用户名: 密码: 验证码:
铝、镁合金化学镀镍机理与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于镁合金和铝合金是轻质工程材料,并具有许多优良性能,如密度小,强度高,易于压力加工等特点,在军工、汽车、航空航天,摩托和电子通讯等行业中得到广泛的应用,成为一种常用的结构材料。但是铝、镁合金具有一个共同的特点是它们的化学活性较高,硬度低,耐蚀耐磨性差等,这些弱点影响了该材料发挥其优势。通常需要采用表面处理技术以改进其制件的表面性能来提高其耐蚀耐磨性能。通过化学镀镍可以提高铝,镁合金表面硬度,耐腐蚀,耐磨性,并可赋予铝,镁合金表面许多功能特性,如焊接性,可抛光性等。
     本论文研究了不同前处理方法对AZ91D镁合金化学镀镍镀层性能的影响,确立了适合于化学镀镍的环保前处理工艺;探讨了开发的绿色前处理工艺的界面反应机理;研究了化学镀镍的主要影响因素;同时研究了镀液中的化学反应速率动力学方程。对铝合金研究在中等温下进行直接化学镀镍(70°C)的工艺及反应机理,研究镁合金硫酸镍主盐的化学镀镍镀液,降低生产成本,提高镀液的稳定性。通过加入活化剂(KF)和调整主配合剂来提高化学镀镍的速度。开发低成本长寿命的硫酸镍主盐的铝,镁合金化学镀镍溶液,并对其反应机理和工艺进行了剖析。
     采用重量法,扫描电子显微镜(SEM),X-射线衍射(XRD),发射扫描电子(FSEM),X-射线探测器(EDX),环境扫描电镜(ESEM)和电化学测试等检测方法,对铝,镁合金的前处理后的表面形貌和成分,镀层表面形貌,镀层断面形貌,镀镍层进行表征。通过氯化钠溶液的浸泡实验来测定镀层的孔隙率,评定镀层的致密性。应用电化学开路电势—时间曲线和镀层阳极极化曲线来分析活化剂和不同配合剂的作用效果,解释其反应机理。研究结果表明:
     1.(1)经HNO_3+CrO_3酸洗→HF活化的前处理,(2)HNO_3+H_3PO_4酸洗→K_4P_2O_7活化→NH_4HF_2活化的前处理所得镁合金基底能够获得合适的氟化膜表面粘附物质,有效地防止镁合金基底在镀液中的腐蚀。(3)经过HNO_3+CrO_3酸洗后→K_4P_2O_7活化→浸锌的前处理工艺,最好能能形成一层致密的锌膜,这层金属锌膜既能防止基底上的镁腐蚀,又能提高表面的电沉积和化学沉积的活性。三种不同前处理后获得的镁合金基底表面粗糙,且形成了不同程度的刻蚀粗糙度,能够增强镀层与基底的结合力。
     2.经过HNO_3+H_3PO_4酸洗→K_4P_2O_7活化→NH_4HF_2溶液二次活化处理,获得的镁合金基底表面有着适当的F/O比值(1.2:1),能够为镍的初始沉积提供适当的活性点,适当比例的氟化膜能有效的防止镀液中的氢离子腐蚀和镍离子的置换反应,避免对镁基体的腐蚀和形成无结合力的镀层。这样的表面处理获得的化学镀镍层具有良好的耐蚀性和结合力。该前处理溶液中没有铬盐,是一种低毒性的较为环保的镁合金表面处理方法。
     3.采用硫酸镍主盐的化学镀液,其镀液中主盐、还原剂浓度一般维持在20~28g·dm~(-3)。化学镀镍在60℃开始施镀,在80~90℃镀液才能正常工作。当施镀次数超过三次后,沉积速度降至8.127μm·h~(-1),硫酸镍浓度降至16.56g·dm~(-3)。需要补充主盐和还原剂才能进行正常的化学镀镍,镀液需要维护。
     4.铝合金化学镀镍溶液中加入活化剂后,会使基体表面的氧化物溶解,露出更多铝合金基材,使其电极电势出现负移,适宜浓度(2~4g·dm~(-3))的活化剂可以加快化学诱发沉积镍的速度,实现6063铝合金在中温条件下直接化学镀镍,提高化学沉积的速度,改善镀层的综合性能。但过高浓度(>4g·dm~(-3))的活化剂会对镀层产生严重的腐蚀作用。
     5.采用氨基乙酸为主配合剂,进行铝合金化学镀镍时,提高了镀速,获得了致密的化学镀镍层,其镀层的耐蚀性能明显改善,镀层在腐蚀介质中腐蚀电势提高,腐蚀电流降低,耐色变性也得到了明显的提高。化学镀镍的沉积速度随氨基乙酸质量浓度的增加而下降。活化剂浓度为2g·dm~(-3),氨基乙酸浓度为8g·dm~(-3)时,能得到的综合性能良好的Ni P镀层。
Aluminum and magnesium alloys are widely uesd in many fields: military,automobile, aerospace, mechanical and electronic components, etc, because they havemany attrative properties, such as: low density, high intensity and easy to pressureprocessing, etc. However, aluminum and magnesium alloys have some commonshortcomings. Aluminum and magnesium alloys are intrinsically high reactive, andare easily oxidized to form oxidation film in the dry air. They have poor corrosionresistance and wearability, low hardness, which are actually one of the main obstaclesto the application of aluminum and magnesium alloys in practical environments.Electroless nickel plating is one of the effective surface modifications for aluminum,magnesium and its alloys. It not only improves the wear resistance and corrosionresistance, but also improve the hardness, wear resistance and electrical contactperformance. Electroless nickel plating has widely been applied in many industries.Ni-P coating exhibits all sort of new functions, such as magnetic property, lubricationperformance, etc. Therefore, the performances of