega,2012,40(5):619-633.
    [108]He N, Long Z, and Xue S. Modeling and optimal design of relative position detection sensor for high speed maglev train [J]. Sensors and Actuators A:Physical,2013,189:24-32.
    [109]郭勇,付稳超,穆俊斌.基丁Simulink的列车牵引计算与运行仿真[J].铁道机车车辆,2013,33(3):25-29.
    [110]Lukaszewicz P and Andersson E. Green train energy consumption estimations of high-speed rail operations [R]. Stockholm:KTH Railway Group,2009.
    [111]马大炜.高速列车及其速度目标值的探讨[J].中国铁道科学,2003,24(5):1-8.
    [112]Feng X. Optimization of target speeds of high-speed railway trains for traction energy saving and transport efficiency improvement [J]. Energy Policy,2011,39(12):7658-7665.
    [113]Feng X, Mao B, Feng X and Feng J. Study on the maximum operation speeds of metro trains for energy saving as well as transport efficiency improvement [J]. Energy,2011, 36(11):6577-6582.
    [114]冯旭杰,孙全欣,冯佳,许奇,蒋玉琨.考虑能源消耗的城际列车运行速度优化[J].中国铁道科学,2013,34(2):106-112.
    [115]Feng X, Wu K, Liu H, Sun Q and Zhang H. Analysis of the effect of the length of stop-spacing on the transport efficiency of a typically formed conventional locomotive hauled passenger train in China [J]. Mathematical Problems in Engineering,2012.
    [116]冯旭杰,孙全欣,冯佳,吴珂琪.高速铁路既有停站方案优化模型[J].交通运输工程学报,2013,13(1):84-90.
    [117]张波,陆阳,孙剑芳,李学峰,曹宏发.高速试验列车牵引试验的仿真研究[J].中国铁道科学,2004,25(3):6-11.
    [118]Feng X, Feng J, Wu K, Liu H and Sun Q. Evaluating target speeds of passenger trains in China for energy saving in the effect of different formation scales and traction capacities [J]. International Journal of Electrical Power and Energy Systems,2012,42(1):621-626.
    [119]Feng X, Liu H, Zhang H, Wang B and Sun Q. Rational formations of a metro train improve its efficiencies of both traction energy utilization and passenger transport [J]. Mathematical Problems in Engineering,2013.
    [120]Liu R R and Golovitcher I M. Energy-efficient operation of rail vehicles [J]. Transportation Research Part A:Policy and Practice,2003,37(10):917-932.
    [121]Kim K and Chien S I J. Optimal train operation for minimum energy consumption considering track alignment, speed limit, and schedule adherence [J]. Journal of Transportation Engineering,2010,137(9):665-674.
    [122]Clegg S J. A review of regenerative braking systems [R]. http://eprints.whiteros e.ac.uk/21 18/, Leeds:Institute of Transportation Studies, University of Leeds,1996.
    [123]Hickman J, Hassel D, Joumard R, Samaras Z and Sorenson S. Methodology for calculating transport emissions and energy consumption [R]. Crowthorne:Transport Research Laboratory,1999.
    [124]Gonzalez-Franco I and Garcia-Alvarez A. Can high-speed trains run faster and reduce energy consumption? [J]. Procedia-Social and Behavioral Sciences,2012,48:827-837.
    [125]Bosquet R, Vandanjon P O, Coiret A and Lorino T. Model of high-speed train energy consumption [J]. World Academy of Science, Engineering and Technology,2013,78: 1912-1916.
    [126]薛艳冰,马大炜,王烈.列车牵引能耗计算方法[J].中国铁道科学,2007,28(3):84-87.
    [127]王玉明.城市轨道交通系统能耗影响因素的量化分析[D].北京:北京交通大学,2011.
    [128]袁宏伟,孔令洋.城市轨道交通能耗影响因素及测算研究[J].都市快轨交通,2012,25(2):41-44.
    [129]王子甲,陈峰,施仲衡.北京城市轨道交通中远期能耗预测研究[J].中国铁道科学,2013,34(3):133-136.
    [130]谢汉生,满朝翰,商一帆.地铁主要能耗影响因素及节能措施分析研究[J].现代城市轨道交通,2013,4:65-67.
    [131]Hong W and Kim S. A study on the energy consumption unit of subway stations in Korea[J]. Building and Environment,2004,39(12):1497-1503.
