用户名: 密码: 验证码:
变换域数字图像水印若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字水印技术是一种解决多媒体数据版权和内容认证的手段之一,自从上个世纪90年代以来,高速增长的多媒体取证需求促进了数字水印技术的持续发展。但是数字水印技术仍未成熟,在实际应用中还存在诸多问题。因此,本文以静态图像作为研究对象,通过结合图像的特征、视觉模型等来寻求有效的水印嵌入和检测策略,为数字水印技术的实际应用提供一些有效的解决方案。论文的主要创新点归纳如下:
     (1)提出了一种基于DWT(Discrete Wavelet Transform)和DCT(Discrete Cosine Transform)混合域的RDM (Rational Dither Modulation)水印算法。针对常规量化水印算法对幅度缩放、JPEG压缩等攻击敏感的问题,本文通过选取纹理信息最为丰富的图像区域作为水印嵌入空间,并以RDM机制为框架,提出了一种自适应量化水印嵌入策略,解决了常规量化水印算法中量化步长的同步问题。仿真结果表明该算法具有较好的信息隐藏能力以及相比其它算法具有较强的鲁棒性。
     (2)提出了一种基于双树复小波变换的鲁棒量化水印算法。本文利用双树复小波变换的完全重构、近似平移不变性和良好的方向选择性设计了一种水印嵌入方式,通过分析量化步长的补偿因子与失真度、鲁棒性之间的关系,得到了补偿因子的最优值,较好地平衡了水印鲁棒性和图像视觉质量之间的矛盾。仿真结果表明水印对JPEG压缩、加性高斯白噪声、幅度缩放、旋转等攻击具有较强的鲁棒性。此外,在量化水印算法的基础上,结合尺度不变特征变换和图像归一化技术构建了一种基于特征的几何不变量,提出了一种基于关键熵的复小波域盲图像水印算法,解决了水印对常见几何攻击的敏感问题。仿真结果表明该算法可以有效地抵抗旋转、缩放、剪切等几何攻击。
     (3)提出了一种基于双嵌入机制的小波域盲图像水印算法。针对水印仅嵌入在低频区域或仅嵌入在高频区域的各自缺陷,本文以归一化技术为基础,结合图像的亮度掩蔽效应、纹理掩蔽效应设计了两种水印嵌入强度因子,分别应用于低频和高频区域的水印嵌入。该水印算法利用了小波变换的局部分析特点、以及小波与人类视觉系统之间具有较好的相似性,保证了图像的视觉质量,提高了水印抵抗常用图像处理和几何攻击的鲁棒性。
     (4)提出了一种基于视觉模型的乘性水印算法。本文以水印的不可感知性和鲁棒性作为乘性因子的目标函数,并建立一种多目标优化模型,实现了水印的不可感知性和鲁棒性之间的平衡,同时利用双树复小波系数幅度的近似平移不变性和能量机制,提高了水印的鲁棒性。仿真结果表明提出的水印算法具有较好的不可感知性以及水印对常用组合攻击具有较强的抵抗能力。
     (5)针对基于双树复小波变换的图像处理这个交叉学科进行了深入分析,提出了一种结合双树复小波和波原子的图像扩散滤波算法。该算法以各向异性扩散模型为背景,利用波原子变换对图像较好的稀疏表示能力以及双树复小波变换的近似平移不变性、良好的方向选择性等优势,给出了一种扩散系数计算方法,有效地控制了图像扩散的强度和方向,解决了采用传统各向异性扩散模型对图像滤波造成的细节特征信息容易丢失的问题。结果表明该算法在对图像进行滤波的同时,较好地保持了图像的边缘和纹理等细节信息。最后在此基础上,考虑到图像经变换后复小波系数之间的相关性和局部性,介绍了一种自适应各向异性扩散图像滤波算法,并以该算法为理论框架,提出了一种基于偏微分方程的双树复小波图像去噪方法,将该方法已经申请专利,申请号为201010107623.0。
Digital watermarking as one of techniques can be utilized in copyright protection and content authentication. Since 1990s, the increasing requirement of multimedia forensics encourages the development of digital watermarking. However, digital watermarking is still in its infancy and remains a great deal of problems. Therefore, this dissertation takes still images as research object, and presents several image watermarking methods by incorporating the advantages of the features of image, visual model, etc,and provides some effective solution for watermarking in practical application. Contributions of this thesis can be summarized as following:
     (1)A hybrid approach of DWT (discrete wavelet transform) and DCT (discrete cosine transform) for the rational dither modulation (RDM) watermarking is proposed in this thesis. Considering some sensitivity problems of conventional quantization-based watermarking against amplitude scaling, JPEG compression attack, etc, we propose an adaptive embedding strategy with RDM by selecting the richest texture region as the embedding space. The synchronization of the quantization step-size can be adaptively controled by using this scheme. Experimental results confirm the imperceptibility of the proposed watermarking and its higher robustness against attacks compared to alternative watermarking methods in the literature.
