用户名: 密码: 验证码:
安徽巢湖杭埠河流域环境变化的湖泊沉积地球化学记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊沉积记录了流域环境变化的各种信息指征,通过研究湖泊(含水库)沉积中记录的各种环境变化因子,可以探讨流域环境变化的过程和机制。本文以安徽巢湖—杭埠河流域为例,通过对杭埠河三角洲平原钻孔(ACN)AMS测年和多种古环境指标,包括粒度、磁性参数、有机碳、总氮、碳氮同位素、化学元素、粘土矿物等的实验分析,探讨了该地区全新世以来的环境变化历史、巢湖的形成演化及其影响机制。同时也对位于杭埠河上游的龙河口水库沉积柱样(ALE)进行了尝试性分析,探讨了自然因素(气候)与人类活动共同影响下流域环境变化的机制。初步结论如下:
     1.全新世早期(10.0~8.73kaBP)发育冲—洪积,是在海平面上升和长江水的顶托作用下形成的。古巢湖存在的时间是8.73~2.15kaBP之间,其中7.4~4.3kaBP时沉积物颜色较深、颗粒较细,反映湖水较深,湖泊处于扩张时期;4.3~2.7kaBP时湖水相对较浅、湖泊处于收缩时期。2.7~2.15kaBP,湖泊逐渐淤浅,发育杭埠河水下三角洲。
     2.自8.7kaBP来巢湖—杭埠河流域环境演化历史可划分为六个阶段,即8.7~8.3kaBP的气候回升期、8.3~7.4kaBP的降温期(其中7.6~7.4kaBP降温最剧烈)、7.4~6.3kaBP的暖湿期、6.3~4.3kaBP的温湿期(呈波动下降趋势)、4.3~2.2kaBP的降温期(其中尤以4.3~3.2kaBP气温下降幅度最大)、2.2~1.0kaBP的气温回升期(偏温湿)和1.0kaBP以来的气候冷干期。全新世大暖期约为8.5~4.3kaBP,大暖期鼎盛期约为7.4~6.3kaBP。ACN孔揭示的环境变化历史与全球进入冰后期后的环境变化框架基本一致。
     3.龙河口水库深水区的沉积速率较之巢湖要高得多,为0.5~5.5cm/a,平均2.28cm/a。沉积物中极细砂(>63μm)含量变化曲线经多项式拟合后获得的剩余值与月径流曲线呈明显的正相关,因而可用来指示季风区降水相对集中的夏季或洪水事件。近50a来杭埠河上游地区的环境变化历史具有阶段性(可划分为六个阶段)和事件性的特点,并明显受流域降水—径流和人类活动的双重影响。
Lake sediments are the best records for researches of the catchment environmental change. In east China the lower Yangtze River has ever been, for decades, an area influenced strongly by monsoon climate and under high pressure of human activities. Therefore, it is more significant in both theory and reality to choose a representative catchment for studies of the processes and mechanism of the environmental changes based on sediment cores. This paper takes the Chaohu-Hangbu catchment as an example. Two cores covering different time-scales were deeply studied for different purposes. One is, covering the complete Holocene, a drilling core (ACN) in the Hangbu delta plain of the Chaohu lake and the other, spanning the last several decades, is taken from the Longhekou reservoir (ALE) in the upper reaches of Hangbu River. Methods, such as AMS dating, grain-size analysis, magnetic measurements, organic carbon, nitrogen and phosphorus, isotopes of carbon and nitrogen and XRD and XRF analyses, spherical carbon particles (SPC) analysis etc, were alternatively included. Results can be drawn as follows.The lower part of ACN core consists of alluvial-pluvial deposits, indicating that it is formed under conditions of increasing water table of Yangtze River due to the global sea-level uprising during the early time of the Holocene (10.0~8.73kaBP). The middle part (nearly nine meters thick) is lacustrine deposits showing that the paleo-Chaohu lake here lasts from 8.73~2.15kaBP. From then this bay was filled up with the sediments derived from Dabie Mountains and formed as a delta of the Hangbu River.
