用户名: 密码: 验证码:
自抗扰控制器的设计与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自抗扰控制技术是适应数字控制的时代潮流、吸收现代控制理论成果、发扬并丰富经典控制中“基于误差来消除误差”的思想精髓、开发运用非线性效应来发展的新型实用技术,具有超调小、响应速度快、控制精度高、抗扰性强、算法简单等特点。测试转台是一种重要的惯导测试设备,它主要是针对陀螺测试和姿态仿真两个目的发展起来的设备。
     论文研究了自抗扰控制技术的理论基础,分析了跟踪微分器、扩张状态观测器、状态误差的非线性反馈律的结构和原理,着重探讨了微分跟踪器在安排过渡过程和配置系统零点、张状态观测器在动态补偿线性化中的应用。
     本文分析了离散自抗扰控制算法的实现问题,总结了自抗扰控制系统的设计方法,针对simulink环境下参数调节困难的问题给出了用于辅助参数调节的M文件源代码。
     针对当测试转台台体存在低频大力矩扰动时,经典控制方法对电机很难取得较高的稳态精度,控制效果不好等问题,本文提出一种输出改进的自抗扰控制器设计方法,并与经典控制和普通自抗扰控制进行比较,验证了该改进方法的有效性。文中针对测试转台在低速工作时会出现低速不平稳现象,引入Stribeck摩擦模型,并重新进行了自抗扰控制器的设计,最后通过与经典控制方法比较验证了控制效果良好。
The active disturbance rejection control technique is just suitable to the trend of digital control and it enriches the thought of classic control that error is used to reduce error. It is also a kind of novel functional control technique developed by absorbing achievements of modern control and non-linear performance. The active disturbance rejection controller is characterized as low overshoot, quick response speed, high control accuracy, excellent anti-interference ability, simple algorithm. Test table is a kind of important equipment for inertial guidance test. It is developed mainly for testing and attitude simulation of gyroscope.
     This paper studies theory foundation of the active disturbance rejection control technique, and analyzes the structure and principle of tracking-differentiator, extended state observer, non-linear state feedback. Additional attention has been paid not only to the application of tracking-differentiator which is assigning the system zeroes and arranging the transient dynamics, but also to the application of extended state observer which is dynamic linearization.
     After detailed analysis of the realization of the discrete algorithm for the active disturbance rejection control, the design of the active disturbance rejection control system is aggregated. Then the M file is provided on the purpose of helping parameter tuning, thinking of the difficulties occurred in parameter tuning in simulink environment.
     Thinking of the problem that when the motor has low-frequency great torque disturbance, using classic method to control test table is very difficult to have high accuracy and can not achieve good control effect, this paper provides an output improvement active disturbance rejection controller for test table. The comparison with classic method and common active disturbance rejection control shows its effectiveness. Thinking of the phenomenon that test table can not work stably and smoothly when it works at a very low speed. This paper introduces Stribeck friction model, and redesigns the active disturbance rejection controller for test table. At last, the contrast between the active rejection control and classic control shows its good control performance.
引文
[1]徐仕会,冯培德,雷宏杰.惯性导航系统扰动基座对准仿真研究[J].计算机仿真,2008,25(11):88-90.
    [2]黄一,张文革.自抗扰控制器的发展[J].控制理论与应用,2002,19(4):485-492.
    [3]韩京清.自抗扰控制技术[J].前沿科学,2007,1:24-31.
    [4]韩京清,王伟.非线性跟踪微分器[J].系统科学与数学,1994,14(2):1 77-183.
    [5]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2002:89-114.
    [6]韩京清.处理非线性控制系统的直接方法[R].北京:中国科学院系统科学研究所控制理论室研讨班上的报告,1999.
    [7]韩京清.非线性系统的状态观测器[J].控制与决策,1990,5(3): 57-60.
    [8]韩京清.非线性系统中状态反馈的实现[J].控制与决策,1991,6(3):161-167.
    [9]韩京清.系统辨识的一种方法——状态反馈方法[J].控制与决策,1990,5(1):13-17.