electroless nickel plating coatingson AZ91D magnesium alloys obtained via different pretreatments have been studiedin this dissertation. We aim to develop an appropriate, environmental-friendlypretreatment technique for meeting the needs of industrial production. The interfacereaction mechanism of the environmental-friendly pretreatment was analyzed. Themain factors of electroless nickel plating were studied. At the same time, thedynamics equation of the acidic electroless plating on magnesium alloys was studied.In addition, the reaction mechanism and process of direct electroless nickel plating on6063aluminum alloy in temperature (70℃) were studied. The additive (fluoridecompound) was used and the main complexing agent was adjusted in the plating bathto improve the deposition rate of the electroless nickel plating. As far as aluminumand magnesium alloys are concerned, the main salts of electroless plating solutionsmostly focus attentions on basic nickel carbonate or nickel acetate, which result inhigh-cost, low-efficiency, instability of electroless plating solutions and littleapplications. There have important theoretic and practical signification of theelectroless plating on aluminum and magnesium alloys. Additionally, the platingmechanism and process are studied, by using low-cost, long-life NiSO_4·6H2O as themain salt.
     In this dissertation, the electroless nickel plating on aluminum, and magnesiumalloys was studied in detail by means of weight method, Scanning ElectronMicroscope (SEM), X-ray Diffraction (XRD), Energy Dispersed X-ray spectrometer(EDX) Environmental Scanning Electron Microscope (ESEM) and electrochemistrymethods, etc. These measurement techniques were applied in the investigations ofpre-treatment process, the surface morphology and the cross section views of thecoatings, the analysis of the coating surface, the coating porosity and its evaluationmethod, the new electroless plating process,and so on.
     Experimental results showed that:
     1. Three different pre-treatments were studied, and the surface properties of thepretreated magnesium alloys were characterized by means of SEM, EDX andelectrochemical method. The results showed that the different degrees of corrosionwere produced on the surface of magnesium alloys. There had some deep cavities onthe surface and a coarse surface was all formed. The coarse surface can augment themechanical occlusive force between the coatings and the substrates. A compactfluoride film was formed on the surface of the specimen via (1) HNO_3+CrO_3pickling→HF activation or (2) HNO_3+H_3PO_4pickling→K_4P_2O_7activation→NH_4HF_2activation. The fluoride film can hinder the magnesium alloys from furtherdissolution. A zinc film was produced on the substrate via (3) HNO_3+CrO_3pickling→K_4P_2O_7activation→zinc immersion, which can also effectively protect themagnesium alloys from corrosion.