    Since ~8.7ka BP seven substages of climate change in this area were divided. They are warming up substage of 8.7~8.3ka BP, cold substage of 8.3~7.4ka BP, most warm and humid substage of 7.4-6.3ka BP, fluctuation substage of 6.3~4.3ka BP, cold substage of 4.3~2.2ka BP, warm and humid substage of 2.2-1.Oka BP, and cool and dry substage since ~1.0ka BP. This framework of climatic change is fundamentally in accordance with the global change during the post-glacial. The Holocene warm period seems to begin at ca 8.5ka BP and to conclude at ca 4.3ka BP, and the Climatic Optimum is from 7.4~6.3ka BP.The ALE core reveals a yearly resolution record over the past 50 years, with a mean sedimentary rate of 2.28cm/a. We built the depth-age model based on the SCP analysis and particle size-to-runnoff comparison. Significantly, the residual value obtained through fit polynary analysis to the percent of coarse sediments (>63um) represents a proxy of rainy season or floods in summer under monsoon conditions. Six substages indicative of the catchment environmental change were grouped through multi-proxes analyses. These substages each are strongly characterized by both the catchment rainfall-to-runoff and the human activities.
引文
[1] 白雁,刘春莲,郑卓,等.海南岛双池玛珥湖沉积中的碳、氮地球化学记录及其环境意义.古地理学报,2003,5(1):87—93.
    [2] 曹建廷,王苏民,沈吉,等.内蒙古岱海地区近千年气候环境演变的初步研究.海洋地质与第四纪地质,2000,20(2):15—20.
    [3] 陈发虎,王苏民,李吉均,等.青藏高原若尔盖湖心磁性地层研究.中国科学(B辑),1995,25(7):772—77.
    [4] 陈敬安,万国江.洱海近代气候变化的沉积物粒度与同位素记录.自然科学进展,2000,10(3):253—259.
    [5] 陈敬安,万国江,张峰,等.不同时间尺度下的湖泊沉积物环境记录一一以沉积物粒度为例.中国科学(D辑),2003,33(6),563~568.
    [6] 陈骏,王鹤年主编.地球化学[M].北京:科学出版社,2004,301-311.
    [7] 陈镇东 罗建育 万政康,中国台湾大鬼湖沉积物所保留之降尘记录,第四纪研究,20001,21(1),18-28.
    [8] 陈萍,何报寅,杜耘等,.1200a来洪湖演变的环境磁学记录.沉积学报,2005,23(1):138—142.
    [9] 陈炜:巢湖地区8700年以来的植被、气候变化与人类活动的影响。中国科学院南京地质古生物研究所,硕士论文,2005。
    [10] 邓宏文,钱凯编著.沉积地球化学与环境分析【M].甘肃科学技术出版社,1993,1—29.
    [11] 窦鸿身,姜家虎主编.中国五大淡水湖[M].合肥:中国科学技术大学出版社,2004,
    [12] 杜磊,易朝路,潘少明,等.长江下游巢湖湖泊沉积物的粒度特征与沉积环境.安徽师范大学学报(自然科学版),2004,27(1):101—104.
    [13] 顾兆炎,刘荣谟,安川克己,等.12000年来青藏高原季风变化—色林错沉积物地球化学的证据.科学通报,1993,38(1):61—64.
    [14] 《湖泊及流域学科发展战略研究》秘书组.湖泊及流域科学研究进展与展望.湖泊科学,2002,14(3):289-300.
    [15] 韩淑缇,瞿章.北疆巴里坤湖内陆型全新世气候特征.中国科学(B辑),1993,23(11):22~31.
    [16] 韩晓非.潮滩植物根际环境的生物地球化学效应及沉积物磁性表征.华东师范大学博士论文,2002.
    [17] 胡守云,邓成龙,E.Appel,等.湖泊沉积物磁学性质的环境意义.科学通报,2001,46(17),1491-1494.
    [18] 胡守云,王苏民,Appel E.,等.呼伦湖湖泊沉积物磁化率变化的环境磁学机制.中国科学(D辑),1998,28:334—339.
    [19] 黄成彦.颐和园昆明湖3500余年沉积物研究,北京:海洋出版社,1996.
    [20] 吉磊,夏威岚,项亮,等.内蒙古呼伦湖表层沉物的矿物组成和沉积速率,1994,6(3):227—232.
