用户名: 密码: 验证码:
重型车液力缓速器热流耦合与散热系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,运输的高速化和重型化对车辆的制动性能提出了更高的要求。传统的行车制动器已经不能满足长时间频繁制动的需要,重型车急需装备一种辅助制动系统。液力缓速器具备了制动平稳、高速制动能力强、体积小及噪声小等优点,因此在这一领域获得了广泛应用。液力缓速器通过作用于传动系统而减轻车辆制动系统的负荷,使车辆均匀减速,提高了车辆制动系统的可靠性和安全性。通过减少车辆行驶中的制动次数,延长了制动器和轮胎的使用寿命,体现出液力缓速器具有较高的经济性。通过减少频繁的启、制动,安装了液力缓速器的车辆可提高乘客的舒适性。但液力缓速器在工作过程中,油温会不断升高,如果冷却系统不能达到很好的散热效果,产生的热量不能被及时释放,就可能导致工作油变质、部分机件损坏、密封件失效漏油等,这些都会导致缓速器制动性能下降和行车制动器可靠性降低。
     本文以杭州前进齿轮箱集团股份有限公司“重型及特种车辆自动变速技术研究(7-2010-008)”为依托,针对液力缓速器工作腔内部及板翅式换热器内部的流体流动与换热特性进行了CFD数值计算和试验研究。主要研究内容有如下几方面:
     1.液力缓速器的热流耦合研究
     基于热流耦合的数值模拟理论,以R295型闭式液力缓速器与D438型开式液力缓速器作为研究对象,对其在不同转速和不同充液率工况进行了流动传热的数值计算。通过对转子转速为1500r/min,液力缓速器工作腔内温度场及流场分布趋势的分析、研究,了解了液力缓速器在全充液和部分充液工况下的内部流动规律与温度场情况。通过对工作腔内流动特性及温度场规律形成原因的深入分析,对液力缓速器的工作机理有了更加全面、透彻的了解,进而便于对液力缓速器进行优化设计。接着,在忽略温度对工作油物理性质影响的情况下,对R295型闭式液力缓速器与D438型开式液力缓速器,在不同转速且全充液工况下的制动转矩进行了数值计算,得到二者的制动转矩与转速关系曲线。在此基础上,以相同制动转矩为基点,对经过循环圆相似放大的481mm开式液力缓速器与循环圆直径仍为295mm的闭式液力缓速器在不同转速且全充液、相同转速且不同充液率的工况分别进行了数值计算,得到二者的制动转矩与转速、制动转矩与充液率关系曲线。通过开式与闭式液力缓速器的对比分析,进一步了解了两种类型液力缓速器各自的优点和不足,为重型车液力缓速器的选型提供了一定的理论依据,也为换热器的选型提供了前提条件。
     2.液力缓速器的换热器数值分析
     通过对开式与闭式液力缓速器温度对比,得知闭式液力缓速器的温度较高,因此重点介绍了为R295型闭式液力缓速器进行的换热器选型。首先,对为R295型闭式液力缓速器选择的板翅式换热器的冷却性能进行了分析。为板翅式换热器的芯体选择平直型和锯齿型两种不同的翅片类型,由于计算条件有限,对两种翅片类型的换热器模型进行了简化,选取周期模型作为计算区域。在进行边界条件与相关参数设置后,对两种不同翅片类型的板翅式换热器进行了CFD数值计算。数值计算结果表明,锯齿型翅片换热器的散热效果要好于平直型翅片换热器,平直型翅片的板翅式换热器不能满足R295型闭式液力缓速器对散热的需求,但锯齿型翅片则满足要求。通过对选择的锯齿型板翅式换热器的压降核算,证明其压降值在合理的范围内,符合使用要求。在此基础上,研究了锯齿型板翅式换热器的工作油进口速度对温度分布的影响,得知随着工作油进口速度的增加,工作油的质量流量也随之增加,沿流动方向的温度降低速度较慢。
     3.工作油温度对制动性能影响的研究
     由于不同温度下,液力缓速器内的液力传动油具有不同的物理性质,会对液力缓速器的制动性能造成一定影响。因此,对工作油温度对液力缓速器制动性能的影响进行了分析。首先对液力缓速器内工作油温度随工况及充液率的变化规律进行研究,得知随着转速的增加,工作腔内工作油温度升高;在相同转速下,随着充液率的增加,工作油的温度也随之升高。在此基础上,在考虑温度对工作油物理性质影响的条件下,研究了不同工况与不同充液率下液力缓速器的制动特性。通过分析,得知随着转速的增加,液力缓速器的制动转矩变大,油温升高,与忽略油温影响的情况相比较,制动性能变差;而在转速相同的情况下,随着充液率的增加,液力缓速器制动转矩值增大,工作油温度随之升高,与忽略油温影响的情况相比较,制动性能仍然变差。
     4.液力缓速器热平衡试验研究
     对循环圆直径为438mm的开式液力缓速器进行了热平衡试验研究。通过台架试验,测量得到在不同转速且全充液工况下的开式液力缓速器进油口与出油口处工作油的温度。将通过台架试验测量的液力缓速器出口油温与CFD数值计算所得结果进行对比,二者所得结果基本吻合,也由此证明了利用流动传热计算方法的正确性和可靠性。
With the development of high-speed and heavy-duty of vehicle in recent years, thehigher requirement of vehicle’s braking performance is needed. For longtime frequentbraking of the heavy vehicle, the conventional service braking can not meet the needs anymore. A kind of auxiliary braking system is needed in this context. The hydrodynamicretarder is widely used in this field because of its advantages, such as smooth braking, strongbraking capacity in high speed, small volume and low noise. The hydrodynamic retarder actson transmission system in order to alleviate the load of braking system and make the vehicledecelerate uniformly, so it can improve reliability and security of the braking system.Through decreasing the number of braking while the vehicle is in motion, the hydrodynamicretarder is able to extend the life of brake and tires. From this, it shows that thehydrodynamic retarder is more economical. Through decreasing frequently starting andbraking, the vehicle with hydrodynamic retarder will make