     2. After the surfaces of magnesium alloys were pretreated via HNO_3+H_3PO_4pickling→K_4P_2O_7activation→NH_4HF_2activation. There was suitable F/O (1.2:1)on the substrate surface, which can provide appropriate active points, and effectivelyprotect the magnesium alloys from corrosion in the bath. The Ni-P coating had goodappearance, good corrosion resistance and excellent adhesion. The usage of the toxicsubstances in this pretreatment was avoided. Therefore, it was a chromium-free, lowfluoride and environmental-friendly pretreatment technology.
     3. In the electroless plating acidic solutions using NiSO_4·6H2O as the main salt,both nickel salt and reducing agent were generally maintained between20~28g·dm~(-3).The temperature of electroless nickel plating was controlled to be80℃~90℃. Thedeposition rate was reduced to8.127μm·h-1and the concentration of nickel sulfatewas reduced to16.56g·dm~(-3)after more than twice platings. We need to supplenmentthe main salt and reducing agent arc needed in order to carry out normal electrolessnickel plating bath.
     4. Appropriate concentrations of additive can accelerate the rate of chemicallyinduced nickel deposition, and realize direct electroless nickel plating on6063aluminum alloy in medium temperature (70℃). The additive can play important rolesin accelerating the deposition rate and improving the comprehensive performance ofcoatings.
     5. Aminoacetic acid as a main complexing agent in the bath can controlreasonable plating rate of electroless nickel plating, and produce high quality coatingwith high corrosion resistance, good adhesion. The resistance of color degenerationalso got obvious improvement. When the additive was adjusted to2g·dm~(-3)and theaminoacetic was controlled to8g·dm~(-3), the Ni–P coating with better comprehensiveperformance was obtained.
引文
[1]彭晓东,李玉兰,刘江.轻合金在汽车上的应用[J].机械工程材料,1999,23(2):1-4.
    [2]唐靖林,曾大本.镁合金的应用发展现状[J].机械工人,20022(9):32-35
    [3]曾英,罗静.镁合金触变成形在3C产品壳体上的应用[J].重庆工学院学报,2006,20(11):44–46.
    [4]陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势[J].世界有色金属,2004,(7):12–20.
    [5]刘新田,王西科,黄金亮.表面工程[M]。开封:河南大学出版社,2000,6
    [6] Song G L. Trens A A. Corrosion Mechanisms of Magnesium Alloys[J],1999,1(1):11-33.
    [7] Huo H W, Li Y, Wang F H. Corrosion of AZ91D Magnesium Alloy with aChemical Conversion Coating and Electroless Nickel Layer[J]. corrosionScience,2004,(46):1467-1477.
    [8]张永君,严川伟,楼翰等. Mg及其合金的阳极氧化技术进展[J].腐蚀科学与防护技术,2001,13(4):214-217.
    [9]阎峰云,林华,王胜. AZ9lD镁合金在硅酸盐体系下微弧氧化配方的优化[J].新技术新工艺,2006,7(5):68-70.
    [10] Luo H H, Cai Q H, Wei B K, et a1. Effect of (NaPO3)6concentrations oncorrosion resistance of plasma electrolytic oxidation coatings formed on AZ91Dmagnesium alloy[J]. Journal of Alloys and Compounds,2008,464(1-2):537-543.
    [11]高瑾,涂运骅,李久青.镁合金涂装保护体系失效特性及铬酸盐转化膜的影响[J].腐蚀科学与防护,2005,17(3):169-171.
    [12]梁春林,刘宜汉,韩变华等.镁合金表面处理研究现状及发展趋势[J].表面技术,2006,35(6):57-64.
    [13]李保成,张星,马丹.镁合金有机涂层特性研究[J].材料与表面处理技术,2006,5:85-86.
    [14]张微,龙军峰,张津等.硅烷增强镁合金防腐邮寄涂层的研究[J].表面技术,2009,38(6):51-53.
    [15]李宁,屠振密.化学镀实用技术[M],2004:57-58.
    [16]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000:16-25.
    [17] Xiang Y H, Hu W B, Liu X K, et al. A study on surface state during thepretreatment of electroless nickel plating on magnesium alloys[J]. Trans. IMF,2001,79(1):27-29.