    [21] 吉磊,中国过去2000年湖泊沉积记录的高分辨率研究:现状与问题,1995,地球科学进展,10(2):169—175.
    [22] 纪友亮,胡光明,张善文,等.沉积层序界面研究中的矿物及地球化学方法.同济大学学报,2004,32(4):455~460.
    [23] 金章东,王苏民,沈吉,等.全新世岱海流域化学风化及其对气候事件的响应.地球化学,2004,33(1):30—36.
    [24] 李国胜.艾比湖冰消期以来的δ(13)_C记录与突变气候事件研究.科学通报,1993,38(22):2069—2071.
    [25] 李容全,郑良美,朱国荣.内蒙古高原湖泊与环境变迁(M).北京::北京师范大学出版社,1990,1—219.
    [26] 林瑞芬,卫克勤,Gasse F.,等.新疆玛纳斯湖沉积柱样的古气候古环境研究.地球化学,1996,25(1):63—72.
    [27] 刘东生等著.黄土与环境,北京:科学出版社,1985,191—208.
    [28] 刘兴起,王苏民,沈吉.青海湖QH—2000钻孔沉积物粒度组成的古气候古环境意义,湖泊科学,2003,15(2):112—117.
    [29] 陆景冈.土壤地质学.北京:地质出版社,1997,11-24.
    [30] 马振兴,黄俊华,魏源,等.鄱阳湖沉积物近8 ka来有机质碳同位素记录及其古气候变化特征.地球化学,2004,23(3):279—285.
    [31] 彭晓莹,钟巍,赵引娟.全新世大暖期气候环境特征及其机制的再认识,华南师范大学学报(自然科学版),2005年第2期,52—60.
    [32] 彭子成,韩有松,莱州湾地区10万年以来沉积环境变化,地质论评,1992,38(4):360—366.
    [33] 瞿文川,薛滨,吴艳宏,等.太湖14000年以来古环境演变的湖泊记录,地质力学学报,1997,3(4):53—61.
    [34] 秦大河,陈宜瑜,李学勇,中国气候与环境演变.上卷,气候与环境的演变与预测[M].北京,科学出版社,2005,71—73.
    [35] 沈吉,杨丽原,羊向东,等.全新世以来云南洱海流域气候变化与人类活动的湖泊沉积记录.中国科学(D辑),地球科学,2004,34(2):130—135.
    [36] 沈吉,王苏民,羊向东.湖泊沉积物中有机碳稳定同位素测定及其古气候环境意义.海洋与湖沼,1996,274):400—403.
    [37] 施少华.中国全新世高温期中的气候突变事件及其对人类的影响.海洋地质与第四纪地质,1993,13(4),65—73.
    [38] 施雅风,孔昭宸,王苏民等,中国全新世大暖期的气候波动与重要事件,中国科学(B辑),1992b,12,1301—1308.
    [39] 施雅风.中国气候与海面变化及其趋势和影响.1.中国历史气候变化[M].济南:山东科学技术出版社,1992a,113—128.
    [40] 师育新,戴雪荣,宋之光,等.我国不同气候带黄土中粘土矿物组合特征分析.沉积学报,2005,23(4),146—151.
    [41] 苏守德.鄱阳湖成因与演变的历史论证.湖泊科学,1992,4(1):40—46.
    [42] 孙千里,周杰,肖举乐.岱海沉积物粒度特征及其古环境意义.海洋地质与第四纪地质,2001,211):93—95.
    [43] 屠清瑛等.(中国湖泊系列研究之二)巢湖——富营养化研究[M],合肥:中国科技大学出版社.1990,1—20.
    [44] 汪立金,现代矿物学发展新领域——环境矿物学.新疆大学学报,2001,18(2):204—207.
    [45] 王建,刘泽纯,姜文英,等.磁化率与粒度、矿物的关系及其古环境意义.地理学报,1996,51(2):155—163.
    [46] 王开发.全新世温暖期中低温事件的初步研究.第四纪研究,1990,第二期:,168—174.
    [47] 王秋良,谢远云,梅惠.泊沉积物中有机碳同位素特征.安全与环境程,2003,10(4):18—21.
