用户名: 密码: 验证码:
花铃期干旱条件下氮素影响棉花(Gossypium hirsutum L.)产量与品质形成的生理生态基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,花铃期季节性干旱在我国各大棉区均时有发生,严重降低棉花产量和品质。氮肥的合理施用一直是调控作物生长发育及产量品质形成的重要措施.研究花铃期短期土壤干旱及复水后氮素调控棉花生长发育及产量与品质形成的生理生态基础,可为棉花的抗逆高产优质栽培提供科学的理论依据。本研究以美棉33B为试验材料,设置正常灌水与花铃期土壤短期干旱处理,同时对两个水分处理的棉花设置3个氮素水平,于2004~2006年在江苏南京农业大学卫岗试验站进行盆栽试验,研究:(1)氮素对花铃期土壤干旱及复水后棉花各器官干物质重、氮素累积与分配的影响,及与产量、品质形成的关系;(2)氮素对花铃期土壤干旱及复水后棉花叶片光合作用、蒸腾作用与水分利用率的影响,并从叶绿素荧光特性、内源保护酶活性、内源激素平衡的角度探索氮素影响光合作用的生理机理;(3)氮素对花铃期土壤短期干旱及复水后棉花根系干物质与氮素累积、内源保护酶活性、细胞膜脂过氧化及根系活力的影响,及与地上部生长发育的关系;(4)氮素对花铃期土壤短期干旱及复水后棉花纤维加厚发育相关酶与内源保护酶活性的影响,及与纤维比强度形成的关系。
     主要研究结果如下:
     1.氮素对花铃期干旱及复水后棉花干物质和氮素累积与分配的影响
     花铃期土壤干旱显著降低了棉株各器官的干物质重与氮素累积量,同时降低了干物质与氮素在叶片中的分配指数,但提高了根系的分配指数,从而增大了根冠比。施氮可以提高棉株的干物质重与氮素累积量,但亦增大水分胁迫指数.复水对棉株生长具有明显的补偿效应,尤其是根系,其干物质重与氮素累积量显著高于相应正常灌水处理,而增施氮肥可以提高棉株的补偿效应。花铃期土壤干旱结束时与复水后,干旱处理棉株均以240 kg N hm~(-2)水平下的生殖器官干物质重最高,而根冠比最小,地上部与地下部生长最为协调,最终籽棉产量最高、纤维品质最优。而施氮不足(0 kg N hm~(-2))与过量施氮(480 kg N hm~(-2))均不利于棉花产量的提高与纤维品质的改善。
     2.氮素对花铃期干旱及复水后棉花叶片光合与蒸腾特性及水分利用率的影响及其内在生理机制。
     花铃期干旱条件下,随土壤相对含水量的减少,棉花叶片净光合速率与蒸腾速率迅速降低。施用氮肥易加重棉株受胁迫程度,棉花土壤相对含水量,净光合速率与蒸腾速率的降低幅度随氮素水平的提高而增大。但是与蒸腾速率相比,施氮相对提高了净光合速率,从而提高了水分利用率。适量施氮(240 kg N hm~(-2))有利于提高棉花净光合速率,其内部机理表现为气孔导度与胞间CO_2浓度最高,光系统Ⅱ最大光化学效率、量子产量、电子传递速率与光化学促灭系数均最高、叶片对光能的吸收利用率最高;内源保护酶活性强、膜脂过氧化程度最低;内源激素ABA的含量最低而ZR、IAA、GA的含量以及ZR/ABA、IAA/ABA、GA/ABA最高。施氮不足(0 kg N hm~(-2))棉株遭受干旱与缺氮双重胁迫,过量施氮(480 kg N hm~(-2))则加重了棉株的干旱胁迫程度,二者的净光合速率均较低,其叶绿素荧光特性、内源保护酶活性、内源激素含量的变化均表现出与适量施氮相反的趋势。复水后,干旱处理棉花叶片的内源保护酶活性可迅速恢复到正常灌水水平,其MDA含量与正常灌水处理间差异较小;但ABA含量明显低于正常灌水处理,ZR、IAA、GA含量以及ZR/ABA、IAA/ABA、GA/ABA却显著高于正常灌水处理.施氮有利于提高复水后干旱处理棉花叶片的内源保护酶活性,降低细胞膜脂过氧化程度,降低ABA含量,增大ZR、IAA、GA含量以及ZR/ABA、IAA/ABA、GA/ABA,其净光合速率亦随氮素水平的提高而增大。
     3.氮素对花铃期干旱及复水后棉花根系生理特性及生长的影响
     花铃期干旱条件下,棉花根重与氮素累积量显著降低,但根冠比增大;根系超氧化物歧化酶(SOD)和过氧化物酶(POD)活性明显升高,而过氧化氢酶(CAT)活性降低,同时,丙二醛(MDA)含量相应增大,根系活力显著降低,施氮可提高干旱处理棉花根重与氮素累积量,降低SOD活性,增强POD与CAT活性,以240 kg N hm~(-2)水平最有利于根系生长,其内在生理机制表现为根冠比最小、膜脂过氧化程度最低、根系活力最强。复水后,干旱处理棉花根系生长迅速恢复,根重与氮素累积量显著高于正常灌水处理;内源保护酶活性相应变化,MDA含量与正常灌水处理已无显著差异;根系活力亦显著高于正常灌水处理.施氮有利于增加根重与氮素累积量,提高POD与CAT活性,降低细胞膜脂过氧化程度,增强棉花根系活力,提高叶片净光合速率。
     4.氮素对花铃期干旱及复水后棉纤维发育的影响
     花铃期干旱条件下,棉纤维可溶性蛋白含量显著降低,而内源保护酶SOD、CAT、POD活性升高,MDA含量增加,细胞膜脂过氧化程度加重;纤维发育相关酶蔗糖合成酶、磷酸蔗糖合成酶、β-1,3-葡聚糖酶、IAA氧化酶的活性均显著降低。复水后,棉纤维SOD、CAT、POD活性迅速恢复到正常灌水水平,MDA含量亦降低,但棉纤维蔗糖合成酶、磷酸蔗糖合成酶、β-1,3-葡聚糖酶、IAA氧化酶等的活性仍低于相应正常灌水处理,最终棉纤维比强度亦显著低于正常灌水处理。棉纤维加厚发育期土壤干旱及复水条件下240 kg N hm~(-2)是高强纤维形成的最适施氮量,其内在生理机制表现为干旱处理期间棉纤维内源保护酶活性较高,细胞膜脂过氧化程度最低,棉纤维蔗糖合成酶、磷酸蔗糖合成酶、β-1,3-葡聚糖酶、IAA氧化酶等加厚发育相关酶活性均最高,复水之后纤维内源保护酶活性迅速恢复,MDA含量最低,棉纤维加厚发育相关酶活性仍处于最高值,有利于纤维素的合成与累积,最终纤维比强度亦最大。施氮不足(0 kg N hm~(-2))或过量施氮(480 kg N hm~(-2))均表现出相反的趋势。
Flowering and boll-forming stage is the key yield determinant period of upland cotton. Short-duration drought stress occurring during this stage significantly reduced cotton final productivity and fiber quality.Nitrogen as a mineral nutrient is required in large amounts by plants and nitrogen application could improve drought resistance in plants.The study on the effects of nitrogen on physiological mechanism for cotton yield and quality formation under water stress has obvious implication for improving drought resistance and guiding cultural management in cotton.Pot experiments were conducted to short-term water stress during flowering and boll-forming stage of cotton in 2004~2006 at the research field area of Nanjing Agricultural University.Within each water treatment,three nitrogen levels(0, 240 and 480kg·N ha~(-1)) were imposed.The study focused on:(1) effects of nitrogen on the dry matter weight,nitrogen accumulation and distribution,yield and fiber quality under water stress and afterward re-watering;(2) responses of net photosynthetic rote(P_n), transpiration rate(T_(?)) and water use efficiency(WUE) of cotton to nitrogen under water stress and afterward re-watering,and the relationship between chlorophyll fluorescence characteristic,antioxidant enzyme activity,endogenous hormone content and net photosynthetic rate in cotton leaf;(3) effects of nitrogen on root growth,N accumulation, antioxidant enzyme activities and root vigor under soil water stress and afterward re-watering;(4) effects of nitrogen on the cotton fiber thickening and fiber strength development under water stress and afterward re-watering.The main results were as follows:
     1.Effects of nitrogen on the dry matter weight,nitrogen accumulation and distribution under soil water stress and afterward re-watering
     Soil water stress significantly reduced dry matter weight,nitrogen accumulation,but increased nitrogen content in different organs of cotton.Water stress reduced the distributive indexes of dry matter weight and nitrogen accumulation in leaf,but increased the distributive indexes in root,and increased the Root/Shoot ratio.Nitrogen could increased dry matter weight and nitrogen accumulation of cotton,and augmented the water stress indexes.There was notability compensative growth for cotton after re-watering, especially for root,the dry matter weight and nitrogen accumulation in root of Water-stress treatments were higher than that of Well-water treatments.Nitrogen enhanced the compensative capacity.The dry matter weight of reproductive organs,seed cotton yield and fiber quality were all highest at 240 kg N ha~(-1) level under water stress.These results suggest that 240 kg N ha~(-1) is the optimal nitrogen application rate under soil water stress in our experiments,deficient(0 kg N ha~(-1)) and excessive nitrogen supply(480 kg N ha~(-1)) are of disadvantaged to the yield and fiber quality.