    [18] De Long H K. Electroless Nickel Plating [P]. US. Paten:152009,1964.
    [19]钱苗根.材料表面技术及其应用手册[M].北京:机械工业出版社,1998:117.
    [20]李瑛,陈珏玲,余刚等.镁合金化学镀镍工艺的研究[J].电镀与环保,2004,24(6):22–26.
    [21]杨金花,俞宏英,孙冬柏等.镁合金AZ91D化学镀前处理工艺的研究[J].电镀与涂饰,2008,27(11):24-27.
    [22]王超,张振忠,陆春华等.镁锫合金表面Ni-P非晶化学镀工艺研究[J].表面技术,2005,34(6):48-53.
    [23]李建中,邵忠财,郝建军等.“两步”法镁合金化学镀镍的研究[J].东北大学学报,2005,26(3):282-284.
    [24]李肖丰,李全安,陈君等.镁合金的腐蚀特性及耐蚀性研究[J].材料保护,2009,42(2):37-42.
    [25]张道军,邵红红,蒋小燕. AZ31镁合金化学镀工艺研究[J].表面技术,2007,36(4):54-56.
    [26]尧乾阳,孟继龙,徐建.镁合金化学镀镍-磷新工艺[J].新技术新工艺,2005,3(5):63-64.
    [27]郭长春,成旦红,李科军等.镁合金直接化学镀Ni-P合金工艺[J].电镀与精饰,2007,29(4):23-26.
    [28]向阳辉.镁合金直接化学镀镍活化表面状态对镀速的影响[J].电镀与环保,2000,20(2):21–23.
    [29]张道军,邵红红. AZ91D镁合金直接化学镀镍工艺研究[J].腐蚀科学与防护技术,2008,20(2):146-148.
    [30]霍宏伟,李明升,尹红生等. AZ91D镁合金化学镀镍前处理工艺及腐蚀行为研究[J].表面技术,2006,35(5):40-42.
    [31]戴长松,吴宜勇,王殿龙等.镁及镁合金的化学镀镍[J].兵器材料科学与工程,1997,20(4):35-38.
    [32]叶宏,孙智富,张鹏等.镁合金化学镀镍研究[J].材料保护,2003,36(3):27-29
    [33] Xiang Y H, Hu W B, Liu X K, et al. Initial Deposition Mechanism of ElectrolessNickel Plating on Magnesium Alloys[J]. Trans. IMF,2001,79(1):30–32.
    [34]蒋永锋,翟春泉,郭兴伍等.镁合金浸锌及膜层彩化工艺[J].材料保护,2003,36(3):30-31.
    [35]王晓民,辛士刚,王莹等[J].镁合金硫酸镍体系化学镀镍工艺及镀层性能研究.材料保护,2007,40(2):4-6.
    [36] Wang X J, Yu G, Ouyang Y J, He X M, et al. One-step pickling-activationbefore magnesium alloy plating [J]. Transactions of Nonferrous Metals Societyof China,2009,19(2):504-510.
    [37]牛丽媛,李光玉,江中浩等.镁合金镀镍磷合金及无铬前处理工艺[J].吉林大学学报,2006,36(2):148-152.
    [38] Lian J S, Li G I, Niu L I. Electroless Ni-P deposition plus zinc phosphatecoating on AZ91D magnesium alloy [J]. Surface and Coatings Technology,2006,200(20):5956-5962.
    [39] Hui Z, Zhang H H, Jian Z C. A new method for electroless Ni-P plating onAZ31magnesium alloy[J]. Surface and Coatings Technology [J],2007,202(1):133-139.
    [40]李建中,田彦文,崔作兴.镁合金微弧氧化一化学镀的研究[J].稀有金属材料与工程,2007,36(3):528-532.
    [41] Crotty D, Steinecker C, Durkin B. Plating difficult substrates with electrolessnickel [J] Products Finishing,1996,2(1):44–49.
    [42] ASTM B480-88, Standard Guide for Preparation of Magnesium and Magnesiumalloys for Electroplating [M],1988:57-69.
    [43] Delong H K. Plating on magnesium [J]. Metal Finishing Guidebook,1978,76(1):175–183.