passengers feel more comfortable.The oil temperature will increase continually in the working process of hydrodynamicretarder. If cooling system does not have good heat dissipation effect and the heat can not bereleased in time, it may result in deterioration of working oil, damage of some machineryparts, failure of sealing element, oil leakage and so on. All these reasons will result in thedecline of braking performance of the hydrodynamic retarder and lead to the decline ofreliability of service brake.
     This thesis is supported by “Study on automatic transmission technology of heavyvehicle and special vehicle (7-2010-008)” of Hangzhou advance gearbox group co., LTD.The thesis aims at the flow and heat transfer characteristics of working chamber of the hydrodynamic retarder and the plate-fin heat exchanger. The main contents are listed asfollows.
     1. Study on heat-flow coupling of hydrodynamic retarder
     R295closed-type hydrodynamic retarder and D438open-type hydrodynamic retarderare taken as the study objects and based on numerical simulation theory of heat-flowcoupling, the numerical calculation on flow and heat transfer of two-type hydrodynamicretarders are carried out in the condition of different rotating speeds and differentliquid-filled ratios. Through analyzing and studying on temperature field and flow field inthe working chamber of hydrodynamic retarders when the rotating speed of rotor is1500rpm, the internal flow rule and temperature field of hydrodynamic retarders are known in thecondition of all filling liquid and partial filling liquid. Through analyzing on the cause ofcharacteristics of flow and temperature field, the working principle of hydrodynamicretarders will be understood more roundly and deeply. It is good for optimization design ofhydrodynamic retarder. And then, in condition of ignoring the influence of the temperatureon the physical properties of working oil, the braking moment of R295closed-type andD438open-type hydrodynamic retarders are calculated in the condition of different rotatingspeed and all filling liquid. Through simulating and analyzing, the relation between thebraking moment and rotating speed is gotten. On this basis, based on the same brakingmoment, the open-type hydrodynamic retarder of effective diameter481mm and theclosed-type hydrodynamic retarder of effective diameter295mm in the conditions ofdifferent rotating speed and all filling liquid, same rotating speed and different filling ratesare separately calculated. Through simulating, the relation curves between the brakingmoment and rotating speed, and the relation curves between the braking moment and fillingrates are gotten. Through comparing and analyzing on the open-type and closed-typehydrodynamic retarders, the advantages and disadvantages of two-type hydrodynamicretarders are understood deeply. Through the above analysis, it provides some theoreticalbasis and prerequisites for the selection of hydrodynamic retarder of heavy vehicle. At thesame time, it also provides prerequisites for selecting the heat exchanger.