     2.Effects of nitrogen on the net photosynthetic rate,transpiration rate and water use efficiency,and the relationship between chlorophyll fluorescence characteristic, antioxidant enzyme activity,endogenous hormone content and net photosynthetic rate in cotton leaf under soil water stress and afterward re-watering.
     (1) P_n,stomatal conductance(G_s) and T_(?) were declined when the soil relative water content went down under soil water stress.Nitrogen reduced P_n,G_s and T_(?),but increased WUE in cotton leaf under soil water stress.
     (2) Nitrogen has significantly effect on chlorophyll fluorescence characteristic,antioxidant enzyme activity,endogenous hormone content in cotton leaf.According the data,240 kg N ha~(-1) was the best nitrogen application level for improving Pn among three nitrogen levels. The maximum photochemical efficiency of photosystemⅡ(PSⅡ) photochemistry(F_v/F_m), the quanttun yield of electron transport(φ_(PSⅡ)),the electron transport rate(ETR) and the photochemical quenching co-efficient(qP) in cotton leaf were all higher at 240 kg N ha~(-1) than other two nitrogen level.Under soil water stress,CAT activity,soluble protein content, ZR content,IAA content,GA content,ZR/ABA,IAA/ABA,GA/ABA of 240 kg·ha~(-1) cotton was highest among the three nitrogen levels,and MDA content and ABA content of 240 kg N ha~(-1) cotton was smallest.Deficient(0 kg N ha~(-1)) and excessive(480 kg N ha~(-1)) nitrogen supply were of disadvantaged to the ehiorophyll fluorescence characteristic,antioxidant enzyme activities,endogenous hormone content and photosynthesis under soil water stress, because the deficient nitrogen treatment cotton suffered drought stress and nitrogen deficit stress,and the excessive nitrogen treatment cotton increased the water stress.After re-watering,there was no difference of SOD activity,CAT activity,MDA content and photosynthesis between water-stress and well-water treatments.ABA content in water-stressed cotton leaf were significant lower than that in well-water treatments,but ZR, IAA,GA content,ZR/ABA、IAA/ABA、GA/ABA in water-stressed cotton leaf were significant higher than that in Well-water treatments.Nitrogen supply could promote the SOD activity,CAT activity,POD activity,ZR content,IAA content,GA content,ZR/ABA, IAA/ABA,GA/ABA and P_n,and reduced MDA content and ABA content in water-stress and well-water treatments.
     3.Effects of nitrogen on the cotton root growth under water stress and afterward re-watering
     Soil water stress significantly reduced cotton root dry matter production and N accumulation.The Root/Shoot ratio(R/S) and Root-N/Shoot-N(R_N/S_N),increased with water stress,was smaller at 240 kg N ha~(-1) level than at 0 and 480 kg N ha~(-1) level.Nitrogen decreased the SOD activity,but increased the activities of POD and CAT.Malondialdehyde (MDA) content was greater in water-stress treatments than in well-water treatments,and MDA content of 240 kg N ha~(-1) level was smallest among the three nitrogen levels under soil water stress.After re-watering,MDA content of 240 kg N ha~(-1) level was the same as that of 480 kg N ha~(-1) level,but less than that of 0 kg N ha~(-1) level.The root vigor,debased by soil water stress,was the highest at 240 kg N ha~(-1) level.After re-watering,nitrogen promoted the root vigor under two watering managements.The trends of net photosynthetic rate were the same as that of root vigor,but opposite to that of MDA content under soil water stress.These results suggest that appropriate nitrogen supply(240 kg N ha~(-1)) may contribute to drought resistance of cotton plants by adjusting the antioxidant enzyme activities of root,debasing lipid peroxidation and boosting root vigor under short-duration soil water stress,but excessive nitrogen(480 kg N ha~(-1)) was deleterious.
     4.Effects of nitrogen on the cotton fiber development under water stress and afterward re-watering
     During soil water stress,soil water stress significantly reduced soluble protein content in cotton fiber,increased the antioxidant enzyme activities of SOD,CAT and POD and MDA content,but reduced the fiber thickening key enzymes activities of sucrose synthetase,β-1,3-glucanase,sucrose phosphate synthetase,and IAA oxidase,and the cotton fiber strength.On the 10th day after re-watering,there was no significant difference of SOD,CAT and POD activity between soil water-stressed and well-water treatments,MDA content were declined,and the fiber thickening related key enzymes activities were still lower than Well-water treatments.The result of 2-year experiment showed that 240 kg N ha~(-1) was the optimal nitrogen application rate for forming high-strength fiber under soil water stress and afterward re-watering during the flowering and bell-forming stage.The antioxidant enzymes activities were highest,MDA content were the lowest,and the fiber thickening key enzymes activities of sucrose synthetase,β-1,3-glucanase,sucrose phosphate synthetase,and IAA oxidase were the highest at 240 kg N ha~(-1) nitrogen level, thus leading to the greatest fiber strength.Deficient(0 kg N ha~(-1)) and excessive(480 kg N ha~(-1)) nitrogen supply are of disadvantaged to the fiber thickening key enzymes activities and cotton fiber strength.
引文
[1]张士功,刘国栋,刘更另.植物营养与作物抗旱性[J].植物学通报,2001,18(1):64-69
    [2]韩会玲,康凤君.水分胁迫对棉花生产影响的试验研究[J].农业工程学报,2001,17(3):37-40
    [3]马富裕,李蒙春,杨建荣,等.花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J].中国农业科学,2002,35(12):1467-1477
    [4]Ball R A,Osterhuis D K,Mauromoustakos A.Growth dynamics of the cotton plant during water-deficit stress[J].Agronomy Journal,1994,86:788-795
    [5]Milroy S P,Bange M P.Nitrogen and light responses of cotton photosynthesis and implications for crop growth[J].Crop Science,2003,43:904-913
    [6]郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005,25(6):1291-1298
    [7]古谢夫著,王统正 译.植物水分状况的若干规律[M].北京:科学出版社,1959,1-32
    [8]Attipalli R R,Kolluru V C,Munusamy V.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J].Journal of Plant Physiology,2004,.161:1189-1202
    [9]Schreibcr U,Schliwa U,Bilger W.Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J].Photosynthesis Research,1986,10:51-62
    [10]Cornic G.Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis[J].Trends in Plant Science,2000,5:187-188
    [11]Tezara W,Mitchell V J,Driscoll S D,et al.Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J].Nature,1999,401:914-917
    [12]Lawlor D W.Limitation to photosynthesis in water-stressed leaves:stomata vs.metabolism and the role of ATP[J].Annals of Botany,2002,89:871-885
    [13]Ennahli S and Earl H J.Physiological limitations to photosynthetic carbon assimilation in cotton under water stress[J].Crop Science,2005,2374-2380
    [14]Chapin F S,Bloom A J,Field C B.Plant responses to multiple environmental factors[J].Bioscience,1987,37:49-57
    [15]Sugiharto B,Miyata K,Nakamoto H,et al.Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf[J].Plant Physiology,1990,92:963-969
    [16]Bondada B R,Osterhuis D M,Norman R J.Canopy photosynthesis growth yield and boll accumulation under nitrogen stress in cotton[J].Crop Science,1996,36(1):127-133
    [17]Evans J R.Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy Ⅰ.Canopy characteristics[J].Australian Journal of Plant Physiology,1990,20:55-67