    [132]Ma W, Liu X, Li L, Shi X and Zhou C. Research on the waiting time of passengers and escalator energy consumption at the railway station [J]. Energy and Buildings,2009,41(12): 1313-1318.
    [133]穆广友,李晓龙,尹力明,黄海界.地铁车站照明系统能耗分析及节能对策[J].城市轨道交通研究,2010,13(8):35-39.
    [134]Al-Sharif L. Modelling of escalator energy consumption [J]. Energy and Buildings,2011, 43(6):1382-1391.
    [135]Leung P and Lee E W. Estimation of electrical power consumption in subway station design by intelligent approach [J]. Applied Energy,2013,101:634-643.
    [136]郭旭晖.新广州火车站节能设计与建筑室内环境研究[J].铁道标准设计,2010,Z2:1-8.
    [137]孙建明,廖美.火车站候车大厅照明及其节能的仿真分析[J].铁道标准设计,2013,8:112-116.
    [138]Robert C P and Casella G. Monte Carlo Statistical Methods [M]. New York:Springer,2004.
    [139]庄楚强,何春雄.应用数理统计基础(第三版)[M].广州:华南理工大学出版社,2007.
    [140]娄伟.情景分析理论与方法[M].北京:社会科学文献出版社,2012.
    [141]许焕卫,黄洪钟,张旭.基于模糊折中规划的稳健多目标优化设计[J].大连理工大学学报,2007,47(3):368-371.
    [142]铁道部.铁路主要技术政策[DB/OL]. http://www.gov.cn/flfg/2013-02/20/content_233458 2.htm,2013.
    [143]Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W,... and Van Dorland R. Changes in atmospheric constituents and in radiative forcing [R]. Intergovernmental Panel on Climate change (IPCC),2007.
    [144]国家标准化管理委员会.综合能耗计算通则;GB/T 2589-2008)[S].北京:中国标准出版社,2008.
    [145]史立新,黄茵,于娟.交通能源消费及碳排放研究[M].北京:中国经济出版社,2011.
    [146]国家统计局.中国能源统计年鉴2011[M].北京:中国统计出版社,2011.
    [147]温家宝.政府工作报告——2007年3月5日在第十届全国人民代表大会第五次会议上[DB/OL]. http://www.gov.cn/test/2009-03/16/content_1260188.htm,2007.
    [148]温家宝.凝聚共识加强合作推进应对气候变化历史进程—在哥本哈根气候变化会议领导人会议上的讲话[DB/OL]. http://news.xinhuanet.com/world/2009-12/19/content_12668033.htm,2009.
    [149]马大炜.铁路运输高速化的仿真研究[J].中国工程科学,2001,3(5):72-78.
    [150]周新军.低碳环保高速铁路的未来发展潜力预测[J].电力与能源,2013,34(5):439-444.
    [151]彭其渊,文超,闫海峰.提速战略对我国铁路运输发展的带动作用[J].西南交通大学学报,2008,43(6):685-691.
    [152]罗仁坚.从经济社会整体看高铁发展[J].综合运输,2011,9:4-8.
    [153]冯晓芳.中国高速铁路的发展与展望[J].科技资讯,2009,1:129-130.
    [154]王顺洪.中国高速铁路发展及其经济影响分析[J].西南交通大学学报(社会科学版),2010,11(5):65-69.
    [155]UIC. High speed lines in the world [DB/OL]. http://www.uic.org/spip.php?article573, Paris, 2013.
    [156]付延冰,刘恒斌,张素芬.高速铁路生命周期碳排放计算方法[J].中国铁道科学,2013, 34(5):140-144.
    [157]IEA. Electricity/Heat statistics data [DB/OL]. http://www.iea.org/stats/prodresult.asp?PRO DUCT=Electricity/Heat,2013.
    [158]郑健.中国高速铁路桥梁建设关键技术[J].中国工程科学,2008,10(7):18-27.
    [159]魏永幸,左德元.对高速铁路以路代桥条件极其决策的思考[J].科学技术通讯,2004,1:6-10.
    [160]Von Rozycki C, Koeser H and Schwarz H. Ecology profile of the German high-speed rail passenger transport system, ICE [J]. The International Journal of Life Cycle Assessment, 2003,8(2):83-91.
    [161]Milford R L and Allwood J M. Assessing the CO2 impact of current and future rail track in the UK [J]. Transportation Research Part D:Transport and Environment,2010,15(2): 61-72.
    [162]Taniguchi M. High speed rail in Japan:A review and evaluation of the Shinkansen train [R]. Berkeley:Earlier Faculty Research, University of California Transportation Center,1992.