    [44] Dennis J K, Wan M K Y, Wake S J. Plating on Magnesium Alloy Die castings [J]Trans IMF,1985,63(2):74–80.
    [45] Xiang Y H. Initial deposition mechanism of electroless nickel plating onmagnesium Alloys [J]. Trans. IME,2001,79(1):4-6.
    [46] Chen J H, Chang C C, Lee T S. Pretreatment for Plating on Magnesiumalloys[C]. In, AESF SURFIN’91, Toronto, Canada,1991:754-759.
    [47] Craft W H, Helmke G E, Kems B T, etc. Electrodeposition of Silver onMagnesium Alloys [J]. Metal Finishing,1965(5):50–52.
    [48] Fintschenko P, Groshaft E C. Tailored Procedures for Plating on Magnesium [J]Metal Progress,1968(6):94–98.
    [49]霍宏伟,李瑛,王福会. AZ91D镁合金化学镀镍[J].中国腐蚀与防护学报,2002,22(1):14–17.
    [50]曹文博,任晨星,关绍康,王利国,张献军.镁合金化学镀镍-磷合金的研究进展[J]水利电力机械,2003,6(4):16-18.
    [51]叶宏,冯燕熹,王希山.镁合金化学镀镍工艺研究[J].表面技术,2002,6(31):32-34.
    [52]罗守福,胡文彬.铝、镁合金的化学镀镍[J]轻合金加工技术,1997,2(25):28–30.
    [53] Narayan P B. EN on Cast Magnesium Alloy Components in ComputerPeripHerals [C]. In, EN’89, Cincinnati, Ohio,1989,26(1):26-37.
    [54] Brown R. International Magnesium Association55thAnnual WorldConference[C], Light Metal Age,1998,6(8):86–93.
    [55]张士林,任颂赞.简明铝合金手册[M]第2版.上海:上海科学技术文献出版,2006:6-9.
    [56]胡文彬,刘磊,仵亚婷.难镀基材的化学镀镍技术[M].北京:化学工业出版社,2003:35-191.
    [57]王孝镕,顾慰中.化学镀镍磷合金工艺研究[J].电镀与涂饰,1999,18(2):18-20.
    [58]尹国光.铝合金化学镀镍预处理新工艺[J].表面技术,2004,33(2):43-45.
    [59]高岩,郑志军,曹达华.铝基化学镀Ni-P前处理工艺对镀层结合力的影响[J].电镀与环保,2005,25(2):21-23.
    [60]李宁,黎德育,袁国伟.铝上一次浸锌工艺的研究[J].电镀与涂饰,2001,20(3):17-20.
    [61] Zelley W G. Formation of immersion zinc coatings on aluminum [J]. Journal ofthe Electrochemical Society,1953,100(7):328.
    [62] Keller F, Zelley W G. Conditioning aluminum alloys for electroplating [J].Journal of the Electrochemical Society,1950,97(4):143.
    [63] Robertson S G, Ritchie I M. The role of iron and tartrate in the zincateimmersion process for plating aluminium [J]. Journal of AppliedElectrochemistry,1997,27(15):799-804.
    [64] Saubestre E B, Morica J L. Pretreatment for aluminum [J]. Plating and SurfaceFinishing,1966,53(15):899.
    [65] Pearson T, Wake S. Verbesserungen beider vorbehandlung von aluminium alssubstratfuer die galvanische abscheidung[C]. Galvano technik,2000,91(11):3054-3061.
    [66]于光.铝合金化学镀镍[J].材料保护,1995,28(9):16-17.
    [67]肖鑫,龙有前,李金柱.铝及铝合金光亮化学镀镍工艺研究[J].湘潭机电高等专科学校学报,2000,2(2):39-43.
    [68]邱星武,李刚,徐洋,任鑫.铝硅镁合金化学镀镍[J].电镀与涂饰,2008,27(8):11-14.
    [69]蒙铁桥.铝合金化学镀镍前处理工艺的探讨与实践[J].表面技术,2000,29(1):43-44.
    [70]张天顺,张晶秋,张琦.铝及铝合金化学镀Ni-P合金工艺研究[C].第七届全国化学镀会议论文集,2004:67-69.