    [18]王仁雷,李霞,陈国祥,等.氮肥对杂交稻汕优63剑叶光合速率和RuBP羧化酶活性的影响[J].作物学报,2001 27:930-934
    [19]Kaiser W M.Effects of water deficit on photosynthetic capacity[J].Physiologia Plantarum,1987,71:142-149
    [20]Natr L.Influence of mineral nutrition on photosynthesis and the use of assimilates.Cooper J P.Photosynthesis and productivity in different environment[M].Cambridge:Cambridge university Press,1975,537-555
    [21]王宗明,梁银丽.氮磷营养对夏玉米水分敏感性及生理参数的影响[J].生态学报,2003,23(4):751-757
    [22]郭天财,冯伟,赵会杰,等.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457
    [23]Shangguan Z P,Shao M A,Dyckmans J.Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J].Environmental and Experimental Botany,2000,44:141-149
    [24]Morgan J A.The effect of N nutrition on the water relation and gas exchange characteristics of wheat[J].Plant Physiology,1986,80:52-58
    [25]张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000, 6(2):147-151
    [26]林世青,许春晖,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16
    [27]Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochemical and Biophysical Reasearch Communications,1989,9:87-92
    [28]王可玢,徐春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿索a荧光参数的影响[J].生物物理学报,1997,13(2):73-278
    [29]Pieters A J,Souki S E.Effects of drought during grain filling on PSⅡ activity in rice[J].Journal of Plant Physiology,2005,162:903-911
    [30]王磊,胡楠,张彤,等.干旱和复水对大豆(Glycine max)叶片光合及叶绿素荧光的影响[J].生态学报,2007,27(9):3630-3636
    [31]马吉锋,朱艳,姚霞,等.小麦叶片氮含量与荧光动力学参数的关系[J].作物学报,2007,33(2):297-303
    [32]马吉锋,朱艳,姚霞,等.水稻叶片氮含量与荧光参数的关系[J].中国水稻科学,2007,21(1):65-70
    [33]郭天财,冯伟,赵会杰,等.两种穗型冬小麦品种旗叶光合特性及氮素调控效应[J].作物学报,2004,30(2):115-121
    [34]张旺锋,勾玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898
    [35]Balachandran S,Osmond C B.Susceptibility of tobacco leaves to photoinhibition following infection with two strains of tobacco mosaic virus under different light and nitrogen nutrient regimes[J].Plant Physiology,1994,104:1051-1057
    [36]Demmig-Adams B,Adams W W Ⅲ.Photoprotection and other responses of plants to high light stress[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599-626
    [37]郭天财,冯伟,赵会杰,等.水分和氮素运筹对冬小麦生育后期光合特性及产量的影响[J].西北植物学报,2003,23(9):1512-1517
    [38]张雷明,上官周平,毛明策,等.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J].应用生态学报,2003,14(5):695-698
    [39]Smirnlff N.The role of active oxygen in the response of plants to water deficit and desiccation[J].New Phytologist,1993,125:27-58
    [40]Asada K,Takahashi S.Production and scavenging of active oxygen in photosynthesis.In:Kyle D J,Osmond C B,Arntzen,C J,Photoinhibition:Topics in Photosynthesis[M],1987,9:227-287
    [41]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4):503-507
    [42]Reddy A R,Chaitanya K V,Jutur P P,et al.Differential antioxidative reponses to water stress among five mulberry(Morus alba L.) cultivars[.1].Environmental and Experimental Botany,2004,(52):33-42
    [43]Ge T D,Sui F G,Bal L P,et al.Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize[J].Agricultural Sciences in China,2006,5(4):291-298
    [44]章崇玲,曾国平,陈建勋.干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响[J].植物资源与环境学报,2000,9(4):23-26
    [45]冯玉龙,张亚杰,朱春全.调控活性氧代谢对渗透胁迫时杨树光合作用光抑制的影响[J].植物生态学报,2001,25(4):451-459
    [46]林植芳,彭长连,林桂珠.活性氧对苋菜磷酸烯醇式丙酮酸羧化酶活性的影响[J].植物生理学报,2000,26(1):27-32
    [47]张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,2007,33(3):482-490
    [48]张吉旺,王空军,胡昌浩,等.施氮时期对夏玉米饲用营养价值的影响[J].中国农业科学,2002,35(11):1337-1342
    [49]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645
    [50]莫亿伟,王忠,梁国斌,等.施氮处理对水稻子代乳苗素质的影响[J].作物学报,2004,30(3):227-231
    [51]何萍,金继运.氮钾营养对春玉米叶片衰老过程中激素变化与活性氧代谢的影响[J].植物营养与肥料学报,1999,5(4):289-296
    [52]Saneoka H,Moghaieb R E A,Premaehandra G.S,et al.Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relation in Agrostis palustris Huds[J].Environmental and Experimental Botany,2004,52,131-138
    [53]张绪成,上官周平.不同抗旱性小麦叶片膜脂过氧化的氮素调控机制[J].植物营养与肥料学报,2007,13(1):106-112
    [54]孙群,梁宗锁.氮对水分亏缺下玉米幼苗膜脂过氧化及光合速率的影响[J].西北农业学报,2001,10(1):7-10
    [55]范晓荣,沈其荣,崔国贤,等.旱作水稻内源激素变化及其与水稻形态和生理特性的关系[J].土壤学报,2002,39(2):206-213
    [56]Chaves M M,Pereira J S,Maroc J O,et al.How plants cope with water stress in the field?Photosynthesis and growth[J].Annals of Botany,2002,89:907-916
    [57]王少先,彭克勤,萧浪涛,等.逆境下ABA的积累及其触发机制[J].植物生理学通讯,2003,39(5):413-419
    [58]Liu F L,Jensen C R,Shahanzari A,et al.ABA regulated stomatal control and photosynthetic water use efficiency of potato(Solanum tuberosum L.) during progressive soil drying[J].Plant Science,2005,168:831-836
    [59]Wildinson S,Davies W J.ABA-based chemical signaling:the coordination of responses to stress in plants[J].Plant Cell Environment,2002,25:195-210
    [60]Liang J,Zhang J,Wong M H.Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying[J]? Photosynthesis Research,1997,51:149-159
    [61]Seki M,Umezawa T,Urano K,et al.Regulatory metabolic networks in drought stress responses[J].Current Opinion in Plant Biology,2007,10:296-302
    [62]杨建昌,常二华,张文杰,等.根系化学讯号与稻米品质的关系[J].中国农业科学,2006,39(1):38-47
    [63]Wang Z L,Mambelli S,Setter T L.Abscisic acid catabolism in maize kernels in response to water deficit at early endosperm development[J].Annals of Botany,2002,90:623-630
    [64]Yin C Y,Duan B L,Wang X,et al.Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application[J].Plant Science,2004,167:1091-1097
    [65]董宝娣,刘孟雨,张正斌,等.水分胁迫条件下不同抗旱类型小麦灌浆初期内源激素的变化[J].麦类作物学报,2007,27(5):852-858
    [66]Wang Y Y,Zhou R,Zhou X.Endogenous levels of ABA and Cytokinins and their relation to stomatal behavior in dayflower(Commelina communis L.)[J].Journal of Plant Physiology,1994,144:45-48
    [67]贺继临,刘鸿先.干旱胁迫下不同抗旱性小麦内源激素含量的变化与抗旱力强弱的关系[J].热带亚热带植物学报,1998,6(4):341-346
    [68]王玮,李德全,杨兴洪,等.水分胁迫对不同抗旱性小麦品种芽根生长过程中IAA、ABA含量的影响[J].作物学报,2000,26(6):737-742
    [69]Guinn G,Brummett D L.Leaf age,decline in photosynthesis,and changes in abscisic acid,indole-3-acetie acid,and cytokinin in cotton leaves[J].Field Crop Research,1993,32:269-275
    [70]马宗斌,王小纯,何建国,等.氮素形态对小麦花后不同器官内源激素含量的影响[J].植物生态学报,2006,30(6):991-997
    [71]Yong J W H,Wong S C,Letham D S,et al.Effects of elevated[CO2]and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton[J].Plant Physiology,2000,124:767-779
    [72]肖凯,张荣铣,钱维朴.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制[J].植物营养与肥料学报,1998,4(4):371-378
    [73]赵平,林克惠,郑毅.氮钾营养对烟叶衰老过程中内源激素与叶绿素含量的影响[J].植物营养与肥料学报,2005,11(3):379-384
    [74]张岁岐,山仑.土壤干旱条件下氮素营养对玉米内源激素含量影响[J].应用生态学报,2003,14(9):1503-1506
    [75]陈新红,刘凯,奚岭林,等.土壤水分与氮素对水稻地上器官脱落酸和细胞分裂素含量的影响[J].作物学报,2005,31(11):1406-1414
    [76]Radin J W and Ackerson R C.Water relation of cotton plants under nitrogen deficiency Ⅲ.Stomatal conductance,photosynthesis and ABA accumulation during drought[J].Plant physiology,1984,67:115-119
    [77]杨京平,姜宁,陈杰.施氮水平对两种水稻产量影响的动态模拟及施肥优化分析[J].应用生态学报,2003,14(10):1654-1660
    [78]Damisch W.Biomass yield-A topical issue in modern wheat breeding programmers[J].Plant Breeding,1996,107:11-17
    [79]孟亚利,曹卫星,柳新伟,等.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30(4):376-381
    [80]Shibu J,Sara M,Craig L,et al.Growth,nutrition,photosynthesis and transpiration responses of longleaf pine seedlings to light,water and nitrogen[J].Forest Ecology and Management,2003,180:335-344.