     (2)A robust quantization-based watermarking is proposed in the dual tree complex wavelet transform (DTCWT) domain. We propose an embedding method by taking advantages of the dual tree complex wavelets (perfect reconstruction, approximate shift invariance, and directional selectivity), and we obtain the optimum of scalar factor by concerning the relation among the scalar factor, distortion and robustness. Therefore the trade-off between the imperceptibility and the robustness can be achieved effectively. Experimental results demonstrate that the proposed method is robust against JPEG compression, additive white Gaussian noise (AWGN), and some kinds of geometric attacks such as amplitude scaling, rotation, etc. Furthermore, on the basis of the quantization-based watermarking, a feature-based geometric invariant is constructed by combining the image normalization technology with the scale invariant feature transform, and an image blind watermarking method is presented based on key entropy in the DTCWT domain. Using the geometric invariant in the proposed method, the sensitivity problem can be solved for the watermark when against common geometric attacks. Experimental results show that it has good robustness against some kinds of geometric distortions consist of rotation, scaling, and affine transformations, etc.
     (3)A blind image watermarking is proposed in the wavelet domain by using dual embedding scheme. According to the disadvantages of watermarking which the watermark is embedded only in low-frequency region or in high-frequency, two embedding factors are exploited by considering the visual perceptual characteristics, and they are used in the low-frequency and high-frequency domain for watermark embedding respectively. Thanks to the good multi-resolution of discrete wavelet transform and the similarity with human vision perceptual model, the image quality can be guaranteed and the robustness can be improved against common image processing and geometric attacks by using the proposed approach.
     (4)A multiplicative watermarking based on visual model is proposed. A multiobjective optimization model is exploited by taking the imperceptibility and the robustness as object functions. Using this scheme, the conflict between the imperceptibility and the robustness can be sloved effectively. Further, we investigated combining the approximate shift invariance of DTCWT with energy scheme. Thus the robustness of watermarking can be improved. Experimental results show that the imperceptibility of the proposed is good, and the watermark can be robust against common combinational attacks.
     (5)We give an insight of some DTCWT-based image processing, and then propose an image diffusion filtering algorithm based on dual tree complex wavelet and wave atoms. Under the background of anisotropic diffusion model, we introduce a novel computational technique for diffusivity by taking advantages of the properties of the wave atoms (good sparse representation) and the dual tree complex wavelet transform(perfect reconstruction, approximate shift invariance and directional selectivity). Using this technique, the direction and strength of image diffusion can be controled effectively, and the problem which many image detail features are wiped away easily by applying the traditional anisotropic diffusion model can be solved. Experimental results show that many features of image such as edges and textures can be preserved well after filtering via the proposed algorithm. Finally, we introduce an adaptive anisotropic diffusion image filtering by considering the correlation and localization among the complex wavelet coefficients, and we propose an image denoising method based on PDEs (Partial Differential Equations) in the DTCWT domain under the theory framework of the proposed algorithm. Then an invented patent has been holding on this achievement, and the patent No. is 201010107623.0.
引文
[1]张文俊.数字新媒体概论.复旦大学出版社, 2009,1-50.
    [2] S. Mallat著,杨力华,戴道清,黄文泉等译.信号处理的小波导引.北京:机械工业出版社,2002, 50-88.
    [3]张贤达著.现代信号处理,北京:清华大学出版社,2002,378-442.
    [4]李建平.小波分析与信号处理理论、应用及软件实现.重庆:重庆出版社, 1997,1-47.
    [5]秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1998,1-55.
    [6]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998,1-20.
    [7]崔锦泰(著),程正兴(译).小波分析导论.西安:西安交通大学出版社,1995,1-35.
    [8]李建平等译.科学技术中的小波分析.北京:国防工业出版社,2006,16-36.
    [9] S. Mallat. A theory for multi-resolution signal decomposition: The wavelet representation.IEEE Trans. Pattern Anal. Mach. Intell., 1989, (11):674–693.
    [10] J.E.Littlewood,R.E.A.C.Paley. Theorems on Fourier series and power series. Part I,Journal of London Mathematical Society,1931,l.6:230-233;Part II,Proc.London Math.Soc,1936,42:52-89; Part III,ibid,1937,43:105-126.
    [11] J.O.Stromberg. A Modified Franklin System and Higher-Order Spline Systems on Rn as Unconditional Bases for Hardy Spaces.In Conference in harmonic analysis in honor of Antoni Zygmund, Wadworth math.series, 1983:475-493.
    [12] Y. Meyer. Wavelets algorithms and applications. SIAM, Philadelphia, 1993.
    [13] Daubechies. Ten Lectures on Wavelets. CBMS Conference Series in Applied Mathematics, SIAM, Philadelphia, 1992.
    [14] S.Mallat. Multifrequency channel decomposition of images and wavelet models. IEEE Trans. On Acoustic, Speech and Signal Processing, 1989, 37(12):2091-2110.
    [15] S.Mallat. A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans.on PAMI, 1989, 11(7):674-693.
    [16] S.Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Amer Math. Soc., 1989.9, 315:69-87.
    [17] R. R. Coifman, M.V. Wickerhauser. Entropy based algorithms for best basis selection. IEEE Trans. on Inform.Theory,1992, 38 (2):713-718.
    [18] Cohen, I.Daubechies, J.C. Feauveau. Bi-orthogonal bases of compactly supported wavelets. Comm.Pure Applied Math., 1992(4):485-560.
    [19] D.L. Donoho. Interpolating wavelet transforms. Technical Report, Dept. of Statistics Stanford Univ., 1992.
    [20] S. Dubuc. Interpolating through an iterative scheme. J. Math. Anal. And Appl., 1986, 114:185-204.
    [21] T.N.T. Goodman, S.L. Lee. Wavelets of multiplicity. Trans. Amen Math.Soc. March 1994, 342(1):307-324.