     2. Simulation analysis of heat exchanger for hydrodynamic retarder
     Through comparing the temperature of the open-type and closed-type hydrodynamicretarders, we know that the temperature of closed-type hydrodynamic retarder is higher.Therefore, this part focuses on selecting heat exchanger for R295closed-type hydrodynamicretarder. First of all, the cooling capacity of plate-fin heat exchanger for R295closed-typehydrodynamic retarder is analyzed. Two different fin types of straight fin and serrated fin arechosen as the core of plate-fin heat exchanger. The heat exchanger models of two-type finsare simplified, and cycle models are chosen as calculation region because of limit calculationcondition. After boundary conditions and relevant parameters are set, the plate-fin heatexchangers of two-type fins are simulated. The results show that the heat dissipation effect ofserrated fin is better than straight fin. The plate-fin heat exchangers of straight fin can notmeet heat dissipation of R295closed-type hydrodynamic retarder requirements, but serratedfin can meet its standards. Through checking the pressure of the plate-fin heat exchangers ofserrated fin, it shows that the pressure is in a rational range and it is in line with therequirements. On this basis, the inlet velocity of working oil that is on the influence of thetemperature distribution is studied. With the increase of inlet velocity of working oil, themass flow of working oil increases at the same time and the rate of temperature declinesmore slowly along the flow direction.
     3. Study on the influence of working oil temperature on the braking performance
     The hydrodynamic drive oil in hydrodynamic retarder has different physical propertiesin different temperatures, so it will influence on the braking performance. This part studieson the influence of working oil temperature on the braking performance of hydrodynamicretarders. First, the changing rules of temperature of the working oil with the variation ofworking conditions and filling rates in hydrodynamic retarder are studied. With the increaseof the rotating speed, the temperature of working oil in working chamber increases. With theincrease of the filling rates in the same rotating speed, the temperature of working oilincreases. On this basis, in condition of considering the influence of the temperature on thephysical properties of working oil, the braking characteristics of hydrodynamic retarderswith different working conditions and different filling rates are studied. With the increase ofthe rotating speed, the braking moment and the oil temperature both increase. Compared with ignoring the influence of the oil temperature, the braking performance gets worse. Withthe increase of the filling rates in the same rotating speed, the braking moment and thetemperature of working oil both increase. Compared with ignoring the influence of the oiltemperature, the braking performance still gets worse.
     4. Thermal balance test research of hydrodynamic retarder
     Thermal balance test of open-type hydrodynamic retarder with the effective diameter of438mm is studied. Through bench test, the temperatures of working oil in the oil inlet and oiloutlet of open-type hydrodynamic retarder in the condition of different rotating speeds andall filling liquid are gotten. Through comparing the experimental results and the CFDsimulation results, it is found out that they are agreed approximately with each other. Fromthis, the accuracy and reliability of computational method of flow and heat transfer isvalidated.
引文
[1]何仁.汽车辅助制动装置[M].北京:化学工业出版社,2005.
    [2] Schreck Helmut,Kucher Heinz,Reisch Bernhard.ZF Retarder in Commercial Vehicles
    [C]//SAE paper922452.
    [3]云清.液力缓速器有力提升卡车安全性[J].商用汽车,2010,1:118-119.
    [4]彭振军.液力缓速器与客车安全性能[J].商用汽车,2010,1:99.
    [5]刘增岗,张炳荣,李京.汽车缓速器的发展和法规探讨[J].城市车辆,2006,2:51-53.
    [6]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [7]赵国柱,魏民祥.缓速器与行车制动系复合制动稳定性的定量评价[J].兵工学报,2009,30(2):185-189.
    [8]王东斌.重型卡车缓速器的应用及发展趋势[J].汽车实用技术,2012,6:17-19.
    [9]吴修义.德国福伊特(VOITH)液力缓速器[J].汽车与配件,2005,33:30-33.
    [10]范守林.福伊特液力缓速器(上)[J].商用汽车,2004,8:75-77.
    [11]范守林.福伊特液力缓速器(下)[J].商用汽车,2004,9:75-77,79.
    [12]张颖.福伊特“千里马”服务绿色世博[J].汽车与配件,2010,4:64-65.
    [13]王作函.福伊特千里马缓速器持续推进国产化[J].商用汽车,2010,1:120.
    [14]黄榕清,吴磊,邵建华.汽车液力缓速器的原理及应用[J].汽车电器,2006,11:6-8.