    [81]陈德华,陈源,周桂生,等.长江流域棉区高产棉花干物质生产与产量及群体构成的关系[J].中国棉花,2001,28(10):9-11
    [82]黄骏麒.中国棉作学[M].北京:中国农业科学出版社,1998
    [83]胡明芳,田长彦,马英杰.不同水肥条件下棉花苗期的生长、养分吸收与水分利用状况[J].干旱地区农业研究,2002,20(3):35-37
    [84]Wu Y J,Cosgrove D J.Adaptation of roots to low water potential by change cell wall extensibility and cell wall proteins[J].Journal of Experimental Botany,2000,51:1543-1553
    [85]Yeh D M,Lin L,Wright C J.Effects of mineral nutrient deficiencies on leaf development,visual symptoms and shoot-root ratio of Spathiphyllum[J].Scientia Horticulturae,2000,86:223-233
    [86]赵都利,许玉璋,许萱.花铃期缺水对棉花干物质积累和用水效率的影响[J].干旱地区农业研究,1992,10(3):7-10
    [87]Pinheiro C,Passarinho J A,Ricardo C P.Effects of drought and rewatering on the metabolism of Lupinus albus organs[J].Journal of Plant Physiology,2004,161:1203-1210
    [88]Guenni O,Marin D,Baruch Z.Responses to drought of five Brachiaria species.Ⅰ.Biomass production,leaf growth,root distribution,water use and forage quality[J].Plant and Soil,2002,243:229-241
    [89]刘晓英,罗远培,石元春.水分胁迫后复水对冬小麦叶面积的激发作用[J].中国农业科学,2001,34(4):422-428
    [90]刘永红,杨勤,杨文钰,等.花期干湿交替对玉米干物质积累与再分配的影响[J].作物学报,2006,32(11):1723-1727
    [91]Michael S,Watt,Peter W,et al.Above-ground biomass accumulation and nitrogen fixation of broom(Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site[J].Forest Ecology and Management,2003,184:93-104
    [92]张旺锋,王振林,余松烈,等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,2002,28(6):789-796
    [93]Gayler S,Wang E,Priesack E,et al.Modeling biomass growth,Nuptake and phynological development of potato crop[J].Geoderma,2002,105:367-383
    [94]张旺峰,李蒙春,勾玲,等.北疆高产棉花养分吸收特性的研究[J].棉花学报,1998,10(2):88-95
    [95]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [96]王耀富,孙德梅,徐传快,等.干旱胁迫下氮用量对烤烟养分积累与分配及烟叶产量和品质的影响[J].植物营养与肥料学报,2004,10(3):306-311
    [97]范雪梅,戴廷波,姜东,等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报,2004,18(6):63-67
    [98]孟亚利,王瑛,王立国,等.麦棉套作复合根系群体对棉花根系生长的影响[J].中国农业科学,2006,39(11):2228-2236
    [99]翟丙年,孙春梅,王俊儒,等.氮素亏缺对冬小麦根系生长发育的影响[J].作物学报,2003,29(6):913-918
    [100]Adda A,Sahnoune M,Kaid-Harch M,Merah O.Impact of water deficit intensity on durum wheat seminal roots[J].C.R.Biologies,2005,328:918-927
    [101]宋海星,李生秀.水、氮供应对玉米伤流及其养分含量的影响[J].植物营养与肥料学报,2004,10(6):574-578
    [102]张国盛,张仁陟,黄高宝.水分胁迫条件下春小麦根系对施肥的响应[J].草业学报,2003, 12(3):105-109
    [103]Siemens J A,Zwiazek J J.Effects of water deficit stress and recovery on the root water relations of trembling aspen(Populus tremuloides) seedlings[J].Plant Science,2003,165:113-120.
    [104]Liu H S,Li F M,Xu H.Deficiency of water can enhance root respiration rate of drought-sensitive but not drought-tolerant spring wheat[J].Agricultural Water Management,2004,64:41-48
    [105]徐兴友,张风娟,龙茹,等.6种野生耐旱花卉幼苗叶片脱水和根系含水量与根系活力对干旱胁迫的反应[J].水土保持学报,2007,21(1):180-184
    [106]张永清,苗果园.不同施肥水平下黍子根系对干旱胁迫的反应.作物学报,2006,32(4):601-606
    [107]Romero-Romero T,Sa'nchez-Nieto S,SanJuan-Badillo A,et al.Comparative effects of allelochemical and water stress in roots of Lycopersicon esculentum Mill.(Solanaceae)[J].Plant Science,2005,168:1059-1066
    [108]Ali M,Jensen C R,Mogensen V O,et al.Root signalling and osmotic adjustment during intermittent soil drying sustain grain yield of field grown wheat[J].Field Crops Research,1999,62:35-52
    [109]Liu F L,Andersen M N,Jensen C R.Root signal controls pod growth in drought-stressed soybean during the critical,abortion-sensitive phase of pod development[J].Field Crops Research,2004,85:159-166
    [110]Forde B,Lorenzo H.The nutritional control of root development[J].Plant Soil,2001,232:51-68
    [111]张定一,张永清,杨武德,等.不同基因型小麦对低氮胁迫的生物学响应[J].作物学报,2006,32(9):1349-1354
    [112]慕自新,张岁岐,杨晓青,等.氮磷亏缺对玉米根系水流导度的影响[J].植物生理与分子生物学学报,2003,29(1):45-51
    [113]王余龙,姚友礼,刘宝玉,等.不同生育氮素供应水平对杂交水稻根系生长及其活力的影响[J].作物学报,1997,23(6):699-706
    [114]Brown S C,Keatinge J D H,Gregory P J.Effect of fertilizer,variety and location on barley production under rain-fed conditions in northern Syrla.Root and shoot growth[J].Field Crops Research,1987,16:53-66
    [115]Maranov A,Samedovam A,Shirvany T.Root-shoot relationships in plant adaptation to nitrogen deficiency develop[J].Plant Soil Science,1998,82:147-154
    [116]汪德水.旱地农田肥水协同效应与耦合模式[M].北京气象出版社,1999:1-49
    [117]吕刚,史东梅.三峡库区春玉米水肥耦合效应研究[J].水土保持学报,2005,19(3):192-195
    [118]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报, 2006,22(5):197-200
    [119]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1995,29(4):58-66
    [120]Comfort S D,Malzer G L,Busch R H.Nitrogen fertilizer of spring wheat genotypes influence on root growth and soil water depletion[J].Agronomy Journal,988,80:88-93
    [121]Seagull RW,Oliveri V,Murphy K,et al.Cotton fiber growth and development:2.Changes in cell wall diameter and wall birefringence[J].Cotton Science,2000,4:97-104
    [122]刘继华,尹承俏,于凤英,等.开花期对棉花纤维超分子结构与纤维强度动态变化的影响[J].中国农业科学,1996,29(1):59-65
    [123]单世华,孙学振,周治国,施培.温度对棉纤维品质性状的影响[J].华北农学报,2000,5(4):20-125
    [124]Haigler C H,Ivanova-Datcheva M,Hogan P S.Carbon partitioning to cellulose synthesis[J].Plant Molecular Biology,2001,7:9-51
    [125]Kimura S,Kondo T.Recent progress in cellulose biosynthesis[J].Journal of Pant Research,2002,115:297-302
    [126]Pettigrew W T.Environment effects on cotton fiber carbohydrate concentration and quality[J].Crop Science,2001,41:1108-1113
    [127]Reddy K R,Koti S,Davidonis G H,et al.Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth,development,yield,and fiber quality[J].Agroclimatology,2004,96:1148-1157
    [128]Marani A and Amirav A.Effects of soil moisture stress on two varieties of upland cotton in Israel:Ⅰ.The coastal plain region[J].Experimental Agriculture,1971,7:213-224
    [129]Pettigrew W T.Source-to-sink manipulation effects on cotton lint yield and yield components[J].Agronomy Journal,1994,86:731-735
    [130]胡宏标,张文静,王友华,陈兵林,周治国.棉纤维加厚发育相关物质变化特性对纤维比强度的影响[J].西北植物学报,2007,27(4):726-733
    [131]张文静,胡宏标,陈兵林,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].作物学报,2007,33(4):531-538
    [132]卞海云,王友华,陈兵林,等.低温条件下相关关键酶活性对棉纤维比强度形成的影响[J].中国农业科学,2008(待刊)
    [133]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343
    [134]杜雄明,潘家驹.影响棉纤维分化与发育的因素[J].生命科学,2000,12(4):177-180
    [135]刘继华,尹承俏,于凤英.外源激素对棉纤维超分子结构及纤维强度的影响[J].作物学报,1994,20(1):120-125
    [136]Fry S C.Phenolics components of the primary cell wall and their possible role in the hormone regulation of growth[J].Planta,1979,146(3):343-352
    [137]秦治翔,杨佑明,张春华,等.棉纤维次生壁增厚相关基因的cDNA克隆与分析[J].作物学报,2003,29(6):860-866
    [138]Masahiro Ⅰ,Donald N.Regulation of cell wall glucanase activities by non-enzymic proteins in maize coleoptiles[J].International Journal of Biological Macromolecules,1997,21:15-20
    [139]Potikha T S,Collins C C,Johnson D I,et al.The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers[J].Plant Physiology,1999,119(3):849-858
    [140]Ebelhar M W,Welch R A.Nitrogen rates and mepiquat chloride effects on cotton lint yield and quality.Proceedings of Beltwide Cotton Conferences,Nashville,Tennessee,9-12 January 1996.National Cotton Council of America,Memphis,Tennessee.pp.1373-1378
    [141]Jambunathan L R,Mehta N P,Sanandia C J,et al.Study of the effects of the application of nitrogen,phosphorus and potash on the economic and quality characteristics of the cotton-Hybrid [J].J.Indian Soc.Cotton Improv.,1986,11:26-29