    [48] 王绍武,龚道溢.全新世几个特征时期的中国气温.自然科学进展,2000,10(4):325-332
    [49] 王苏民 张振克.中国湖泊沉积与环境演变研究的新进展.科学通报,1999,44(6):579—587.
    [50] 王苏民,窦鸿身主编.中国湖泊志[M],1998,北京:科学出版社.5—235.
    [51] 王苏民,吉磊,羊向东,等.内蒙古扎赉诺尔湖泊沉积物中的新仙女木事件记录.科学通报,1994,39(4):348—351.
    [52] 王苏民,施雅风,沈吉,等.青藏高原东部800ka来古气候与古环境变迁的初步研究(A).见:青藏项目专家委员会.青藏高原形成演化环境变迁与生态系统研究学术论文年刊(1994)(C).北京:科学出版社,1995,236—248.
    [53] 王苏民,薛滨.中更新世以来诺尔盖盆地环境演化与黄土高原的比较研究.中国科学(D)辑,1996,26(4):323—328.
    [54] 王苏民,羊向东,马燕,等.江苏固城湖15ka以来的环境变迁与古季风关系探讨.中国科学,D辑,1996,26(2):137—141.
    [55] 王永华,钱少猛,徐南妮,等.巢湖东区底泥污染物分布特征及评价.环境科学研究,2004,17(6):22—26.
    [56] 汪家权,孙亚敏,钱家忠,等.巢湖底泥磷的释放模拟实验研究.环境科学学报,2002,22(6):738—742.
    [57] 王云飞.全新世高温期我国湖泊沉积和自然环境的基率特征.湖泊科学,1992,4(1):9—18.
    [58] 吴敬禄,王苏民,沈吉.湖泊沉积物有机质子δ(13)~C所揭示的环境气候信息.湖泊科学,1996,8(2):113—118.
    [59] 吴敬禄,王苏民.青藏高原东部RM孔碳酸盐氧同位素揭示的末次间冰期气候特征.科学通报,1996,41(17):1601—1604.
    [60] 吴敬禄,沈吉,王苏民.湖泊沉积物中有机物δ(13)~C形成条件兼论若尔盖盆地中δ(13)~C所示古气候特征.青藏高原形成演化、环境变迁与生态系统研究—学术论文年刊[M],1994,北京:科学出版社.
    [61] 吴敬禄.新疆艾比湖全新世沉积特征及古环境演化.地理科学.1995,15(1):39—46.
    [62] 吴锡浩,安芷生,王苏民,等.中国全新世气候最宜期东亚夏季风时空变迁.第四纪研究,1994(1):24—35.
    [63] 吴艳宏,项亮,王苏民,等.鄱阳湖2000年来的环境演化,海洋地质与第四纪地质,1999,19(1),85-92.
    [64] 吴艳宏,王苏民,夏威岚,等.近代湖泊沉积物球状碳颗粒(SCP)定年,科学通报,2005,50(7):703—707.
    [65] 肖保华,万国江.泸沽湖沉积物有机质碳同位素组成与气候变迁记录,矿物岩石地球化学通报,1997,16(1):22—24.
    [66] 熊毅,李庆逵主编.中国土壤(第二版).北京:科学出版社,1987,374—389.
    [67] 熊毅.土壤胶体(第二册).北京:科学出版社,1955,15—109.
    [68] 徐国华,马众模,黄世祥,等.基于GIS的巢湖流域水环境综合治理决策支持系统研究.安徽地质,2001,11(4):270—275.
    [69] 徐馨.中国东部全新世自然环境演变.贵州地质,1989,6(3):227—238.
    [70] 徐昶.青藏盐湖沉积物中粘土矿物的初步研究.地质科学,1985(1):87—95.
    [71] 徐昶.青海湖沉积物中的粘土矿物,地质科学,1989(4):348—354.
    [72] 薛滨,瞿文川,吴艳宏,等。太湖晚冰期一全新世气候、环境变化的沉积记录.湖泊科学,1998,10(2),30—36.
    [73] 羊向东,王苏民,沈吉.近0.3ka来龙感湖流域人类活动的湖泊环境响应,中国科学(D)辑,2001,31(1):1031—1038.