    [15]陈峥峰,翟士勇.汽车液力缓速器的使用与维护[J].拖拉机与农用运输车,2007,34(5):93-94.
    [16]盖洪超.液力缓速器参数设计及整车缓速制动性能仿真研究[D].长春:吉林大学汽车工程学院,2011.
    [17]可人.小产品·高制动效能——ZF Intarder一体式液力缓速器[J].商用汽车,2008,9:104.
    [18]廖利恒.用于大客车的ZF整体式液力缓速器介绍[J].商用汽车,2000,3:50-51.
    [19] Timothy J.Cooney,Joel E Mowatt.Development of a Hydraulic Retarder for the Allison AT545RTransmission[R].SAE952606,1995.
    [20]刘彭年.自动变速器在客车上的应用[J].汽车技术,2010,10:8-10.
    [21]顾建国.艾里逊AT,节油与耐用相得益彰[J].人民公交,2010,7:76-78.
    [22] Timothy J.Cooney. The New Allison HD4070Transmission–Design, Development andApplications[C]//SAE paper1999-01-3742.
    [23]李艳琴,李春芾,高国天,等.Allison HD4070PR自动变速器结构原理及换挡过程控制策略[J].商用汽车,2011,2:64-66.
    [24] Benton L.Bullock.The Allison MD3066Transmission[C]//SAE paper982797.
    [25]周擎阳.卓越科技引领商用汽车安全潮流——斯堪尼亚专业技术—液力缓速器(Retarder)[J].交通世界,2006,6:70-71.
    [26]周擎阳.延长制动系统寿命——斯堪尼亚专业技术—液力缓速器[J].世界汽车,2006,12:128-129.
    [27]周擎阳.液力缓速器在斯堪尼亚商用车的应用[J].汽车与配件,2006,26:34-35.
    [28]周擎阳.液力缓速器:引领商用汽车安全潮流—斯堪尼亚液力缓速器(Retarder)的卓越功效[J].物流技术与应用,2007,1:70-71.
    [29]吴修义.瑞典斯堪尼亚液力缓速器(SCANIA Retarder)[J].现代零部件,2008,1:94-95.
    [30]时军,过学迅.车用液力减速制动器的现状与发展趋势[J].车辆与动力技术,2001,4:52-57.
    [31]刘成晔.汽车辅助制动装置发展综述[J].中国安全科学学报,2008,18(1):105-111.
    [32]刘道春.缓速器的发展与未来[J].汽车与配件,2010,8:74-77.
    [33]沈文浩,李长友,张森文,等.汽车液力缓速制动器的研究现状[J].拖拉机与农用运输车,2008,35(6):1-3.
    [34]吴超,徐鸣,李慧渊,等.车辆液力缓速器的特点分析及发展趋势[J].车辆与动力技术,2011,1:51-55.
    [35]李元发.特尔佳,缓速器行业的“王者之心”[J].运输经理世界,2007,6:14-17.
    [36]王晓辉.缓速器:制约与重视并存[J].时代汽车,2008,1:130-131.
    [37]丁进华.客车缓速器竞争激烈:电涡流仍为主流[J].商用汽车,2011,11:86-87.
    [38]冯宜彬,过学迅.液力减速器内流场的CFD数值模拟研究[J].汽车工程,2009,31(4):353-356.
    [39]杨涛.液力缓速器流场仿真及有限元分析[D].武汉:武汉理工大学汽车工程学院,2009.
    [40]何仁,严军,鲁明.不同流道轴面形状的液力缓速器内流场的模拟[J].系统仿真学报,2009,21(24):7743-7746.
    [41]闫清东,邹波,魏巍.液力减速器部分充液工况制动性能计算方法研究[J].北京理工大学学报,2011,31(12):1396-1400.
    [42]闫清东,邹波,魏巍,等.液力减速器充液过程瞬态特性三维数值模拟[J].农业机械学报,2012,43(1):12-17.
    [43]魏巍,李慧渊,邹波,等.液力缓速器制动性能及其两相流分析方法研究[J].北京理工大学学报,2010,30(11):1281-1284.
    [44]卢秀泉,褚亚旭,才委,等.基于一维束流理论的液力减速器部分充液特性预测[J].吉林大学学报(工学版),2011,41(4):988-992.
    [45]王铁.车用电控液力缓速器三维流场分析的仿真方法研究[D].长春:吉林大学汽车工程学院,2007.