    [142]Phipps B J,Stevens W E,Ward J N,et al.The influence of mepiquat chloride and nitrogen rate upon the maturity and fiber quality of upland cotton.New Orleans:Dugger and D.A.Richter(ed.)Proc.Beltwide Cotton Conf.,1997:1471-1472
    [143]Elayan S E D.Acomparative study on yield,some yield components and nitrogen fertilization of some Egyptian cotton varieties[J].Assiut J.Agric.Sci.,1992,23:153-165
    [144]Singh V,Nagwekar S N.Effect of weed control and nitrogen levels on quality characters in cotton [J].Indian Soc.Cotton Improv.,1989,14:60-64
    [145]Read J J,Reddy K R,Jenkins J N.Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition[J].European Journal of Agronomy,2006,24:282-290
    [146]Tewolde H,Fernandez C J,Foss D C.Maturity and lint yield of nitrogen and phosphorus deficient Pima cotton[J].Agronomy Journal,1994,86:303-309
    [147]Rochester I J,Peoples M B,Constable G A.Estimation of the N fertilizer requirement of cotton grown after legume crops[J].Field Crops Research,2001,70:43-53
    [148]Constable G A,Hearn A B.Irrigation for crops in a subhumid environment.Ⅵ.Effect of irrigation and nitrogen fertilizer on growth,yield and quality of cotton[J].Irrigation Science,1981,3:17-28
    [149]Hansen S,Jensen H E,Nielsen N E,et al..Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY[J].Fertilizer Research,1991,27:245-259
    [1]黄骏麒.中国棉作学[M].北京:中国农业科学出版社,1998
    [2]马富裕,李蒙春,杨建荣,等.花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J].中国农业科学,2002,35(12):1467-1477
    [3]韩会玲,康凤君.水分胁迫对棉花生产影响的试验研究[J].农业工程学报,2001,17(3):37-40
    [4]Wullschleger S D,Oosterhuis D M.Canopy leaf area development and age-class dynamics in cotton [J].Crop Science,1992,32:451-456
    [5]Damisch W.Biomass yield-A topical issue in modern wheat breeding programmers[J].Plant Breeding,1996,107:11-17
    [6]Watt M S,Clinton P W,Whitehead D,Richardson B,Mason E G,Leckie A C.Above-ground biomass accumulation and nitrogen fixation of broom(Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site[J].Forest Ecology and Management,2003,184:93-104
    [7]Pinheiro C,Passarinho J A,Ricardo C P.Effects of drought and rewatering on the metabolism of Lupinus albus organs[J].Journal of Plant Physiology,2004,161:1203-1210
    [8]Guenni O,Marin D,Baruch Z.Responses to drought of five Brachiaria species.Ⅰ.Biomass production,leaf growth,root distribution,water use and forage quality[J].Plant and Soil,2002,243:229-241
    [9]刘晓英,罗远培,石元春.水分胁迫后复水对冬小麦叶面积的激发作用[J].中国农业科学,2001,34(4):422-428
    [10]刘永红,杨勤,杨文钰,等.花期干湿交替对玉米干物质积累与再分配的影响[J].作物学报,2006,32(11):1723-1727
    [11]Shangguan Z P,Shao M A,Dyckmans J.Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J].Environmental and Experimental Botany,2000,(44):141-149
    [12]郭天财,冯伟,赵会杰,等.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457
    [13]王耀富,孙德梅,徐传快,等.干旱胁迫下氮用量对烤烟养分积累与分配及烟叶产量和品质的影响[J].植物营养与肥料学报,2004,10(3):306-311
    [14]范雪梅,戴廷波,姜东,等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报,2004,18(6):63-67
    [15]胡继超,姜东,曹卫星,等.短期干旱对水稻叶水势、光合作用及干物质分配的影响[J].应用生态学报,2004,15(1):63-67
    [16]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [17]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,2003,36(1):71-76
    [18]Ennahli S,Earl H J.Physiological limitations to photosynthetic carbon assimilation in cotton under water stress[J].Crop Science,2005,45:2374-2382
    [19]Wang Y L,Xu Z Z,Zhou G S.Changes in biomass allocation and gas exchange characteristics of Leymus Chinensis in response to soil water stress[J].Acta Phytoecologica Sinica.2004,28(6):803-809
    [20]郭贤仕.谷子旱后的补偿效应研究[J].应用生态学报,1999,10(5):563-566
    [21]Prasertsak A,Fukai S.Nitrogen availability and water stress interaction on rice growth and yield[J].Field Crop Research,1997,52:249-260
    [22]Lioert F,Casanovas C,Penuelas J.Seedling survival of Mediterranean shrub land species in relation to root:shoot ratio,seed size and water and nitrogen use[J].Function Ecology,1999,13:210-216
    [23]Palta J A,Kobata T,Turner N C,Fillery I R.Remobilization of carbon and nitrogen in wheat as influenced by postanthesis water deficits[J].Crop Science,1994,34:118-124
    [24]Gebbing T,Schnyher H.Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat[J].Plant Physiology,1999,121:871-878
    [25]Friend A L,Coleman M D,Bebrands J G.Carbon ailocationto root and shoot systems of woody plants.In:Davis T D,Haissig B E eds.Biology of Adventitijons Root Formation[M].Plenum Press,New York,1994,1-6
    [1]韩会玲,康凤君.水分胁迫对棉花生产影响的试验研究[J].农业工程学报,2001,17(3):37-40
    [2]马富裕,李蒙春,杨建荣,等.花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J].中国农业科学,2002,35(12):1467-1477
    [3]Nepomuceno A L,Osterhuis D M,Stewart J M.Physiological responses of cotton leaves and roots to water deficit induced by polyethylene glycol[J].Environmental and Experimental Botany,1998,40(1):29-41
    [4]Ball R A,Oosterhuis D K,Mauromoustakos A.Growth dynamics of the cotton plant during water-deficit stress[J].Agronomy Journal,1994,86:788-795
    [5]黄骏麒.中国棉作学[M].北京:中国农业科学出版社,1998
    [6]Milroy S P,Bange M P.Nitrogen and light responses of cotton photosynthesis and implications for crop growth[J].Crop Science,2003,43:904-913
    [7]郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005,25(6):1291-1298
    [8]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [9]王平,陈新平,田长彦,等.不同水氮管理对棉花产量、品质及养分平衡的影响[J].中国农业科学,2005,38(4):761-769
    [10]金轲,汪德水,蔡典雄,等.旱地农田肥水耦合效应及其模式研究.中国农业科学,1999,35(5):104-106
    [11]王宗明,梁银丽.氮磷营养对夏玉米水分敏感性及生理参数的影响[J].生态学报,2003,23(4):751-757
    [12]郭天财,冯伟,赵会杰,等.水氮运筹对干早年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457
    [13]Latiri-Souki K,Nortcliff S,Lawlor D W.Nitrogen fertilizer can increase dry matter,grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions[J].European Journal of Agronomy,1998,9(1):21-34
    [14]Ashraf M,Shabaz M,Ashraf M Y.Influence of nitrogen supply and water stress on growth and nitrogen,phosphorus,potassium and calcium contents in pearl millet[J].Biologia Plantrum,2001,44(3):459-462
    [15]Praertsak A,Fukai S.Nitrogen availability and water stress interaction on rice growth and yield[J].Field Crops Research,1997,52:249-260
    [16]Morgan J A.The effect of N nutrition on the water relation and gas exchange characteristics of wheat[J].Plant Physiology,1986,80:52-58
    [17]Shangguan Z P,Shao M A,Dyckmans J.Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J].Environmental and Experimental Botany,2000,44:141-149
    [18]陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究[J].作物学报,2001,27(4):512-516
    [19]王磊,张彤,丁圣彦.干旱和复水对大豆光合生理生态特性的影响[J].生态学报,2006,26(7):2703-2708
    [20]胡继超,曹卫星,姜东,等.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和溃水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320
    [21]杨建伟,梁宗锁,韩蕊莲,等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报,2004,28(5):630-636
    [22]王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报,2003,14(10):1632-1636
    [23]接玉玲,杨洪强,崔明刚,等.土壤含水量与苹果叶片水分利用效率的关系[J].应用生态学报,2001,12(3):387-390
    [24]Radin J W,Ackerson R C.Water relations of cotton plant under nitrogen deficiency Ⅱ.Stomatal conductance,photosynthesis and ABA accumulation during drought[J].Plant physiology,1981,67:115-119.