    [74] 杨达源,王云飞.近2000年淮河流域地理环境的变化与洪灾——淮河中游的洪灾与洪泽湖的变化.湖泊科学,1995,7(1),1—7.
    [75] 杨达源,李徐生,张振克.长江中下游湖泊的成因与演化.湖泊科学,2000,12(3):226—232.
    [76] 杨汉东,蔡述明.江汉平原湖泊沉积物的化学特征及其与人类活动的关系,地理科学,1997,17(4):323—328.
    [77] 杨汉东,何报寅,蔡述明.江汉平原长湖近代沉积物磁性测量及其气候意义,地理科学,1998,18(20):135—138.
    [78] 姚书春,李世杰.巢湖富营养化过程的沉积记录.沉积学报,2004,22(2):343-347.
    [79] 姚书春,沈吉.巢湖沉积物柱样中正构烷烃初探.湖泊科学,2003,15(3):200-204.
    [80] 殷勇,方念乔,王倩,等.云南中甸纳帕海湖泊沉积物的磁化率及环境意义.地理科学,2002,22(4):413—419.
    [81] 俞立中,许羽,许世远,等.太湖沉积物的磁性特征及其环境意义.湖泊科学,1995,7(2),141—150.
    [82] 余俊清,王小燕,李军,等.湖泊沉积有机碳同位素与环境变化的研究进展,湖泊科学,2001,13(1):72—78.
    [83] 朱立平,王君波,陈玲,等.藏南沉错湖泊沉积多指标揭示的2万年以来环境变化.地理学报,2004,59(4),514—524.
    [84] 张成君,陈发虎,施祺,等.西北干旱区全新世气候变化的湖泊有机质碳同位素记录——以石羊河流域三角城为例.海洋地质与第四纪地质,2000,204):93—97.
    [85] 张崇岱,潘宝林.巢湖湖盆及其变迁研究.安徽师大学报,1990(1):48—56.
    [86] 张平中等.青藏高原若而盖盆地RH孔沉积有机质δ(13)~C和氢指数记录.中国科学(B),1995,6:450—463.
    [87] 张卫国,俞立中,S.M.Hutchinson.长江口南岸边滩沉积物重金属污染记录的磁诊断方法.海洋与湖沼,2000,31(6):616—622.
    [88] 张晓阳,蔡述明,孙顺才.全新世以来洞庭湖的演变,湖泊科学,1994,6(1),13—21.
    [89] 张振克,吴瑞金,王苏民等,近2600年来内蒙古居延海湖泊沉积记录的环境变迁,湖泊科学,1998a,10(2):(2):44-51
    [90] 张振克,王苏民,吴瑞金.全新世中期洱海湖泊沉积记录的环境演化与西 南季风变迁,科学通报,1998b,43(19):2127—2128.
    [91] 张振克,王苏民.中国湖泊沉积记录的环境演变:研究进展与展望,地球科学进展,1999,14(4):417~422
    [92] 张振克,吴瑞金.近2000年来云南洱海沉积记录的气候变化.海洋地质与第四纪地质,2001,21(2):31—34.
    [93] 张振克,吴瑞金,王苏民,等.全新世大暖期云南洱海环境演化的湖泊沉积记录,海洋与湖沼,2000,31(2):210—214.
    [94] 张振克,吴瑞金,王苏民,等.近8kaBP来云南洱海地区气候演化的有机碳稳定同位素记录.海洋地质与第四纪地质,1998,18(3):23—28.
    [95] 张之源,王培华,张崇岱,等.巢湖营养化状况评价及水质恢复探讨.环境科学研究,1999,12(5):45—48.
    [96] 张实,谢先德,万国江.云南泸沽湖矿物学沉积记录,矿物学报,1997,17(2):183—193.
    [97] 张世涛,宋学良,张子雄,等.星云湖表层沉积物矿物组成及其环境意义,地球科学进展,2003,18(6):928—932.
    [98] 张乃娴,万国江,马玉光.威宁草海沉积物中的粘土矿物及其环境记录,地质科学,2004,35(2):206—211.