    [46]陆中华.重型汽车电控液力缓速器整车制动性能仿真与分析[D].长春:吉林大学汽车工程学院,2007.
    [47]陆中华,程秀生.重型车液力缓速器制动性能仿真研究[J].汽车技术,2009,3:22-24.
    [48]陆中华,程秀生.液力缓速器恒速控制策略的仿真研究[J].汽车技术,2009,11:1-3.
    [49]高博麟.重型车与液力缓速器匹配特性的仿真研究[D].长春:吉林大学汽车工程学院,2009.
    [50]李雪松,程秀生,苗丽颖,等.液力缓速器内流场三维瞬态数值模拟及特性预测[J].汽车技术,2009,10:34-39.
    [51] Li Xuesong,Cheng Xiusheng,Miao Liying,et al.Numerical Analysis on Internal Flow Field of aHydraulic Retarder[C]//International Conference on Mechatronics and Automation,2009.
    [52]李雪松.基于非稳态流场分析的车用液力缓速器参数优化方法研究[D].长春:吉林大学汽车工程学院,2010.
    [53]李雪松,程秀生,苗丽颖,等.液力缓速器三维瞬态流场大涡模拟及特性计算[J].液压气动与密封,2010,3:38-41.
    [54]李雪松,程秀生,苗丽颖.液力缓速器部分充液流场大涡模拟及特性预测[J].中南大学学报(自然科学版),2012,43(5):1717-1723.
    [55]李雪松,于秀敏,程秀生,等.液力缓速器瞬态两相流动大涡模拟及性能预测[J].江苏大学学报(自然科学版),2012,33(4):385-389,419.
    [56]杨珊珊.汽车液力减速器结构参数优化与动态特性预测[D].长春:吉林大学机械科学与工程学院,2011.
    [57]尹利云.基于内流场数值计算的液力缓速器结构参数优化研究[D].长春:吉林大学汽车工程学院,2012.
    [58]邹波,朱丽君,闫清东,等.液力缓速器制动性能建模与叶栅参数优化研究[J].汽车工程,2012,34(5):409-413.
    [59]邱晨曦.液力缓速器流场仿真及热负荷计算[D].武汉:武汉理工大学汽车工程学院,2012.
    [60]王凯峰.液力缓速器的热交换系统传热性能仿真与试验方法研究[D].长春:吉林大学汽车工程学院,2007.
    [61]龙一兵.发动机与液力缓速器热交换系统的传热性能研究[D].长春:吉林大学汽车工程学院,2008.
    [62] W M Kays,A L London.Heat transfer and flow friction characteristics of some compact heatexchanger surfaces—Part I:Test system and procedure[J].ASME,1950,72:1075-1085.
    [63] W M Kays,A L London.Compact heat exchanger[M].NY:MacGraw—Hill Book Company,1984.
    [64] E V Dubrovsky. Experimental investigation of highly effective plate-fin heat exchangersurfaces[J].Experimental thermal and fluid science,1995,10:200-220.
    [65] N C DeJong, A M Jacobi. Localized flow and heat transfer interactions in louvered-finarrays[J].International Journal of Heat and Mass Transfer,2003,46:443-455.
    [66] Shah R K,London A L.Laminar flow forced convection inducts[M].NY:NY Academic Press,1978.
    [67] Shah R K, London A L. Effects of nonuniform passages on compact heat exchangerperformance[J].J. Eng. Power,1980,102A:653-659.
    [68] Shah R K.Compact heat exchanger[M].Washington D C:Hemispere/McGraw-Hill,1981.
    [69] Joshi H M,Webb R L.Heat transfer and friction in the offset strip-fin heat exchanger[J].Heat MassTransfer,1987,30:69-84.
    [70] R.Karvinen.Natural and Forced Convenction Heat Transfer from a Plate-Fin[J].Heat Mass Transfer,1981,24:881-885.
    [71] R.Karvinen.Efficiency of Straight Fins Cooled by Natural or Forced Convection[J].Heat MassTransfer,1983,26:635-638.
    [72] Ronald L.Linton,Dereje Agonafer.Coarse and Detailed CFD Modeling of a Finned HeatSink[J].Transaction on Components,Packaging and Manufacturing Technology,1995,18:517-521.