    [163]Kato H, Shibahara N, Osada M and Hayashi Y. A life cycle assessment for evaluating environmental impacts of inter-regional high-speed mass transit projects [J]. Journal of the Eastern Asia Society for Transportation Studies,2005,6:3211-3224.
    [164]Lee C K, Lee J Y and Kim Y K. Comparison of environmental loads with rail track systems using simplified life cycle assessment (LCA) [J]. WIT Transactions on the Built Environment,2008,101:367-372.
    [165]金莉.京沪高速铁路(京徐段)桥梁设计[J].铁道标准设计,2011,7:29-34.
    [166]中国水利水电建设股份集团公司.京沪高速铁路土建三标段(西渴马一号隧道工程)实施性施工组织设计[R].北京:中国水利水电建设股份集团公司,2008.
    [167]邹庭洪.京沪高铁路基及桥梁工程技术经济指标分析[J].铁道勘测与设计,2008,5:77-84.
    [168]张恩龙.CRTSⅡ型无砟轨道板制造技术[J].建设机械技术与管理,2008,6:90-94.
    [169]程志强.CRTSⅡ型板式无砟轨道在客专上的研究应用[J].铁道建筑技术,2011,7:120-123.
    [170]赵艳波.京沪高铁CRTSⅡ型无砟轨道板铺设施工关键设备[J].建筑机械化,2011,8:45-48.
    [171]World Steel Association. Life cycle inventory data for steel products[DB/OL]. http://ww w.world steel.org/steel-by-topic/life-cycle-assessment/about-the-lci.html, Brussels,2011.
    [172]IDEMAT. IdeMat Database [P]. Delft:Faculty of Industrial Design Engineering, Delft University of Technology,2010.
    [173]Ke J, Zheng N, Fridley D, Price L and Zhou N. Potential energy savings and CO2 emissions reduction of China's cement industry [J]. Energy Policy,2012,45:739-751.
    [174]Chappat M and Bilal J. Sustainable development-The environmental road of the future: life cycle analysis [DB/OL]. http://www.colas.com/FRONT/COLAS/upload/com/pdf/route-future-english.pdf, Nantes:Colas Group,2013.
    [175]GABI. Gabi 4 Databases [P]. Stuttgart:PE International,2010.
    [176]Yan X and Crookes R J. Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China [J]. Renewable and Sustainable Energy Reviews,2009, 13(9):2505-2514.
    [177]何华武.快速发展的中国高速铁路[J].中国铁路,2006,7:23-31.
    [178]何华武.中国高速铁路创新与发展[J].中国铁路,2011,12:5-8.
    [179]Howlett P. Optimal strategies for the control of a train [J]. Automatica,1996,32(4): 519-532.
    [180]Vu X. Analysis of necessary conditions for the optimal control of a train [D]. Adelaide: University of South Australia,2006.
    [181]陈誌敏.Abel型常微分方程的Maple求解[J].黄冈师范学院学报,2006,26(3):8-10.
    [182]Meibom P. Technology analysis of public transport modes [D]. Kongens Lyngby:Technical University of Denmark,2001.
    [183]Bai Y, Mao B, Zhou F, Ding Y and Dong C. Energy-efficient driving strategy for freight trains based on power consumption analysis [J]. Journal of Transportation Systems Engineering and Information Technology,2009,9(3):43-50.
    [184]Raghunathan R S, Kim H D and Setoguchi T. Aerodynamics of high-speed railway train [J]. Progress in Aerospace sciences,2002,38(6):469-514.
    [185]Givoni M and Banister D. Speed:the less important element of the high-speed train [J]. Journal of Transport Geography,2012,22:306-307.
    [186]李华,胡奇英.预测与决策[M].西安:西安电子科技大学出版社,2005.
    [187]Publictransit. Japan high-speed rail passenger traffic statistics [DB/OL]. http://publictran sit. us/ptlibr ary/trafficdensity/JapanHSRTrafficDensity2010.pdf,2011.
    [188]Network Rail. Comparing the environmental impact of conventional and high-speed rail [R]. London:Network Rail Ltd.,2012.
    [189]IFEU and ICT. Transport in China:Energy consumption and emissions of different transport modes [R]. Heidelberg,2008.
    [190]Westin J and Kageson P. Can high speed rail offset its embedded emissions? [J]. Transportation Research Part D:Transport and Environment,2012,17(1):1-7.