    [71]王向荣,田彦文.铝合金化学镀镍工艺对镀层沉积速度的影响[J].轻合金加工技术,2006,34(3):28-31.
    [72]边凤刚,李国禄,刘金海等.镁合金表面处理发展现状[J].材料保护,2002,35(3):1-4.
    [73]邓新宽,向阳辉,胡文彬等.镁合金化学镀镍研究状况[J].宇航材料工艺,2001,4(1):21-25.
    [74]彭明,张春玲.铸铝合金化学镀镍工艺[J].材料保护,2003,36(6):53.
    [75] Muranushi, Yoshihisa. Etchant for aluminum alloys [P]. US Patent5,601695,1997.
    [76] Ballerini G, Bardi U, Bignucolor, et al. About some corrosion mechanisms ofAZ91D magnesium alloy[C]. Corrosion Science,2005,47(9):2173-2184.
    [77] Mathieu S, Rapin C, Hazan J, et al. Corrosion behaviour of AZ21, AZ501andAZ91in sodium chloride[J]. Corros, Sci,1988,40(10):1769-1791.
    [78] Sharma A, Suresh M R, Bhojraj H. Wear behavior of Ni–P and Ni–P–Al2O3electroless coatings[C]. Wear,2007,26(2):978–985.
    [79] Bellis H E. High temperature wear of an electroless Ni–P–BN(h) compositecoating[J]. Surface and Coatings Technology,2003,16(3):578.
    [80] Staia M H, Puchi E S, Castro G. Effect of thermal history on the microhardnessof electroless Ni-P[J]. Thin Solid Films,1999,355(1):472-479.
    [81]方景礼.电镀添加剂的理论与应用[M].北京:国防工业出版社,2006:390.
    [82] Damjanovic A. Thermodynamic and transport behavior of electrolytes [J], AESResearch Report,1966,5:55.
    [83]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000,165-166.
    [84]向阳辉,胡文彬,沈彬等.镁合金化学镀的初始沉积机制[J].上海交通大学学报,2000,34(12):1638-1640.
    [85] A.j.巴德,L.R.福克康.电化学方法原理及应用[M].北京:化学工业出版社,1986:10.
    [86]赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002,9
    [87]北京师范大学.无机化学[M],北京:高等教育出版社,2003,1.
    [88] Fairweather W A.Electroless nickel plating of magnesium[J]. Trans IMF,1997,75(3):113-117.
    [89] Sharma A K, Suresh M R, Bhoyraj H, et a1. Electroless nickel plating onmagnesium alloys[J]. Metal finishing.1998,3(1):10-18.
    [90] Zhang J I, Ian W B. Investigations of photo–induced decomposition ofpalladium acetate for electroless copper plating [J].Thin solid films.1998,31(8):234–238.
    [91] Hong D, Per M. Effect of the substrate surface morphology on the porosity ofelectroless nickel coatings [J]. Trans. IMF,1993,71(4):142–148.
    [92]刘新宽,向阳辉,刳文彬镁合金化学镀镍层的结合机理[J],中国腐蚀与防护学报,2002,4(22):233–236.
    [93]许振明,徐孝勉.铝和镁的表面处理[J].上海:上海科学技术文献出版社,2005,8-9.
    [94]林碧兰,卢锦堂,孔纲.钼酸盐后处理提高热镀锌上磷化膜耐蚀性的探讨[J].腐蚀与防护,2007,28(8):396-399.
    [95]余刚,刘云娥,胡波年等.镁合金焦磷酸盐镀铜工艺的研究[J].湖南大学学报,2005,32(4):77-81.
    [96]孙雅茹,吴狄,刘正.铸镁合金AZ91表面化学氧化膜的研究[J].表面技术,2004,33(3):43-44.
    [97]蒙铁桥.铝合金化学镀镍前处理工艺的探讨与实践[J].表面技术,2000,29(1):23-24.
    [98]刘海飞.铝合金表面化学镀镍[M].有色金属,2000,(4):32-33.
    [99]赵斌,董世知.化学镀镍磷合金工艺研究[J].电镀与涂,2008,27(1):15-16.