    [22] W.Sweldens. the lifting scheme: a custom-design construction of biorthogonal wavelets.Appl. Comput. Harmon. Anal., 1996, (2):186-200.
    [23] W.Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J.Math.Ana1. 1997, 29(2):511-546.
    [24] F.G.Meyer, R.R.Coifman. Brushlets: a tool for directional image analysis and image compression. Applied and Computational Harmonic Analysis, 1997, 5:147-187.
    [25] D.L. Dohono. Wedgelets: Nearly Minimax Estimation of Edges. Stanford Univ, Report, 1997.
    [26] N. G. Kingsbury. The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. Proceeding of 8th IEEE digital signal processing workshop, Bryce Canyon: IEEE, 1998:86-89.
    [27] E.J.Candes. Ridgelets: Theory and applications. [Ph.D. Thesis].Department of Statistics, Stanford University, 1998.
    [28] E.J. Candes, D. L.Donoho. Curvelets. Technical report, Department of Statistics, Stanford University, 1999.
    [29] E. L.Pennec, S. Mallat. Image compression with geometrical wavelets. In Proc of ICIP’2000, Vancouver, Canada, September 2000:661-664.
    [30] ELPennec, S.Mallat. Nonlinarimage approximation with bandelets. Tech.Report, CMAP Ecole Polytechnique, 2003.
    [31] D.L, Dohono, X.M.Huo. Beamlets and Multiscale Image Analysis.Standford Univ, Report, 2001.
    [32] M. N. Do, M.Vetterli. Framingpyramids. IEEE Trans. on Signal Processing, 2003, 51(9):2329-2342.
    [33] D. Labate, W.Q. Lim, G.Kutyniok, G.Weiss. Sparse multidimensional representation using shearlets.Wavelets XI(San Diego,CA,2005),SPIE Proc.,5914,SPIE,Bellingham,WA,2005.
    [34] K.Guo, D.Labate. Optimally Sparse Multidimensional Representation using Shearlets. SIAM J Math.Anal., 2007, 39:298-318.
    [35] V. Velisavljevic. Directionlets: anisotropic multi-directional representation with separable filtering [Ph.D.Thesis]. Switzerland, Oct 2005.
    [36] V.Velisavljevic, B.Beferull-Lozano, M.Vetterli,etal.Directionlets:Anisotropic Multi-directional Representation with Separable Filtering. IEEE Trans.on Image Processing,2006, 15(7):1916-1933.
    [37] L. Demanet. Curvelets,Wave Atoms and Wave Equations [Ph. D. thesis].California Institute of Technology, 2006.
    [38] R.R.Coifman, M. Maggioni. Diffusion wavelets. Appl. Comp. Harm. Anal., 2006, 21(1):53-94.
    [39] Y. Lu, M.N. Do. Multidimensional directional filter banks and surfacelets. IEEE Trans.on Image Processing, 2007, 16(4):918-931.
    [40] R.Y.Yu. Characterization and Sampled-Data Design of Dual-Tree Filter Banks for Hilbert Transform Pairs of Wavelet Bases. IEEE Trans. on signal processing,2007,55(6):2458-2471
    [41] R.Y.Yu.Theory of dual-tree complex wavelets.IEEE Transactions on signal processing, 2008, 56(9):4263-4273.
    [42] A.Z.Tirkel, Electronic watermark. Digital Image Computing Technology and Applications, 1993, 10(1): 666-673.
    [43] R. Schyndel, A.Tirkel, C.Oshorne. A digital watermark. In: Proceedings of the IEEE, International Conference on Image Processing. Austin, Texas, 1994, 2: 86-90.
    [44] C. Kurah, J.Mchughes. A cautionary note on image downgrading. In proceeding of the IEEE Computer Security Applications Conference. IEEE Computer Society Press, CA.1992, 2:153-159.
    [45] W. Bender, D.Gruhl, N.Morimoto, etal. Techniques for data hiding.IBM Syst.J, 1996, 3/4(35):313-336.
    [46] I. K. Yeo, H. J. Kim. Generalized patchwork algorithm for image watermarking. Multimedia Syst, 2003, 9(3):261-265.
    [47] I. J .Cox, J.Kilian, T. Leighton. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 1997, 6(12): 1673-1687.
    [48] N.Bi, Y.Q .Shi, J.W. Huang, etal. Robust Image Watermarking Based on Multiband Wavelets and Empirical Mode Decomposition. IEEE Transactions on Image Processing, 2007, 16(8): 1956-1967.
    [49] V.Solachidis, N. Nikolaidis, I. Pitas. Watermarking Polygonal Lines Using Fourier Descriptors. IEEE International Conference on Acoustics, Speech and Signal Processing.ICASSP, 2000, 4:1955-1958.
    [50] T.K.Tsui, X.P.Zhang, D.Androutsos. Color Image Watermarking Using Multidimensional Fourier Transforms. IEEE Trans. on Information Forensics and Security, 2008, 3(1):16-28.
    [51] M. Barni, F. Bartolini, V. Cappellini, A.Piva. A DCT-domain system for robust image watermarking. Signal Processing, 1998, 66 (3):357–372.
    [52] Kwon, Y.S.Kim, R.H.Park. A Variable Block-size DCT-based Watermarking Method. IEEE Trans. on Consumer Electronics, 1999, 45(4):1221-1229.