    [25]陈建军,任永浩,陈培元,等.干旱条件下氮营养对小麦不同抗旱品种生长的影响[J].作物学报,1996,22(4):483-489
    [26]曲桂敏,王鸿霞,束怀瑞.氮对苹果幼树水分利用效率的影响[J].应用生态学报,2000,11(2):199-201
    [27]胡田田,康绍忠.植物抗旱性中的补偿效应及其在农业节水中的应用[J].生态学报,2005,25(4):885-891
    [28]Loggini B,Scartazza A,Brugnoli E,et al.Antioxidative defense system,pigment composition,and photosynthetic efficiency in two wheat cultivars subjected to drought[J].Plant Physiology,1999,119:1091-1099
    [29]戴廷波,曹卫星,荆奇.氮形态对不同小麦基因型氮素吸收和光合作用的影响[J].应用生态学报,2001,12(6):849-852
    [30]Kidambi S P,Krieg D R,Rosenow D T.Genetic variation for gas exchange rates in grain sorghum [J].Plant Physiology,1990,92(4):1211-1214
    [1]韩会玲,康凤君.水分胁迫对棉花生产影响的试验研究[J].农业工程学报,2001,17(3):37-40
    [2]Wullschleger S D,Oosterhuis D M.Canopy leaf area development and age-class dynamics in cotton [J].Crop Science,1992,32:451-456
    [3]Nepomuceno A L,Oosterhuis D M,Stewart J M.Physiological responses of cotton leaves and roots to water deficit induced by polyethylene glycol[J].Environmental and Experimental Botany,1998,40(1):29-41
    [4]A]ejandro J P,Susana E S.Effects of drought during grain filling on PSⅡ activity in rice[J].Journal of Plant Physiology,2005,162:930-911
    [5]孙曦.植物营养原理[M].北京:中国农业出版社,1997
    [6]Bondada B R,Oosterhuis D M,Norman R J.Canopy photosynthesis growth yield and boll accumulation under nitrogen stress in cotton[J].Crop Science,1996,36(1):127-133
    [7]张旺锋,勾玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898
    [8]Milroy S P,Bange M P.Nitrogen and light responses of cotton photosynthesis and implications for crop growth[J].Crop Science,2003,43:904-913
    [9]郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005,25(6):1291-1298
    [10]金轲,汪德水,蔡典雄,等.旱地农田肥水耦合效应及其模式研究[J].中国农业科学,1999,35(5):104-106
    [11]范雪梅,姜东,戴廷波,等.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响[J].应用生态学报,2005,16(10):1883-1888
    [12]王宗明,梁银丽.氮磷营养对夏玉米水分敏感性及生理参数的影响[J].生态学报,2003,23(4):751-757
    [13]郭天财,冯伟,赵会杰,等.水氮运筹对干早年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457
    [14]Latiri-Souki K,Nortcliff S,Lawlor D W.Nitrogen fertilizer can increase dry matter,grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions[J].European Journal of Agronomy,1998,9(1):21-34.
    [15]上官周平.氮素营养对旱作小麦光合特性的调控[J].植物营养与肥料学报,1997,3(2):105-109
    [16]Morgan J A.The effect of N nutrition on the water relation and gas exchange characteristics of wheat.Plant Physiology,1986,80:52-58
    [17]林世青,许春晖,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16
    [18]Krause G H,Weis E.Chlorophyll fluorescence and photosynthesis:The basics[J].Annual Review Plant Biology,1991,45:633-652
    [19]勾玲,闫洁,韩春丽,等.氮肥对新疆棉花产量形成期叶片光合特性的调节效应[J].植物营养与肥料学报,2004,10(5):488-493
    [20]胡继超,曹卫星,姜东,等.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320
    [21]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [22]Sehreiber U,Schliwa U,Bilger W.Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J].Photosynthesis Research,1986,10:51-62
    [23]Bilger W,Birkman O.Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbanee changes,fluorescence and photosynthesis in Hedera canariensis[J].Photosynthesis Research,1990,25:173-185
    [24]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995,4-99
    [25]胡继超,姜东,曹卫星,等.短期干旱对水稻叶水势、光合作用及干物质分配的影响[J].应用生态学报,2004,15(1):63-67
    [26]Demmig B,Winter K,Krger A,et al.Photoinhibition and zeaxanthin formation in intact leaves:A possible role of the xanthophylls cycle in the dissipation of excess light energy[J].Plant Physiology,1987,84:218-224
    [27]高健,侯成林,吴泽民.淹水胁迫对Ⅰ-69/55杨蒸腾作用的影响[J].应用生态学报,2000,11(4):518-522
    [28]王纪华,赵春江,黄文江,等.土壤水分对小麦叶片含水量及生理功能的影响[J].麦类作物学报,2001,21(4):42-47
    [29]Attipalli R R,Kolluru V C,Munusamy V.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J].Journal of Plant Physiology,2004,161:1189-1202
    [30]Prasertsak A,Fukai S.Nitrogen availability and water stress interaction on rice growth and yield[J].Field Crop Research,1997,52:249-260
    [31]Lioert F,Casanovas C,Penuelas J.Seedling survival of Mediterranean shrub land species in relation to root:shoot ratio,seed size and water and nitrogen use[J].Function Ecology,1999,13:210-216
    [32]Radin J W,Ackerson R C.Water relations of cotton plants under nitrogen deficiency Ⅲ.Stomatal conductance,photosynthesis and ABA accumulation during drought[J].Plant Physiology,1981,67:1152-1191
    [33]Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochemical and Biophysical Research Communications,1989,9:87-92
    [34]Demmig-Adams B,Adams WW Ⅲ.Photoprotection and other responses of plants to high light stress[J].Annual Review Plant Biology,1992,43:599-626
    [35]董彩霞,赵世杰,田纪春,等.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响[J].作物学报,2002,28(1):59-64
    [36]许大全.光合作用效率[M].上海:上海科学技术出版社,2002
    [37]冯玉龙,曹坤芳,冯志立.生长光强对4种热带雨林树苗光合机构的影响[J].植物生理与分子生物学学报,2002,28(2):153-160
    [1]黄骏麒.中国棉作学[M].北京:中国农业科学出版社,1998
    [2]马富裕,李蒙春,杨建荣,等.花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J].中国农业科学,2002,35(12):1467-1477
    [3]Reddy A R,Chaitanya K V,Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J].Jurnal of Plant Physiol,2004,161:1189-1202
    [4]Nepomuceno A L,Osterhuis D M,Stewart J M.Physiological responses of cotton leaves and roots to water deficit induced by polyethylene glycol[J].Environmental and Experimental Botany,1998,40(1):29-41
    [5]张旺锋,勾玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898
    [6]Pinheiro H A,DaMatta F M,Chaves A R M,Fontes E P B.Loureiro M E.Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought[J].Plant Science,2004,167:1307-1314
    [7]Jackson M B,Kowalewska A K B.Positive and negative messages from roots induce foliar desiccation and stomatal closure in flooded pea plants[J].Journal of Experimental Botany,1983,34:493-506
    [8]Guinn G,Brummett D L.Leaf age,decline in photosynthesis,and changes in abscisic acid,indole-3-acetic acid,and cytokinin in cotton leaves[J].Field Crop Research,1993,32:269-275
    [9]Sofo A,Tuzio A C,Dichio B,Xiloyannis C.Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids[J].Plant Science,2005,169:403-412
    [10]Liang J S,Zhang J H.The relations of stomatal closure and reopening to xylem ABA concentration and leaf water potential during soil drying and rewatering[J].Plant Growth Regulation,1999,29:77-86
    [11]张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,2007,33(3):482-490
    [12]Radin J W and Ackerson R C.Water relation of cotton plants under nitrogen deficiency Ⅲ.Stomatal conductance,photosynthesis and ABA accumulation during drought[J].Plant physiology,1984,67:115-119
    [13]张绪成,上官周平.不同抗旱性小麦叶片膜脂过氧化的氮素调控机制[J].植物营养与肥料学报,2007,13(1):106-112
    [14]Saneoka H,Moghaieb R E A,Premachandra G S,Fujita K.Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relation in Agrostis palustris Huds[J].Environmental and Experimental Botany,2004,52,131-138
    [15]张岁岐,山仑.土壤干旱条件下氮素营养对玉米内源激素含量影响[J].应用生态学报,2003,14(9):1503-1506
    [16]陈新红,刘凯,奚岭林,等.土壤水分与氮素对水稻地上器官脱落酸和细胞分裂素含量的影响[J].作物学报,2005,31(11):1406-1414
    [17]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [18]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [19]Reddy A R,Chaitanya K V,Jutur P P,Sumithra K.Differential antioxidative reponses to water stress among five mulberry(Morus alba L.) cultivars[J].Environmental and Experimental Botany,2004,52:33-42
    [20]Ge T D,Sui F G,Bai L P,et al.Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize[J].Agricultural Science in China,2006,5(4):291-298