    [100] Zaman A A, Sharad M. Influence of dispersing agents and solution conditionson the solubility of crude kaolin [J]. Colloid and Interface Science,2004,27(1):124.
    [101] Tien S K, Duh J G, Chen Y I. Structure, thermal stability and mechanicalproperties of electroless Ni–P–W alloy coatings during cycletest [J]. Surf CoatTechnol,2004,17(8):530-532.
    [102]刘汝涛,高灿柱,杨景和等.影响化学镀镍稳定性因素的研究[J].表面技术,2001,1(1):10-12.
    [103]刘永健,王印培.化学镀镍工艺对镀层耐蚀耐磨性的影响[J].腐蚀与防护,2001,22(7):293-295.
    [104]李立清,肖友军.镁合金上化学镀镍工艺的研究[J].南方冶金学院学报,2004,25(4):54-58.
    [105] Raymond F. Decker. The Renaissance in magnesium[C]. Adv. Mate Pro,1998,154(3):31-33.
    [106] Polmear I J. Recent developments in light alloys [J]. Materials Transactions JIM,1996,37(1):12-31.
    [107] Lindsay J H. Electroless plating fundamentals and applications [J]. Plating&Surface Finishing,1993,80(6):22-23.
    [108] Mandich N V. Krulik G A. A novel biogenic nickel source for electroless nickelplating[C]. Metal Finishing,1992,90(3):9-10.
    [109] Miller R E. Trends in the electroless nickel industry [J]. Plating&SurfaceFinishing,1987,74(12):52-56.
    [110] Cherkaoui M. Sriri A. Chassaing E. Electroless deposition of Ni-Cu–P alloys[J].Plating&Surface Finishing,1993,80(2):66-67.
    [111] Lee S L. Liang H H. Strutures and corrosion characteristics of electrolessNi-Mo-P alloy deposites [J]. Plating&Surface Finishing,1991,78(9):82-86.
    [112] Fairweather W A. Electroless Nickel Plating on Magnesium [J]. Trans IMF,1985,75(3):119-125.
    [113] Hiratsu K K, Abe E Y, Kawa S S. Effect of insitu electroless plating on frictionand wear of metals[C]. Wear,2003,255(7):910-916.
    [114] Yerokhin A L, Lyubimov V V, Ashitkov R V. Phase formation in ceramiccoatings during plasma electrolytic oxidation of aluminium alloys[C]. CeramicsInternational,1998,24(1):1-6.
    [115] Monteiro F J, Barbosa M A. Pretreatments to improve the adhesion ofelectrodeposits on aluminium [J]. Surface and Interface Analysis,1991,17(7):519-528.
    [116] Lyon P, King J F, Fowler G A. Developments in magnesium based materials andprocess [J]. J.Eng.Gas.Turbines Power, Trans. ASME,1993,115(1):193-199.
    [117] Hiroyuki U. An Investigation of the Structure and Corrosion Resistance of aPermanganate Conversion Coating on AZ91D Magnesium Alloys [J]. Journal ofJapan Institute of Light Metals,2000,50(3):109-115.
    [118]孙硕,刘建国,张伟等.镁合金无铬无氟前处理直接化学镀镍研究[M].腐蚀科学与防护技术,2009,21(3):277-280.
    [119]郭兴华,安茂忠,杨培霞等.镁合金环保型阳极氧化电解液组成优化及膜层性能的评价[J].航空材料学报,2009,29(5):44-50.
    [120]黄晓梅,王涛,李敏.铸造铝硅合金无氰化学浸锌工艺研究[M].物理测试,2007,25(2):10-15.
    [121]刘静安.镁合金加工技术发展趋势与开发应用前景[M].轻合金加工技术,2001,29(11):1-7.
    [122] Mordike B L, Ebert T. Magnesium properties applications potential [J].Materials Science and Engineering,2001,302(1):37-45.
    [123] Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry inprotecting the environment [J]. Materials Processing Technology,2001,117(3):381-385.
    [124] Nie X, Leyand A, Song H W. Thickness effects on the mechanical properties ofmicroarc discharge oxide coatings on Al alloys [J]. Surface and CoatingsTechnology,1999,119:1055.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700