    [53] J.R. Hernandez, M.Amado,F.P.Gonzalez. DCT-domain watermarking techniques for still images: Detector performance analysis and a new structure. IEEE Trans. on Image Processing, 2000, 9(1):55-68.
    [54] W.C. Chu. DCT-based Image Watermarking Using Subsampling. IEEE Trans. on Multimedia, 2003, 5(1):34-38.
    [55] M.A.Suhail, M.S.Obaidat. Digital Watermarking-based DCT and JPEG Model. IEEE Trans on Instrumentation and Measurement, 2003, 52(5):1640-1647.
    [56]钮心忻,杨义先.基于小波变换的数字水印算法.计算机学报, 2000, 23(1):21-27.
    [57] Y.Wang, J.F.Doherty, R. E. V. D. A Wavelet-based Watermarking Algorithm for Ownership Verification of Digital Images. IEEE Trans. on Image Processing, 2002, 11(2):77-88.
    [58] P.Bao, X.H.Ma. Image Adaptive Watermarking Using Wavelet Domain Singular Value Decomposition. IEEE Trans. on Circuits and Systems for video Technology, 2005, 15(1):96-102.
    [59] S.Lee, C.D.Yoo, T.Kalker. Reversible Image Watermarking Based on Integer-to-Integer Wavelet Transform. IEEE Trans. on Information Forensics and Security, 2007, 2(3): 321-330.
    [60] M.A. Akhaee, S.M.E. Sahraeian,B.Sankur,etal. Robust Scaling-Based Image Watermarking Using Maximum-Likelihood Decoder with Optimum Strength Factor. IEEE Trans. on Multimedia,2009, 11(5):822-833.
    [61] P.Dafas, T.Stathaki. Digital Watermarking Using Block-Based Karhunen-Loeve Transform. The 3rd International Symposium on Image and Signal Processing and Analysis (ISPA’03), 2003:18-20.
    [62] M. Farzam, S.A.Shirani. Robust Multimedia Watermarking Technique Using Zernike Transform. IEEE Workshop on Multimedia Signal Processing, 2001:529-534.
    [63] X.M. Niu, S.H.Sun. Robust Video Watermarking Based on Discrete Fractional Fourier Transform. Chinese Journal of Electronics, 2001, 10(4):28-34.
    [64]孙圣和,陆哲明,牛夏牧.数字水印技术及应用.北京:科学出版社, 2004, 168-270.
    [65] I.J.Cox, J.Kilian, T.Leighton. Secure spread spectrum watermarking for multimedia. IEEE Trans. on Image Processing, 1997, 6(12): 1673-1687.
    [66] H.S.Malvar, D.A.F.Florencio. Improved Spread Spectrum: A New Modulation Technique for Robust Watermarking. IEEE Trans. on Signal Processing, 2003, 51(4):898-905.
    [67] J. D. Zhong, S.T. Huang. An Enhanced Multiplicative Spread Spectrum Watermarking Scheme. IEEE Trans. on Circuits and Systems for Video Technology, 2006, 16(12):1491-1506.
    [68] B. Chen, G.Wornell. Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. on Information Theory, 2001, 47(4):1423–1443.
    [69] M. H. M.Costa. Writing on dirty paper. IEEE Trans. Inform. Theory, 1983, IT-29:439-441.
    [70] J. J. Eggers, B. Girod. Blind Watermarking Applied to Image Authentication.IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP’01, 2001, 3:1977-1980.
    [71] D.Kundur. Digital watermarking using multiresolution wavelet decomposition, Proceedings of the International Conference on Acoustic, Speech and Signal Processing, Seattle,ICASSP WA.1998,2969-2972.
    [72] L.H. Chen, J.J. Lin. Mean quantization based image watermarking. Image and Vision Computing, 2003, 21: 717–727.
    [73] C.H. Fei, D.Kundur, R.H.Kwong. Analysis and Design of Watermarking Algorithms for Improved Resistance to Compression. IEEE Trans. on Image Processing, 2004, 13(2): 126-144.
    [74] F.P.González, F. Balado, J.R.Hernández. Performance analysis of existing and new methods for data hiding with known-host information in additive channels. IEEE Trans. on Signal Processing, 2003, 51(4): 960-980.
    [75] F.P.Gonzalez, C.Mosquera, M .Barni, et, al. Rational dither modulation: a high-rate data-hiding method invariant to gain attacks. IEEE Trans. on Signal Processing, 2005, 53(10): 3960-3975.
    [76] Q. Li, I.J.Cox. Using perceptual models to improve fidelity and provide resistance to valumetric scaling for quantization index modulation watermarking. IEEE Trans. on Information Forensics and Security, 2007, 2(2):127-139.
    [77]凌洁,刘琚,孙建德,孙兴华.基于视觉模型的迭代AQIM水印算法.电子学报, 2010, 38(1): 151-155.
    [78]曾高荣,裘正定,章春娥.失真补偿量化索引调制水印的性能分析.电子与信息学报, 2010,32(1):86-91.
    [79]肖俊,王颖,李象霖.带失真补偿的抖动调制水印算法中的补偿因子研究.电子学报, 2007, 35(4): 786-790.
    [80]许君一,熊昌镇,齐东旭,黄继武.量化水印算法分析.通信学报, 2006,27(3):15-27.