    [99] 张立仁.洱海粘土矿物的初步研究.海洋与湖沼,1989,20(4):375—380.
    [100] 赵叔松,赵希涛.中国第四纪海平面变化研究的进展.中国海平面变化.北京:海洋出版社.
    [102] 郑绵平,齐文,吴玉书,等.晚更新世以来罗布泊盐湖的沉积环境和找钾前景初析.科学通报,1991,36(23):1810—1813
    [103] 郑绵平,向军,魏新俊,等.青藏高原盐湖[M.北京:科学出版社,1989,1—431.
    [104] 郑洪汉,顾雄飞,韩家懋,等.中国黄土中的黏土矿物及其在地层剖面中的变化趋势——洛川和陇西黄土剖面的初步研究.中国第四纪研究,1985,6(1):158—165.
    [105] 周静,王苏民,吕静.洱海地区一万多年以来气候环境演化的湖泊沉积记录.湖泊科学,2003,15(2):104—111.
    [106] A. L. Herczeg, A. K. Smith, J, C. Dighton, A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C: N, δ(15)~N and δ (13)~C in sediments. Applied Geochemistry, 2001, 16, 73-84.
    [107] Brzenkova I.I., Global palaeoclimatic of the late Cenozoic (Eds. Zubakov V. A. et al.). Elsevier, 1990, 219—250.
    [108] Dearing J A. Sedimentary indicator of lake—level changes in the humid temperate zone: a critical review. Journal of Paleolimnology, 1997, 18 (1): 1-14.
    [109] Degens E T. Biogeochemistry of stable carbon isotope. In Geglinton, eds. Organic geochemistry[M]. Berlin: Springer-Verlag, 1969, 304-329.
    [110] Deines p. The Isotope composition of reduced organic carbon. In: Fritz P and Fontes J Ch. eds. Hanfbook of environmental sotope geochemistry. Part I. Amsterdam: Elsevier Scientific, 1980, 49-71.
    [111] Digerfeldt G. Studies on Past lake-level fluctuations. In Berglund B E, ed. Handbook Of Holocene palaeoecology And Palaeohydrology. Chichester: John Wiley, 1986, 127-143.
    [112] Gibbs R J .Clay mineral Segregation in the marine environment. J sediment petrol, 1977,47,237-243.
    [113] Gibson T G, Bybell L M, Owens J P . Latest Paleocene lithologic and biotic events in neritic deposits of Southwestern New Jersey. Paleoceanography ,1993, 8(4):495-514.
    [114] Griffin J J, Windom H, Goldberg E D The distribution of clay minerals in the world oceans, Deep-sea ReS., 1968,15,433-459.
    [115] Hafsten, U. Palaeogeography, palaeoclimatology and palaelogogy. 1976, 7:279-296.
    [116] Johnson L R.Mineralogica dispersal patterns of North Atlantic deep-sea sediments with particular reference to eoliandusts, Mar. Geol .1979, 29 :335-345.
    [117] Kalm V E, et al. Clay minerals and their paleoenvironment interpretation in the Baoji loess section, Southern Loess Plateau[J]. Catena, 1996, 27:49-61.
    [118] Kamaledin M. Hasssn, James B. Swinehart & Roy F. Spalding, Evidence for Holocene environmental change from C/N ratios, and δ~(13) C and δ~(15)N values in Swan Lake sediments, western Sand Hills, Nebraska. Journal of paleolimnology, 1997,18:121-130.
    [119] Mather B A. Magnetic Properties of some synthetic sub — micromagnetites. Geophysical Journal, 1988, 94:83-96.
    [120] Menking K M, Bischoff J L, FitzPatrick J A, et al. Climatic/hydrologic oscillations since 155,000 yr B.P at Owens Lake, California, reflected in abundance and stable isotope composition of sediment carbonate. Quaternary Research, 1997,48: 58-68.
    [121] Menking K M. Climatic signals in clay mineralogy and grain — size variations in Owens Lake core 01 — 92, eastern California. Geological Society of America Special PaPer, 1997, 317: 25-36.
    [122] Meyers P A, Ishiwatari R. The early diagenesis of organic matter in lacustrine sediments, In : Michael H, Engel , Stephen , Macko A , eds.Organic geochemistry, 1993,23 :185 -209.