    [21]章崇玲,曾国平,陈建勋.干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响[J].植物资源与环境学报,2000,9(4):23-26
    [22]冯玉龙,张亚杰,朱春全.调控活性氧代谢对渗透胁迫时杨树光合作用光抑制的影响[J].植物生态学报,2001,25(4):451-459
    [23]Liu F L,Jensen C R,Shahanzari A,Andersen M N,Jacobsen S E.ABA regulated stomatal control and photosynthetic water use efficiency of potato(Solanum tuberosum L.) during progressive soil drying[J].Plant Science,2005,165:831-836
    [24]Wang Y Y,Zhou R,Zhou X.Endogenous levels of ABA and Cytokinins and their relation to stomatal behavior in dayflower(Commelina communis L.)[J].Journal of Plant Physiology,1994,144:45-48
    [25]Olivella C,Vendrell M,Save R.Abscisic acid and ethylene content in Gerbera jamesonii plants submitted to drought and rewatering[J].Biologia Plantarum,1998,41(4):613-616
    [26]王磊,张彤,丁圣彦.干旱和复水对大豆光合生理生态特性的影响[J].生态学报,2006,26(7):2703-2708
    [27]Xu 1,Bland W L.Resumption and water uptake by sorghum after water stress[J].Agronomy Journal,1993,85:697-702
    [28]李雪梅,张利红,何兴元,等.脱落酸对UV-C胁迫下小麦幼苗光合特性及抗氧化酶活性的影响[J].应用生态学报,2006,17(5):822-826
    [29]李伶俐,杨青华,李文.棉花幼铃脱落过程中IAA、ABA、IVIDA含量及SOD、POD活性的变化[J].植物生理学报,2001,27(3):215-220
    [30]沈法富,喻树迅,范术丽,等.棉花叶片衰老过程中激素和膜脂过氧化的关系[J].植物生理与分子生物学学报,2003,29(6):589-592
    [1]黄骏麒.中国棉作学[M].北京:中国农业科学出版社,1998
    [2]马富裕,李蒙春,杨建荣,等.花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J].中国农业科学,2002,35(12):1467-1477
    [3]Ennahli S,Earl H.Physiological limitation to photosynthetic carbon assimilation in cotton under water stress.Crop Science,2005,45:2374-2382
    [4]Ball R A,Osterhuis D K,Mauromoustakos A.Growth dynamics of the cotton plant during water-deficit stress.Agronomy Journal,1994,86:788-795
    [5]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [6]Halvoson A D,Reule C A.Nitrogen fertilizer requirements in an annual dryland cropping system.Agronomy Journal,1994,86:315-318
    [7]张绪成,上官周平.不同抗旱性小麦叶片膜脂过氧化的氮素调控机制[J].植物营养与肥料学报,2007,13(1):106-112
    [8]王宗明,梁银丽.氮磷营养对夏玉米水分敏感性及生理参数的影响[J].生态学报,2003,23(4):751-757
    [9]郭天财,冯伟,赵会杰,等.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457
    [10]Latiri-Souki K,Nortcliff S,Lawlor D W.Nitrogen fertilizer can increase dry matter,grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions.European Journal of Agronomy,1998,9(1):21-34
    [11]Ashraf M,Shabaz M,Ashraf M Y.Influence of nitrogen supply and water stress on growth and nitrogen,phosphorus,potassium and calcium contents in pearl millet.Biologia Plantrum,2001,44(3):459-462
    [12]Prasertsak A,Fukai S.Nitrogen availability and water stress interaction on rice growth and yield.Field Crops Research,1997,52:249-260
    [13]Shangguan Z P,Shao M A,Dyckmans J.Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat.Environmental and Experimental Botany,2000,44:141-149
    [14]Nepomuceno A L,Osterhuis D M,Stewart J M.Physiological responses of cotton leaves and roots to water deficit induced by polyethylene glycol.Environmental and Experimental Botany,1998,40:29-41
    [15]孟亚利,王瑛,王立国,等.麦棉套作复合根系群体对棉花根系生长的影响[J].中国农业科学,2006,39(11):2228-2236
    [16]Maranov A,Samedovam A,Shirvany T(1998).Root-shoot relationships in plant adaptation to nitrogen deficiency develop.Plant soil science,82,147-154
    [17]张国盛,张仁陟,黄高宝.水分胁迫条件下春小麦根系对施肥的响应[J].草业学报,2003,12(3):105-109
    [18]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,2006,22(5):197-200
    [19]金轲,汪德水,蔡典雄,等.旱地农田肥水耦合效应及其模式研究.中国农业科学,1999,35(5):104-106
    [20]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [21]Guenni O,Marin D,Baruch Z.Responses to drought of five Brachiaria species.Ⅰ.Biomass production,leaf growth,root distribution,water use and forage quality.Plant and Soil,2002,243:229-241
    [22]Pinheiro C,Passarinho J A,Ricardo C P.Effects of drought and rewatering on the metabolism of Lupinus albus organs.Journal of Plant Physiology,2004,161:1203-1210
    [23]Pinlaeiro H A,DaMatta F M,Chaves A R M,et al.Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought.Plant Science,2004,167:1307-1314
    [24]Iturbe-Ormaetxe Ⅰ,Escuredo R P,Arrese-Igor C,et al.Oxidative damage in pea plant exposed to water deficit or paraquat.Plant Physiology,1998,119:173-181
    [25].张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响 [J].作物学报,2007,33(3):482-490
    [26]Saneoka H,Moghaieb R E A,Premachandra G.S,et al.Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relation in Agrostis palustris Huds.Environmental and Experimental Botany,2004,52:131-138
    [1]马富裕,李蒙春,杨建荣,等.花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J].中国农业科学,2002,35(12):1467-1477.
    [2]蒋光华,盂亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343.
    [3]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926.
    [4]Saxena I M,Brown R M Jr.Cellulose synthetases and related enzyme[J].Cell Biol.Int,2000,3(6):523-531.
    [5]Brown R M Jr,Saxena I M.Cellulose biosynthesis:A model for understanding the assembly of biopolymers[J].Plant Physiol.Bioch.,2000,38:57-67
    [6]Haigler C H,Datcheva M I,Hogan P S et al.Carbon partitioning to cellulose synthesis[J].Plant Mol.Biol.,2001.,47(1-2):29-51
    [7]Salnikov V V,Grimson M J,Seagull R W,Halgler C H.Localization of sucrose synthetase and callose in freeze-substituted secondary secondary-wall-stage cotton fibers[J].Protoplasma,2003,22·1(3-4):175-184.
    [8]Ruan Y L,Churey P S.A fiberless seed mutation in cotton is associated with lack of fiber initiation in ovule epidermis and alterations in sucrose synthetase expression and carbon partitioningin developing seeds[J].Plant Physiol.,1998,118(2):399-406.
    [9]Meier H,Buchs L,Buchala A J,et al.(1→3)-β-D-Glucan(callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres[J].Nature,1981,289:821-822
    [10]Yang Y M,Xu C N,Wang B M,Jia J Z.Effects of plant growth regulators on secondary wall thickening of cotton fibres[J].Plant Growth Regul.,2001,35(3):233-237
    [11].张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184.
    [12]Reddy A R,Chaitanya K V,Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J].J Plant Physiol.,2004,161:1189-1202.
    [13]Pinheiro H A,DaMatta F M,Chaves A R M et al.Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought[J].Plant Sci.,2004,167:1307-1314.
    [14]卞海云,王友华,陈兵林,等.低温条件下相关关键酶活性对棉纤维比强度形成的影响[J].中国农业科学,2008,41(4):1235-1241.
    [15]胡继超,曹卫星,姜东,罗卫红.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320.
    [16]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791.
    [17]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [18]汤章诚.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [19]Solo A,Tuzio A C,Dichio B,Xiloyannis C.Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids[J].Plant Science,2005,169:403-412
    [20]刘永红,杨勤,杨文钰,等.花期干湿交替对玉米干物质积累与再分配的影响[J].作物学报, 2006,32(11):1723-1727.
    [21]Xu L,Bland W L.Resumption and water uptake by sorghum after water stress[J].Agron J,1993,85:697-702
    [22]张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,2007,33(3):482-490.
    [23]范雪梅,姜东,戴廷波,等.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141.
    [24]姜东,于振文,李永庚,余松烈.施氮水平对鲁麦22籽粒淀粉合成的影响[J].作物学报,2003,29(3):462-467.
    [25]Cazetta J O.Seebauer J R.Below F E.Sucrose and nitrogen supplies regulate growth of maize kernels[J].Ann.Bot-London,1999,84:747-754.
    [26]Ge T D,Sui F G,Bai L P,et al.Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize[J].Agric.Sci China,2006,5(4):291-298.
    [27]Saneoka H,Moghaieb R E A,Premachandra G S,Fujita K.Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relation in Agrostis palustris Huds[J].Environ.Exp.Bot.,2004,52,131-138.