    [81] P .Comesana, F.P. Gonzalez. On a watermarking scheme in the logarithmic domain and its perceptual advantages. IEEE Int. Conf. Image Processing, San Antonio, TX, Sep. 2007.
    [82] N.K. Kalantari, S.M. Ahadi. A logarithmic quantization index modulation for perceptually better data hiding. IEEE Trans. on Image Processing, 2010, 19(6):1504-1518.
    [83] M. A .Akhaee, A.Amini, G .Ghorbani, et al. A Solution to Gain Attack on watermarking systems: Logarithmic Homogeneous Rational Dither Modulation. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2010.1746-1749.
    [84] N.K.Kalantari, S.M.Ahadi. Rational Dither Modulation Using Logarithmic Quantization with Optimum Parameter. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP .2010. 1738-1741
    [85] B.Matschkal, J.B.Huber. Spherical Logarithmic Quantization. IEEE Trans. on Audio, Speech, and Language Processing, 2010, 18(1):126-140.
    [86] J. J. Chae, D.Mukherjee, B.S.Manjunath. Color Image Embedding Using Multidimensional Lattice Structures. International Conference on Image Processing, 1998, 1:460-464.
    [87] J. J. Chae, D. Mukherjee, B.S. Manjunath. A Robust Data Hiding Technique Using Multidimensional Lattice. IEEE International Forum on Research and Technology Advances in Digital Libraries (ADL’98), 1998.319-326.
    [88] M.J.Tsai, K.Y.Yu, Y.Z.Chen. Joint Wavelet and Spatial Transformation of Watermarking. IEEE Trans. on Consumer Electronics, 2000, 46(1):237-245.
    [89] M. Q. Fan, H. X. Wang. Chaos-based discrete fractional Sine transform domain audio watermarking scheme. Computers and Electrical Engineering, 2009, 35:506-516.
    [90]凌贺飞,卢正鼎,邹复好,李瑞轩.基于Watson视觉感知模型的能量调制水印算法.软件学报,2006, 17(5): 1124-1132.
    [91] J.Ruanaidh, T.Pun. Rotation. Scale and translation invariant spread spectrum digital image watermarking. Signal Processing, 1998, 66(3): 303-317.
    [92] M.Kutter, S.K.Bhattacharjee, T. Ebrahimi. Towards second generation watermarking schemes. in: Proceeding of IEEE International Conference on Image Processing(ICIP'99), 1999(1): 320-323.
    [93] P.Bas, J.M.Chassery, B. Macq. Geometrically invariant watermarking using feature points. IEEE Trans. on Image Processing, 2002, 11(9): 1014-1028.
    [94] C.W.Tang, H.M.Hang. A feature-based robust digital image watermarking scheme. IEEE Trans. on Signal Processing, 2003, 51(4): 950-959.
    [95] J.S. Seo, C.D. Yoo. Image watermarking based on invariant regions of scale-space representation. IEEE Trans. on Signal Processing, 2006, 54(4):1537-1549.
    [96] H.Y.Lee, C. H. Lee, H. K. Lee. Geometrically invariant watermarking: Synchronization through circular Hough Transform. Multimedia Tools and Applications, 2007, 34(3):337-353.
    [97]王向阳,孟岚,杨红颖.一种基于多尺度特征的彩色图像数字水印算法.中国科学.F辑:信息科学, 2009, 39(9):966-976.
    [98] D. Zheng, Y. Liu, J.Y.Zhao. A Survey of RST Invariant Image Watermarking Algorithms. ACM Computing Surveys, 2007, 39(2):1-91.
    [99] D. Zheng, S .Wang, J.Y. Zhao. RST Invariant Image Watermarking Algorithm with Mathematical Modeling and Analysis of the Watermarking Processes. IEEE Trans. on Image Processing, 2009, 18(5):1055-1067.
    [100] C. Deng, X. B. Gao, X.L.Li, D. C. Tao. A local Tchebichef moments-based robust image watermarking. Signal Processing, 2009, 89:1531-1539.
    [101] S .J .Xiang, H .J. Kim, J.W.Huang. Invariant Image Watermarking Based on Statistical Features in the Low-Frequency Domain. IEEE Trans. on Circuits and Systems for Video Technology, 2008, 18(6): 777-790.
    [102] X.B. Gao, C. Deng, X.L.Li, D.C.Tao. Geometric Distortion Insensitive Image Watermarking in Affine Covariant Regions. IEEE Trans. on Systems, Man and Cybernetics-Part C:Applications and Reviews, 2010,40(3): 278-286.
    [103]焦李成,候彪,王爽,刘芳著.图像多尺度几何分析理论与应用.西安:西安电子科技大学出版社,2008.1-24.
    [104] P.Campisi, D.Kundur, A.Neri. Robust Digital Watermarking in the Ridgelet Domain. IEEE Signal Processing Letters, 2004, 11(10):826-830.
    [105] N.K.Kalantari, S.M.Ahadi, M.Vafadust. A Robust Image Watermarking in the Ridgelet Domain Using Universally Optimum Decoder. IEEE Trans. on Circuits and Systems for Video Technology, 2010, 20 (3):396-406.
    [106]张志禹,于海燕,张九龙,张晓丽.一种基于脊波域的盲检数字水印算法.电子学报,2007,35(9):1804-1808.
    [107]何密,成礼智.基于Contourlet变换和子空间投影的非对称数字水印.通信学报,2009, 30(4):27-35.