    [123] Meyers, P A., G. E. Tenzer, M. E. Lebo & J. E. Reuter, 1998. Sedimentary record of sources and accumulation of organic matter in Pyramid Lake, Nevada, over the Past 1000 years. Limnol. Oceanogr. 43:160-169.
    [124] Meyers P A , Elisabeth Lallier-Verges. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates . Journal of Paleolimnology, 1999 , 21(3): 345-369.
    [125] Nakai N. Carbon isotopic variation and paleoclimate of sedimentsfrom lake Biwa. Proceeding of the Japan Academy, 1972 ,(48) :516 - 521.
    [126] Pang, P C.& J.0. Nriagu, 1977. Isotopic variations of the nitrogen in Lake Superior Geochim.Cosmochim.Acta 41:811-814.
    [127] Pang, P C.& J.O. Nriagu Distribution and isotope composition of nitrogen in Bay of Quinte (Lake Ontario) sediments.Chem.Geol. 1976,18:93-105.
    [128] Pearson, F J and Coplen, T B. Stable isotope studies of lake. In : ALerman. ed. Lakes: Chemistry,Geology, Physics [M] . New York :Springer2verlag ,1978 ,235 - 236.
    [129] Peck J A, King J W, Colman S M, at al. A rock-magnetic record from Lake Baikel, Siberia: Evidence for Late Quaternary climate change. Earth Planet Sci Lett, 1994, 122: 221-238.
    [130] Peck J A, King J W, Williams D F, at al. A 5 Ma climate proxy record from Central Asia;rock-magnetic results from the 1996 Lake Baikal drilling. Abstracts with Programs-Geological Society of America, 1997, 29(6):374.
    [131] Peters, K.E., R.E. Sweeney&l.R.Kaplan, Correlation of carbon and nitrogen ratios in sedimentary organic matter Limnol.Oceanogr, 1978, 23:598-604.
    [132] Phijips A. Meyers & Elisabeth Lallier-Verges, Lacustrine sedimentary organic matter records of Quaternary paleoclimates. Journal of paleolimnology, 1999, 21:345-372.
    [133] pinsak Ap, Murray H H, Regional clay mineral patterns in the Gulf of Mexico proc. 7th Natl .Conf. Clay and Clay Minerals, 1960, 162-178.
    [134] Robert C, Kennett J. Paleocene and Eocene kaolinite destribution in the South Atlantic and Southern Ocean: Antarctic climatic and paleoceanographic implications.Mar .Geol .1992, 103, 99-110.
    [135] Saurer M , Sigenthaler U. The climate-carbon isotope relationshipin tree rings and the s ignificance of site conditions. Tellus, 1995, (46B):320-330.
    [136] Singer A, The Paleoclmatic interpretion of clayminerals in sediments—a review. Earth Scicences Reviews, 1984, 21:251-293.
    [137] Sly P G. Sedimentary Processes in lakes. In: Lerman A ed. Lakes: Chemistry, eology, Physics. New York: Springer -- Verlag, 1978, 65-90.
    [138] Stuiver M. Climate versus change in δ~(13)C content of the organic com2ponent of lake sediments during the Late Quaternary . Quat. Res . 1975 ,(5) :251-262.
    [139] Thompson R, and F. Oldfield. Environmental Magnetism. Allen & Unwin Ltd., 1986.
    [140] Thouveny N, Beaulieu J L, Bonifay E, et al. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature, 1994, 371: 503-506.
    [141] Wang, J., Chen, X., Zhu, X.H. et al., Taihu Lake, lower Yangtze drainage basin: evolution, sedimentation rate and sea level, Geomorphology, 2001, 41(2-3), 183-194.
    [142] Wersin p, Hohener P, Giovanoli R et al. Early diagenitic influence on iron transformations in a freshwater lake sediment. Chemical Geolgy, 1991, 90:233-252.
    [143] Yu L Z, Oldfield F, Wu Y S, et al. Paleoenvironmental implications of magnetic measurements on sediment core from Kunming Basin, Southwest China[J]. Journal of Paleolimnology, 1990,3:95- 111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700