    [73] T.D.Yuan.Computational Modeling of Flow Bypass Effects on Straight Fin Heat Sink in RectangularDuct[C].Twelfth IEEE SEMI-THERM Symposium.Charlotte:University of Virginia,1996:164-168.
    [74] Hideo Jwasaki,Massaru Ishizuka.Forced Convection Air Cooling Characteristics of Plate Fins forNotebook Personal Computers[C].Inter Society Conference on Thermal Phenomena.Nevada:University of Michigan,2000:21-26.
    [75]嵇训达.我国板翅式换热器技术进展[J].低温与特气,1998,1:22-27.
    [76]凌祥,涂善东,陆卫权.板翅式换热器的研究与应用进展[J].石油机械,2000,28(5):54-58.
    [77]焦安军,厉彦忠,陈曦,等.新型紧凑式低温换热器的研究与进展[J].低温与超导,2001,29(1):8-13.
    [78]刘敏珊,李娜,董其伍.板翅式换热器的研究发展[J].化工设备与管道,2007,44(6):9-12.
    [79]董军启.板翅式换热器传热特性研究[D].大连:大连海事大学轮机工程学院,2004.
    [80]董军启,陈江平,袁庆丰,等.板翅换热器平直翅片的传热与阻力性能试验[J].农业机械学报,2007,38(8):53-56.
    [81]董军启,陈江平,陈芝久.错齿翅片的传热与阻力性能试验[J].上海交通大学学报,2007,3:366-369.
    [82]董军启,陈江平,陈芝久.锯齿翅片的传热与阻力性能试验[J].化工学报,2007,58(2):281-285.
    [83]周益民,董军启,陈江平.百叶窗翅片传热与流动的三维数值模拟[J].节能技术,2007,25(2):141-144.
    [84]董军启,陈江平,袁庆丰,等.百叶窗翅片的传热和阻力性能试验研究[J].动力工程,2006,26(6):871-874.
    [85]董军启,陈江平,陈芝久.百叶窗翅片的传热与阻力性能试验关联式[J].制冷学报,2007,28(5):10-14.
    [86]董军启,陈江平,陈芝久.新型开窗翅片板翅换热器热工性能试验[J].上海交通大学学报,2007,3:380-383.
    [87]甘建德.板翅式机油冷却器结构对传热性能影响的研究[D].武汉:武汉理工大学机电工程学院,2008.
    [88]甘建德,柴苍修.板翅式换热器的传热特性研究[J].机械工程与自动化,2008,2:56-61.
    [89]蔡宇宏.板翅式换热器热力学特性的数值模拟和试验研究[D].南京:南京航空航天大学航空宇航学院,2009.
    [90]侯海焱.紧凑式错列翅片换热器湍流流动与换热特性的数值研究[D].镇江:江苏大学能源与动力工程学院,2002.
    [91]侯海焱,魏琪,张战.错列翅片紧凑式换热器湍流流动及换热性能的数值研究[J].能源工程,2002,4:6-10.
    [92]张战,魏琪,侯海焱.错列翅片换热器表面换热及阻力特性数值研究[J].江苏大学学报(自然科学版),2002,23(2):39-42.
    [93]王武林,魏琪.错列翅片板翅式换热器传热性能数值研究[J].华东船舶工业学院学报(自然科学版),2003,17(4):13-16.
    [94]李建军,陈江平,陈芝久.低雷诺数流动错位翅片传热和压降特性的实验研究[J].能源技术,2004,25(4):147-149.
    [95]郭丽华,覃峰,陈江平,等.低雷诺数工况下锯齿型翅片性能的参数化研究[J].农业机械学报,2007,38(7):167-171.
    [96]刘敏珊,李娜,董其伍,等.低雷诺数混沌流翅片传热和阻力性能研究[J].石油机械,2008,36(4):10-14.
    [97]黄钰期,俞小莉,陆国栋.锯齿型翅片单元的流动与传热数值模拟[J].浙江大学学报,2008,42(8):1462-1468.
    [98]寇磊.紧凑式换热器传热和流动特性的数值模拟[D].长沙:中南大学能源与环境学院,2005.
    [99]寇磊,廖胜明,刘玉涵.百叶窗翅片传热特性的数值模拟[J].建筑热能通风空调,2009,28(1):6-9.
    [100]祝银海,厉彦忠.板翅式换热器翅片通道中流体流动与传热的计算流体力学模拟[J].化工学报,2006,57(5):1102-1106.