    [108] H.Li, W.Song, S.W.Wang. A novel blind watermarking algorithm in contourlet domain .in Proc. 18th Int. Conf. Pattern Recognition, 2006, 3: 639-642.
    [109] M.Jayalakshmi, S.N.Merchant, U.B.Desai. Digital watermarking in contourlet domain. In Proc. 18th Int. Conf. Pattern Recognition, 2006, 3:861-864.
    [110] M.A.Akhaee, S.M.E.Sahraeian, F.Marvasti. Contourlet-Based Image Watermarking Using Optimum Detector in a Noisy Environment. IEEE Trans. on Image Processing, 2010, 19(4):967-980.
    [111] P.Loo, N.G.Kingsbury. Watermarking using complex wavelets with resistance to geometric distortion. Proc. EUSIPCO, Tampere, Finland, 2000.
    [112] S.Mabtoul, E.Hassan, I.Elhaj, etal. Robust color image watermarking based on singular value decomposition and dual tree complex wavelet transform. In Proceedings of the 14th IEEE International Conference on Electronics, Circuits and Systems, ICECS’07. Dec. 2007.534-537.
    [113] J. H.Liu, K.She. Quantization-based Robust Image Watermarking using the Dual Tree Complex Wavelet Transform. China Communications, 2010, 7 (4):1-6.
    [114] L.E. Coria, M.R. Pickering, P. Nasiopoulos,et,al. A Video Watermarking Scheme Based on the Dual Tree Complex Wavelet Transform. IEEE Trans. on Information Forensics and Security, 2008, 3(3):466-454.
    [115] C.E Zhang, L.L.Cheng, Z.D.Qiu, etc. Multipurpose Watermarking Based on Multiscale Curvelet Transform. IEEE Trans.on Information Forensics and Security, 2008, 3(4):611-619.
    [116]唐远炎,王玲.小波分析与文本文字识别.北京:科学出版社,2004,1-30.
    [117]杨福生著.小波变换的工程分析与应用.北京:科学出版社.1999,1-69.
    [118]王桥.数字图像处理.北京:科学出版社, 2009, 247-258.
    [119]周国瑞.小波与数字水印理论及应用研究:[博士学位论文].成都:电子科技大学,2011.
    [120]成礼智,王红霞,罗永.小波的理论与应用.北京:科学出版社. 2004, 76-77.
    [121] Daubechies. Ten Lectures on Wavelets. CBMS Conference Series in Applied Mathematics, SIAM, Philadelphia, 1992.
    [122]程正兴.小波变换分析算法与应用.西安:西安电子科技大学出版社,1998.
    [123] W. Lawton. Applications of complex valued wavelet transforms to subband decomposition. IEEE Trans.on Signal Processing, 1993, 41:3566-3568.
    [124] J.M. Lina, M. Mayrand. Complex Daubechies Wavelets. Applied and Computational Harmonic Analysis, 1995, 2(3):219-229
    [125] J.M. Lina. Complex Daubechies Wavelets: Filters Design and Applications. ISAAC Conference, University of Delaware, 1997(6):1-18.
    [126] C.Diego, J.M. Lina, G Bernard. Complex Daubechies wavelets: properties and statistical image modeling. Signal Processing, 2004, 84(1):1-23.
    [127] J.M. Lina. Image Processing with Complex Daubechies Wavelets. Journal of Mathematical Imaging and Vision, 1997, 7(3):211-223.
    [128] N.G.Kingsbury. The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. Proceeding of 8th IEEE digital signal processing workshop, Bryce Canyon: IEEE, 1998:86-89.
    [129] N.G.Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals. Journal of Applied and Computational Harmonic Analysis, 2001, 10(3):234-253.
    [130] I.W. Selesnick. Hilbert transform pairs of wavelets bases. IEEE Signal Processing Letters, 2001, 8(6):170-173.
    [131] N.G.Kingsbury. Image processing with complex wavelets. Phil Trans R Soc London A, Math Phys Sci 1999; 357(1760): 2543-2560.
    [132]严奉霞.复数小波理论及其在图像去噪与增强中的应用研究:[博士学位论文].长沙:国防科技大学,2007.
    [133] H. Ozkaramanli, R. Yu. On the phase condition and its solution for Hilbert transform pairs of wavelet bases. IEEE Trans. on Signal Processing, 2003; 51(12): 3293-3294.
    [134] R.Yu, H. Ozkaramanli. Hilbert transform pairs of orthogonal wavelet bases: Necessary and sufficient condition. IEEE Trans. on Signal Processing, 2005, 53(12): 4723-4725.
    [135] R.Yu, H. Ozkaramanli. Hilbert transform pairs of biorthogonal wavelet bases. IEEE Trans. on Signal Processing, 2006; 54(6): 2119-2125.
    [136] N.G.Kingsbury. A dual-tree complex wavelet transform with improved orthogonality symmetry properties. In: IEEE Int.Conf. Image Processing, 2000.
    [137] I.W.Selesnick. The design of approximate Hilbert transform pairs of wavelet bases. IEEE Trans. on Signal Processing, 2002, 50(5): 1304-1314.
    [138] J.P. Thiran.Recursive digital filters with maximally flat group delay. IEEE Trans. on Circuit Theory, 1971; 18(6): 659-664.
    [139]沈兰荪,卓力.小波编码与网络视频传输.北京:科学出版社, 2005, 72-76.