    [191]胡建兵.基于三角形分布的纵向产品差异化模型[J].哈尔滨工程大学学报,2008,29(4),425-431.
    [192]北京市统计局.北京统计年鉴2013[M].北京:中国统计出版社,2013.
    [193]Chang Y H, Yeh C H and Shen C C.A multiobjective model for passenger train services planning:application to Taiwan's high-speed rail line [J]. Transportation Research Part B: Methodological,2000,34(2):91-106.
    [194]史峰,邓连波,霍亮.旅客列车开行方案的双层规划模型和算法[J].中国铁道科学,2007,28(3):110-116.
    [195]史峰,魏堂建,周文梁,罗湘.考虑动车组周转和到发线运用的高速铁路列车运行图优化方法[J].中国铁道科学,2012,33(2):107-114.
    [196]肖龙文,史峰.铁路公交化旅客列车开行方案优化[J].湖南大学学报:自然科学版,2009,36(1):85-88.
    [197]北京交通大学中国综合交通研究中心.轨道交通技术规范及其发展规划评估:简要报告[R].北京:北京交通大学,2010.
    [198]Andersson E and Lukaszewicz P. Energy consumption and related air pollution for Scandinavian electric passenger trains [R], Stockholm:Department of Aeronautical and Vehicle Engineering Royal Institute of Technology, KTH,2006.
    [199]廖勇.公交化城际列车开行间隔优化[J].铁道学报,2010,32(1):8-12.
    [200]陈宽民,罗小强.城市快速轨道交通合理票价的博弈分析[J].长安大学学报:自然科学版,2005,25(4):52-55.
    [201]何宇强,张好智,毛保华,陈团生.客运专线旅客列车开行方案的多目标双层规划模型[J].铁道学报,2006,28(5):6-10.
    [202]孙焰,施其洲,赵源,孔庆瑜.城市轨道交通列车开行方案的确定[J].同济大学学报:自然科学版,2004,32(8):1005-1008,1014.
    [203]张泽波.客专箱梁C50高性能混凝土配合比设计与应用[J].石家庄铁路职业技术学院学报,2008,7(4):21-25.
    [204]张建峰,李海滨,潘志坤.京沪高铁高性能混凝土配合比设计研究及应用[J].建材世界,2011,32(4):14-21.
    [205]崔明涛.C55高性能混凝土配合比设计[J].科技信息,2011,7:249-250.
    [206]孙树礼.京沪高速铁路桥梁工程[J].铁道标准设计,2008,6:1-4.
    [207]洪文刚,郝又猛.武广客运专线双线整孔箱梁预制技术[J].铁道工程学报,2008,S1:274-278.
    [208]许三平.京沪高速铁路徐沪段桥梁设计[J].铁道标准设计,2010,7:41-45.
    [209]刘辉,秦顺全.高速铁路900t级常用跨度桥梁建造技术[J].铁道工程学报,2009,2:60-63.
    [210]温江涛.武广客运专线双线整孔箱梁预制技术研究[D].成都:西南交通大学,2009.
    [211]葛世康,林凡科,付伟庆.喷射混凝土施工作业指导书[R].北京:中国水利水电建设股份集团公司,2010.
    [212]汤勇,马建涛.高速铁路路基A、B组填料改良技术探讨[J].铁路技术创新,2011,3:47-49.
    [213]黄建国.CFG桩在温福铁路中的应用[J].铁道建筑,2006,8:71-73.
    [214]计宝忠.京沪高速铁路填筑路基施工工艺与压实质量检验研究[D].成都:西南交通大学,2003.
    [215]铁道第三勘察设计院集团有限公司.京沪高速铁路CRTS II型板式无砟轨道设计技术交底[R].天津:铁道第三勘察设计院集团有限公司,2010.
    [216]赵旭.基于单网交织网络的GSM-R基站间距分析[J].铁路通信信号工程技术,2011,8(1):36-38.
    [217]京沪高铁四电系统集成电气化项目分部.新建京沪高速铁路四电系统集成工程接触网施工作业指导书[R].北京:中铁电气化局集团有限公司,2009.
    [218]王晓荣.高速铁路接触网工程概算编制探讨[J].铁路工程造价管理,2011,26(3):33-37.
    [219]郑晓广,李君章.特高压线路铁塔几种组立施工方法[J].电力建设,2009,30(4):39-43.
    [220]中铁九局杭长项目部三分部.衢州牵引变电所施工组织设计[R].沈阳:中铁九局集团有限公司,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700