    [1]Damisch W.Biomass yield-A topical issue in modern wheat breeding programmers[J].Plant Breeding,1996,107:11-17
    [2]Watt M S,Clinton P W,Whitehead D,Richardson B,Mason E G.Leckie A C.Above-ground biomass accumulation and nitrogen fixation of broom(Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site[J].Forest Ecology and Management,2003,184:93-104
    [3]胡明芳,田长彦,马英杰.不同水肥条件下棉花苗期的生长、养分吸收与水分利用状况[J].干旱地区农业研究,2002,20(3):35-37
    [4]Wu Y J,Cosgrove D J.Adaptation of roots to low water potential by change cell wall extensibility and cell wall proteins[J].Journal of Experimental Botany,2000,51:1543-1553
    [5]刘永红,杨勤,杨文钰,等.花期干湿交替对玉米干物质积累与再分配的影响[J].作物学报,2006,32(11):1723-1727
    [6]Gayler S,Wang E,Priesack E,et al.Modeling biomass growth,Nuptake and phynological development of potato crop[J].Geoderma,2002,105:367-383
    [7]张旺锋,王振林,余松烈,等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,2002,28(6):789-796
    [8]张旺峰,李蒙春,勾玲,等.北疆高产棉花养分吸收特性的研究[J].棉花学报,1998,10(2):88-95
    [9]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [10]Shangguan Z P,Shao M A,Dyckmans J.Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J].Environmental and Experimental Botany,2000,(44):141-149
    [11]王耀富,孙德梅,徐传快,等.干旱胁迫下氮用量对烤烟养分积累与分配及烟叶产量和品质的影响[J].植物营养与肥料学报,2004,10(3):306-311
    [12]范雪梅,戴廷波,姜东,等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报,2004,18(6):63-67
    [13]Pinheiro C,Passarinho J A,Ricardo C P.Effects of drought and rewatering on the metabolism of Lupinus albus organs[J].Journal of Plant Physiology,2004,161:1203-1210
    [14]Guenni O,Marin D,Baruch Z.Responses to drought of five Brachiaria species.Ⅰ.Biomass production,leaf growth,root distribution,water use and forage quality[J].Plant and Soil,2002,243:229-241
    [15]Nepomuceno A L,Osterhuis D M,Stewart J M.Physiological responses of cotton leaves and roots to water deficit induced by polyethylene glycol[J].Environmental and Experimental Botany,1998,40(1):29-41
    [16]马富裕,李蒙春,杨建荣,等.花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J].中国农业科学,2002,35(12):1467-1477
    [17]Ball R A,Osterhuis D K,Mauromoustakos A.Growth dynamics of the cotton plant during water-deficit stress[J].Agronomy Journal,1994,86:788-795
    [18]黄骏麒.中国棉作学[M].北京:中国农业科学出版社,1998
    [19]金轲,汪德水,蔡典雄,等.旱地农田肥水耦合效应及其模式研究[J].中国农业科学,1999,32(5):104-106
    [20]王宗明,梁银丽.氮磷营养对夏玉米水分敏感性及生理参数的影响[J].生态学报,2003,23(4):751-757
    [21]郭天财,冯伟,赵会杰,等.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457
    [22]Latiri-Souki K,Nortcliff S,Lawlor DW.Nitrogen fertilizer can increase dry matter,grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions[J].European Journal of Agronomy,1998,9(1):21-34
    [23]Ashraf M,Shabaz M,Ashraf MY.Influence of nitrogen supply and water stress on growth and nitrogen,phosphorus,potassium and calcium contents in pearl millet[J].Biologia Plantrum,2001,44(3):459-462
    [24]Prasertsak A,Fukai S.Nitrogen availability and water stress interaction on rice growth and yield[J].Field Crops Research,1997,52:249-260
    [25]Morgan J A.The effect of N nutrition on the water relation and gas exchange characteristics of wheat[J].Plant Physiology,1986,80:52-58
    [26]王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报,2003,14(10):1632-1636
    [27]接玉玲,杨洪强,崔明刚,等.土壤含水量与苹果叶片水分利用效率的关系[J].应用生态学报,2001,12(3):387-390
    [28]王磊,胡楠,张彤,等.干旱和复水对大豆(Glycine max)叶片光合及叶绿素荧光的影响[J].生态学报,2007,27(9):3630-3636
    [29]Radin J W,Ackerson R C.Water relations of cotton plant under nitrogen deficiency Ⅱ.Stomatal conductance,photosynthesis and ABA accumulation during drought[J].Plant physiology,1981,67:115-119
    [30]Olivella C,Vendrell M,Save R.Abscisic acid and ethylene content in Gerbera jamesonii plants submitted to drought and rewatering[J].Biologia Plantarum,1998,41(4):613-616
    [31]Xu l,Bland W L.Resumption and water uptake by sorghum after water stress[J].Agronomy Journal,1993,85:697-702
    [32]Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochim Biophys Acta,1989,9:87-92
    [33]林世青,许春晖,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16
    [34]Demmig-Adams B,Adams WW Ⅲ.Photoprotection and other responses of plants to high light stress[J].Annual Review Plant Biology,1992,43:599-626
    [35]董彩霞,赵世杰,田纪春,等.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响[J].作物学报,2002,28(1):59-64
    [36]郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005, 25(6):1291-1298
    [37]Demmig B,Winter K,Krger A,Kzygan F C.Photoinhibition and zeaxanthin formation in Intact leaves:A possible role of the xanthophylls cycle in the dissipation of excess light energy[J].Plant Physiol,1987,84:218-224
    [38]Krause G H,Weis E.Chlorophyll fluorescence and photosynthesis:the basics[J].Annual Review Plant Biology,1991,45:633-652
    [39]许大全.光合作用效率[M].上海:上海科技出版社,2002
    [40]冯玉龙,曹坤芳,冯志立.生长光强对4种热带雨林树苗光合机构的影响[J].植物生理与分子生物学学报,2002,28(2):153-160
    [41]Smirnlff N.The role of active oxygen in the response of plants to water deficit and desiccation[J].New Phytologist,1993,125:27-58
    [42]Asada K,Takahashi S.Production and scavenging of active oxygen in photosynthesis.In:Kyle D J,Osmond C B,Amtzen,C J,Photoinhibition:Topics in Photosynthesis[M],1987,9:227-287
    [43]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4):503-507
    [44]Reddy A R,Chaitanya K V,Jutur P P,Sumithra K.Differential antioxidative reponses to water stress among five mulberry(Morus alba L.) cultivars[J].Environmental and Experimental Botany,2004,52:33-42
    [45]Ge T D,Sui F G,Bal L P,Lu Y Y,Zhou G S.Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize[J].Agricultural Sciences in China,2006,5(4):291-298
    [46]章崇玲,曾国平,陈建勋.干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响[J].植物资源与环境学报,2000,9(4):23-26
    [47]冯玉龙,张亚杰,朱春全.调控活性氧代谢对渗透胁迫时杨树光合作用光抑制的影响[J].植物生态学报,2001,25(4):451-459
    [48]张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,2007,33(3):482-490
    [49]Saneoka H,Moghaieb R E A,Premachandra G S,Fujita K.Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relation in Agrostis palustris Huds[J].Environmental and Experimental Botany,2004,52,131-138
    [50]Liu F L,Jensen C R,Shaharnzari A,Andersen M N,Jacobsen S E.ABA regulated stomatal control and photosynthetic water use efficiency of potato(Solanum tuberosum L.) during progressive soil drying[J].Plant Science,2005,168:831-836
    [51]Jackson M B,Kowalewska A K B.Positive and negative messages from roots induce foliar desiccation and stomatal closure in flooded pea plants[J].Journal of Experimental Botany,1983,34:493-506
    [52]Radin J W and Ackerson R C.Water relation of cotton plants under nitrogen deficiency Ⅲ.Stomatal conductance,photosynthesis and ABA accumulation during drought[J].Plant physiology,1984,67:115-119
    [53]张岁岐,山仑.土壤干旱条件下氮素营养对玉米内源激素含量的影响[J].应用生态学报,2003,14(9):1503-1506
    [54]Solo A,Tuzio A C,Dichio B,Xiloyannis C.Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids[J].Plant Science,2005,169:403-412
    [55]王磊,张彤,丁圣彦.干旱和复水对大豆光合生理生态特性的影响[J].生态学报,2006,26(7):2703-2708
    [56]孟亚利,王瑛,王立国,等.麦棉套作复合根系群体对棉花根系生长的影响[J].中国农业科学,2006,39(11):2228-2236
    [57]翟丙年,孙春梅,王俊儒,等.氮素亏缺对冬小麦根系生长发育的影响[J].作物学报,2003,29(6):913-918
    [58]Iturbe-Ormaetxe I,Escuredo R P,Arrese-Igor C,Becana B.Oxidative damage in pea plant exposed to water deficit or paraquat[J].Plant Physiology,1998,119,173-181
    [59]张国盛,张仁陟,黄高宝.水分胁迫条件下春小麦根系对施肥的响应[J].草业学报,2003,12(3):105-109
    [60]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,2006,22(5):197-200
    [61]许玉璋,许萱,李中东.土壤水分对棉纤维发育的影响[J].西北农业学报,1994,3(3):18-32
    [62]Haigler C H,Datcbeva M I,Hogan P S,Salnikov V V,Hwang S,Kirt M,Delmer D P.Carbon partitioning to cellulose synthesis[J].Plant Molecular Biology,2001,47(1-2):29-51
    [63]Salnikov V V,Grimson M J,Seagull R W,Halgler C H.Localization of sucrose synthase and callose in freeze-substituted secondary secondary-wall-stage cotton fibers[J].Protoplasma,2003,221(3-4):175-184
    [64]Meier H,Buchs L,Buchala A J,Homewood T.(1→3)-β-D-Glucan(callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres[J].Nature,1981,289(5800):821-822
    [65]Ruan Y L,Chourey,P S,Demlmer D P.The differential expression of sucrose synthase in relation to diverse patterns of carbon portioning in developing cotton seed[J].Plant Physiology,1997,115: 375-385
    [66]Yang Y M,Xu C N,Wang BM,et al.Effects of plant growth regulators on secondary wall thickening of cotton fibres[J].Plant Growth Regulation,2001,35(3):233-237
    [67]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343
    [68]张文静,胡宏标,陈兵林,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].作物学报,2007,33(4):531-538
    [69]Read J J,Reddy K R,Jenkins J N.Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition[J].European Journal of Agronomy,2006,24:282-290
    [70]Reddy A R,Chaitanya K V,Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J].Journal of Plant Physiology,2004,161:1189-1202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700