    [140] Q. Cheng, T.S.Huang. Robust optimum detection of transform domain multiplicative watermarks. IEEE Trans. on Signal Processing, 2003, 51(4):906-924.
    [141] J. Zhong, S. Huang. Double sided watermark embedding and detection. IEEE Trans.on Information Forensics and Security, 2007, 2(3):297-310.
    [142] J. A. Dominguez-Molina, G. Gonzalez-Farias, R. M. Rodriguez-Dagnino. A Practical Procedure to Estimate the Shape Parameter in the Generalized Gaussian Distribution,CIMAT Tech.Rep. I-01-18_eng.pdf [Online]: http://www.cimat.mx/reportes/enlinea/I-01-18_eng.pdf.
    [143]佘堃.鲁棒图像多目数字水印技术研究:[博士学位论文].成都:电子科技大学,2006.43-46.
    [144] C. S. Lu, S.K. Huang, C.J. Sze, H.Y.M. Liao . Cocktail watermarking for digital image protection. IEEE Trans. on Multimedia, 2000, 2:209-224.
    [145] F.C. A. Fernandes, Directional, Shift-insensitive, Complex Wavelet Transforms with Controllable Redundancy. Rice University: 2002. Ph. D. Thesis.
    [146] Crossman, J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal, 1984, 15(4): 723-736.
    [147] G. Lowe D. Distinctive image features from scale-invariant key points . Int.J.Comput. Vis., 2004, 40 (2):43-84.
    [148] J.H.Liu, K.She. A Hybrid Approach of DWT and DCT for Rational Dither Modulation Watermarking. Circuits Systems and Signal Processing, 2011 (will be published).
    [149]刘金华,佘堃.基于关键熵的双树复小波域盲图像水印算法.光电子.激光. 2011,22(3):737-742.
    [150] A.B. Watson. DCT quantization matrices optimized for individual images. Human Vision, Visual Processing, and Digital Display IV, vol.SPIE-1913, 1993, 202-216.
    [151] A.B. Watson. Visually optimal DCT quantization matrices forindividual images. in Proc. IEEE Data Comp. Conf., 1993, pp.178-187.
    [152] A.B. Watson, G.Y. Yang, J.A. Solomon, et al. Visibility of Wavelet Quantization Noise. IEEE Trans .on Image Processing, 1997, 6(8):1164-1175.
    [153] I.J. Cox, M. L. Miller, J. A. Bloom.: Digital Watermarking. New York, Morgan Kaufmann, 2002, 158-198.
    [154] Z.Wang, A. C. Bovik, H. R. Sheikh, et al. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans.on Image Processing, 2004,13(4): 600-612.
    [155] L.Ghouti,A.Bouridane, M.K. Ibrahim, et al. Digital Image Watermarking Using Balanced Multiwavelets. IEEE Trans. on Signal Processing, 2006, 54(4): 1519-1536.
    [156] L.H. Cui, W.G. Li. Adaptive Multiwavelet-Based Watermarking Through JPW Masking IEEE Trans. on Image Processing,2011, 20(4): 1047-1060.
    [157] J.R.Hernandez, M.Amado, F.P.Gonzalez. DCT-domain watermarking techniques for still images: Detector performance analysis and a new structure.IEEE Trans. on Image Processing, 2000, 9(1):55-68.
    [158] Briassouli, P.Tsakalides, A.Stouraitis, Hidden Messages in Heavy-Tails: DCT-Domain Watermark Detection Using Alpha-Stable Models.IEEE Trans.on Multimedia, 2005, 7(4):700-715.
    [159] Briassouli, M. G. Strintzis.Locally optimum nonlinearities for DCT watermark detection,”IEEE Trans.on Image Processing, 2004, 13(12): 1604-1617.
    [160] T.M.Ng, H. K. Garg.Maximum-likelihood detection in DWT domain image watermarking using Laplacian modeling. IEEE Signal Process. Lett., 2005, 12(4):285-288.
    [161] X. Huang, B. Zhang. Statistically robust detection of multiplicative spread-spectrum watermarks. IEEE Trans. Inf. Forensics Sec., 2007, 2(1): 1-13.
    [162] W. Liu, L. Dong, W. Zeng.Optimum detection for spread-spectrum watermarking that employs self-masking. IEEE Trans. Inf. Forensics Sec., 2007, 2(4): 645-654.
    [163] J.W. Wang, G.J. Liu.Y.W.Dai, et al. Locally optimum detection for Barni’s multiplicative watermarking in DWT domain. Signal Processing, 2008, 88:117-130.
    [164] S.M. Mahbubur Rahman, M. Omair Ahmad, M. N. S. Swamy. A New Statistical Detector for DWT-Based Additive Image Watermarking Using the Gauss-Hermite Expansion. IEEE Trans.on Image Processing, 2009,18(8), 1782-1796.
    [165] R.Kwitt, P.Meerwald, A.Uhl. Lightweight Detection of Additive Watermarking in the DWT-Domain. IEEE Trans.on Image Processing, 2011, 20(2):474-484.
    [166] M. N. Do. M.Vetterli. Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback–Leibler Distance. IEEE Trans. on Image Processing, 2002, 11(2):146–158.
    [167] J.H. Liu, K.She, H.Wu. Blind Image Watermarking using Dual Embedding Scheme in the Wavelet Transform Domain. Journal of Computational Information System, 2010, 6 (6):1887- 1896.