    [101]祝银海,厉彦忠.一种新型板束结构的板翅式换热器的数值模拟和优化[J].低温工程,2005,3:40-44.
    [102]米廷灿,厉彦忠,王江,等.一种计算板翅式换热器二次表面换热的新模型[J].西安交通大学学报,2004,38(5):496-499.
    [103]张卫星.板翅式换热器的性能分析与实验研究[D].武汉:华中科技大学能源与动力工程学院,2006.
    [104]刘伟,张卫星,刘志春.场协同下板翅式换热器效率的研究[J].华中科技大学学报,2007,35(1):77-79.
    [105]李媛,凌祥.板翅式换热器翅片表面性能的三维数值模拟[J].石油机械,2006,34(7):10-14.
    [106]李媛,凌祥,虞斌.铝板翅式换热器翅片表面性能的实验研究[J].石油机械,2005,33(10):1-4.
    [107]李媛.板翅式换热器翅片表面性能试验研究与数值模拟[D].南京:南京工业大学机械与动力工程学院,2005.
    [108]孙志江,凌祥,彭浩.液体黏度变化对翅片表面性能影响的数值研究[J].化学工程,2008,36(4):20-23.
    [109]曲乐.LNG5设备中板翅式换热器流动与传热数值模拟研究[D].哈尔滨:哈尔滨工业大学能源科学与工程学院,2007.
    [110]曲乐,贾林祥.锯齿与打孔翅片表面性能数值模拟[J].低温工程,2008,1:50-56.
    [111]曲乐,贾林祥.相变换热混合工质板翅式换热器流动与传热数值模拟[J].低温与超导,2008,36(4):23-32.
    [112] Boivin C,Ollivier C.A toolkit for numerical simulation of PDEs:II.Solving generic multiphysicsproblems[J].Computer methods in applied mechanics and engineering,2004,193(36/38):3891-3918.
    [113] Boivin C,Ollivier C.A toolkit for numerical simulation of PDEs:I. Fundamentals of genericfinte-volume simulation[J].Computer methods in applied mechanics and engineering,2003,192(9/10):1147-1175.
    [114] S.V.Patankar.Recent development in computational heat transfer[J].ASME J. Heat transfer,1988,110:1037-1045.
    [115] C.D.Perez-Segarra, C.Oliet, A.Oliva. Thermal and fluid dynamic simulation of automotivefin-and-tube heat exchangers.Part2:Experimental comparison[J].Heat transfer engineering,2008,29(5):490-494.
    [116] C.D.Perez-Segarra, C.Oliet,A.Oliva. Thermal and fluid dynamic simulation of automotivefin-and-tube heat exchangers.Part1:Mathematical model[J].Heat transfer engineering,2008,29(5):484-489.
    [117]黄海波.涡轮叶片中流场和温度场计算及实验研究[D].北京:中科院工程热物理研究所,2002.
    [118]黄钰期.基于场协同原理的车用冷却系统流动传热耦合分析与结构优化[D].杭州:浙江大学车辆工程学院,2010.
    [119]虞跨海,王金生,杨茜,等.回流式冷却叶片流热耦合数值分析[J].热能动力工程,2011,26(3):271-275.
    [120]陶文铨.传热与流动问题的多尺度数值模拟:方法与应用[M].北京:科学出版社,2008.
    [121]过增元,黄素逸.协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
    [122] Fan Lidan,Ma Wenxing,Cai Wei.Thermal-Hydraulic Analysis of Hydrodynamic Coupling[J].AISSAdvances in information sciences and service sciences,2012,4(11):393-399.
    [123] Yuan Zhe,Ma Wenxing,Cai Wei,et al.Temperature field analysis on the hydrodynamic retarder ofheavy vehicle[C]//20122nd International Conference on Frontiers of Manufacturing Science andMeasuring Technology,Clausthal-Zellerfeld,Trans Tech Publications,Germany,2012:1025-1028.
    [124] Ehab Mostafa,In-Bok Lee,Sang-Hyeon Song.Computational fluid dynamics simulation of airtemperature distribution inside broiler building fitted with duct ventilation system[J].BiosystemsEngineering,2012,112(4):293-303.
    [125] Zinedine Khatir, Joe Paton, Harvey Thompson.Computational fluid dynamics (CFD) investigationof air flow and temperature distribution in a small scale bread-baking oven [J].Applied Energy,2012,89(1):89-96.
    [126] Ivanov Vladimir A,Sarasola Francisco J,Vasquez Sergio A.Multi-phase mixture model applied tocyclone separators and bubble columns[J].Pressure Vessels and Piping Divison,1999,397(1):317-324.
    [127] V.Stephane.Local mesh refinement and penalty methods dedicated to the Direct NumericalSimulation of incompressible multiphase flow[C].Proceedings of the ASME/JSME Joint FluidsEngineering Conference,2003:1299-1305.
    [128] Jose A.Caridad,Frank Kenyery.Slip Factor for Centrifugal Impellers Under Single and Two-phaseFlow Conditions[J].Journal of Fluids Engineering,2005,2:317-321.
    [129] Mirko Salewski,Dragan Stankovic,Laszlo Fuchs.A Comparison of Single and Multiphase Jets ina Crossflow Using Large Eddy Simulation[J].Journal of Engineering for Gas Turbines and Power,2007,1:61-68.
    [130] Donata M.Fries,Severin Waelchili,Philipp Rudolf von Rohr.Gas-liquid two-phase flow inmeandering microchannels[J].Chemical Engineering Journal,2008,1:37-39.
    [131] Keane R D,Adrian R J.Optimization of particle image velocimeters[J].Meas. Sci. Technology,1990,11:1202-1215.
    [132] Ohern T J,Gore R A.Experimental techniques in multiphase flows[J].ASME,1991,125(3):379-411.
    [133] Lopez M,Bertodano D,Lahey J R.Phase Distribution in Bubbly Two-phase Flow in VertiealDuets[J].Multiphase Flow,1994,20:805-818.
    [134] Reese J,Fan L S.Transient flow structure in the entrance region of a bubble column using particleimage velocimetry[J].Chem. Eng. Sci.,1994,49(24B):5624-5636.
    [135] J.M.Masella,Q.H.Tran,D.Ferre.Transient Simulation of Two-phase Flows in Pipes[J].MultiphaseFlow,1998,24:739-755.
    [136] Fan J R,Ma Y L,Zha X F.Predietion of Dense Turbulent Particle Laden Riser Flow with A Eulerianand Lagrange Combined Model[J].Chem. Eng. Comm.,2000,179:201-218.
    [137] Chii-Dong Ho,Hsuan Chang,His-Jen Chen.CFD simulation of the two-phase for a falling filmmicroreactor[J].International Journal of Heat and Mass Transfer,2011,54(15-16):3740-3748.
    [138] S.Mimouni,A.Foissac,J.Lavievile.CFD modeling of steam condensation by a two-phase flowapproach[J].Nuclear Engineering and Design,2011,241(11):4445-4455.
    [139] Zhengyi Wang,Qingping Zou,Dominic Reeve.Simulation of spilling breaking waves using a twophase flow CFD model[J].Computers and Fluids,2009,38(10):1995-2005.
    [140] Xiaoti Cui,Xingang Li,Hong Sui.Computational fluid dynamics simulations of direct contact heatand mass transfer of a multicomponent two-phase film flow in an inclined channel atsub-atmospheric pressure[J].International Journal of Heat and Mass Transfer,2012,55(21-22):5808-5818.
    [141]孙波.大功率调速型液力偶合器轴向力研究[D].长春:吉林大学机械科学与工程学院,2011.
    [142]陈见.基于三维流动计算的液力减速器性能仿真研究[D].武汉:武汉理工大学汽车工程学院,2008.
    [143]王峰,闫清东,马越,等.基于CFD技术的液力减速器性能预测研究[J].系统仿真学报,2007,19(6):1390-1396.
    [144]冯宜彬.基于CFD分析的液力减速器设计研究[D].武汉:武汉理工大学汽车工程学院,2008.
    [145]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,2003.
    [146]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.
    [147] LUNSFORD K M.Advantages of brazed aluminum heat exchangers[J].Hydrocarbon Processing,1996,7:55-63.
    [148] EUELLER A C, CHIOU J P. Review of various types of flow maklistribution in heatexchanger[J]. Heat Transfer Engineering,1988,9(2):36-50.
    [149] RANGANAYAKULU G,SEETHARAMU K N. The combined effects of longtitudinal heatconduction flow nonuniformity and temperature nonuniformity in crossflow plate-fin heatexchanger[J].Int Comm Heat Mass Transfer,1999,26:669-678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700