    [168]刘金华,佘堃,王文旻.结合图像属性的MSD-FICA盲水印算法.电子科技大学学报. 2009.38(4):542-545.
    [169] P.Dong, J.G. Brankov, N.P. Galatsanos, et al. Digital Watermarking robust to geometric distortions. IEEE Trans. on Image Processing, 2005, 14(12):2140-2150.
    [170] R. Kwitt, P. Meerwald, A. Uhl. Efficient Detection of Additive Watermarking in the DWT-Domain. In the Proceedings of the 17th European Signal Processing Conference. 2009.
    [171] A. Patel, B.Kosko. Noise Benefits in Quantizer-Array Correlation Detection and Watermark Decoding. IEEE Trans.on Signal Processing, 2011, 59(2): 488-505.
    [172] S.W.Jung, L.T.Ha, S.J. Ko. A New Histogram Modification Based Reversible Data Hiding Algorithm Considering the Human Visual System. IEEE Signal Processing Letters, 2011, 18(2):95-98.
    [173] X.B.Gao, L.L.An, Y.Yuan, D.C.Tao, et al. Lossless Data Embedding Using Generalized Statistical Quantity Histogram. IEEE Trans.on Circults and Systems for Video Technology, 2011, 21(8):1061-1070.
    [174]孙圣和,陆哲明,牛夏牧.数字水印技术及应用.北京:科学出版社, 2004, 483-486.
    [175] M. Kutter, S.K.Bhattacharjee, T.Ebrahimi. Towards Second Generation Watermarking Schemes. Internatonal Conference on Image Processing (ICIP), 1999, 1: 320-323.
    [176] C.Y.Lin, M.Wu, M.J.A.Bloom, I.J. Cox, et al. Rotation, scale, and translation resilient watermarking for images. IEEE Trans. on Image Processing, 2001, 10(5): 767-782.
    [177] D.Zheng, J.Zhao, A.E. Saddik. RST-invariant digital image watermarking based on log-polar mapping and phase correlation. IEEE Trans.on Circuit System and Video Technology, 2003, 13(8):753-765.
    [178] S.Xiang, H.J.Kim, J.W.Huang.Invariant image watermarking based on statistical features in the low-frequency domain. IEEE Trans. on Circuits System and Video Technology, 2008, 18(12):777-790.
    [179] X.Y.Wang, L.M.Hou, J.Wu. A feature-based robust digital image watermarking against geometric attacks. Image Vision and Computing, 2008,26 (7): 980-989
    [180] J.H.Liu, K.She. Robust Image watermarking Using Dual Tree Complex Wavelet Transform based on the Perceptual Model of HVS. 2010 International Conference on Image Analysis and Signal Processing, 2010:675-679.
    [181] J. Daugman. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research, 1980, 20:847-856.
    [182] S. M. M.Rahman, M. O.Ahmad, M. N. S. Swamy. Statistics of 2-D DT-CWT Coefficients for a Gaussian Distributed Signal. IEEE Trans. on Circuits and Sytems-I: Regular Papers, 2008, 55(7): 2013-2025.
    [183] D. L Donoho. Denoising by soft thresholding. IEEE Trans. on InformationTheory, 1995, 41(3): 613-627.
    [184] P.Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Anal. Mach. Intell., 1990, 12(7): 629-639.
    [185] F.Catté, P.L.Lions, J.M.Morel, et al. Image selective smoothing and edge detection by nonlinear diffusion,SIAM J Num, 1992, 29: 182-193
    [186] F.Liu. Diffusion filtering in image processing based on wavelet transform. Science in China Series F: Information Sciences, 2006, 49(4): 494-503.
    [187] J.W. Ma, G. Plonka.Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEE Trans.on Image Process, 2007, 16(9):2198-2206.
    [188] G.Plonka,J.W. Ma. Nonlinear regularized reaction-diffusion filters for denoising of images with textures. IEEE Trans. on Image Processing, 2008, 17(8): 1283-1294.
    [189] D. K. Hammond, E.P.Simoncelli. Image Modeling and Denoising with Orientation-Adapted Gaussian Scale Mixtures. IEEE Trans. on Image Processing, 2008, 17(11):2089-2101.
    [190] J.Y. Yang, Y. Wang, W.L.Xu, Q.H.Dai. Image and Video Denoising Using Adaptive Dual-Tree Discrete Wavelet Packets.IEEE Trans.on Circuits and Systems for Video Technology,2009,19(5):642-655.
    [191] I.W Selesnick, R.G. Baraniuk, N .G. Kingsbury. The dual-tree complex wavelets transform- a coherent framework for multi-scale signal and image processing. IEEE Signal Process Mag, 2005, 22(6): 123-151.
    [192]刘金华,佘堃.基于双树复小波与波原子变换的图像扩散滤波.物理学报,已录用.2011,将于第12期发表.
    [193]刘金华,佘堃.双树复小波域图像非线性扩散滤波.电子测量与仪器学报.2010.24(3):268-27.
    [194]王大凯,候榆青,彭进业.图像处理的偏微分方程方法.科学出版社,2008,114-124.
    [195] Y.L.You et al. Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. on Image Processing, 1996 , 5(11):1539-1553.
    [196] F.Voci, S. Eiho. Sugimoto.N, et al. Estimating the gradient threshold in the Perona-Malic equation. IEEE Signal Processing Magazine, 2004:39-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700