    [10]韩京清.从PID技术到自抗扰控制技术[J].控制工程,2002,9(3):14-18.
    [11] HUANG HUANPAO, HAN JINGQING, Nonlinear PID Controller and Its Application in Power Plant[C]. International Conference on Power System Technology, Kunming, China, 2002, 1: 487-591.
    [12]韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490.
    [13]韩京清.一种新型控制器—NLPID[J].控制与决策,1994,9(6): 401-407.
    [14]韩京清,王伟.非线性跟踪微分器的另一种形式[M].智能控制与智能自动化,北京:科学出版社,1993: 2355-2362.
    [15]韩京清.利用非线性特性改进PID控制律[J].信息与控制,1995,24(6): 356-364.
    [16]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88.
    [17]韩京清.非线性状态误差反馈控制律—NLSEF[J].控制与决策,1995, 10(3):221-225.
    [18]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [19]管志敏,王兵树,林永君.火电厂燃烧系统的自抗扰控制器及其参数整定[J].动力工程,2009,1:57-61.
    [20] FENG G, LIU Y F, HUANG L P. A New Robust Algorithm to Improve the Dynamic Performance on the speed Control of Induction Motor Drive[J]. IEEE Trans on Power Electronics, 2004(19): 1614-1627.
    [21]马冰雪,张瑞成.基于扩张状态观测器的直流电动机转速自抗扰控制器设计[J].电气应用,2006,25(2):88-91.
    [22]孙凯,许镇琳,邹积勇.基于自抗扰控制器的永磁同步电机速度估计[J].系统仿真学报,2007,19(3):582-584.
    [23] HUANG YI, XU KEKANG, HAN JINGQING. Application of ADRC for Aircraft Attitude Control[C]. 3rd Asia Control Conference, Shanghai, China, 2000, 1: 548-552.
    [24]熊治国,孙秀霞,胡孟权.超机动飞行自抗扰控制规律设计与仿真[J].系统仿真学报,2006,18(8):2222-2226.
    [25] CHEN DONG, CHEN YANGZHOU. Isolated Ramp Metering based on Auto Disturbances Rejection Controller[C]. Proceeding of the 6th World Congress on Intelligent Control and Automation, Dalian, China, June 21-23, 2006, 3: 8732-8735.
    [26] SU Y X, DUAN, B Y, ZHENG C H. Disturbance-Rejection High-Precision Motion Control of a Stewart Platform[J]. IEEE Trans. Control System Technology, 2004(12): 364-374.
    [27]史永丽,侯朝桢,苏海滨.基于粒子群优化算法的自抗扰控制器设计[J].系统仿真学报,2008,20(2):433-436.
    [28] SUN LIMING, JIANG XUEZHI, LI DONGHAI. The tuning of auto disturbance rejection controller for a class of nonlinear plants [J]. Acta Automatica Sinica, 2004, 30(2): 251-254.
    [29] SUN DEHUI, SHI YUNTAO, LI ZHIJUN. Research on Multi-Objective optimal tuning of Active Disturbance Rejection Controller [C]. Pro. of the IEEE International Conference on Automation and Logistics, Jinan, China, 2007, 2:1437-1441.
    [30]陈洪,高延滨,孙华.自适应模糊自抗扰控制器的研究与设计[J].微计算机信息.2008,4(8-1):2-33.
    [31]刘翔,东海,学智等.自扰控制器在高阶系统中的应用仿真[J].清华大学学报(自然科学版).2001.41(6):95-99.
    [32] NING XIRONG, LI DONGHAI, JIANG XUEZHI. Optimum Study of Active Disturbance Rejection controller for High-order Systems[J]. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006, 1: 6517-6521.
    [33]祝彬,郑娟.美国惯性导航与制导技术的新发展[J].中国航天,2008,1:43-45.
    [34]刘樾,王兴启.三轴转台运动耦合作用的仿真及实验研究[J].航空精密制造技术,2006,42(3):64-67.
    [35]何延斌,金光,何惠阳.三轴仿真转台系统模型建立及解耦控制研究.哈尔滨工业大学学报.2003,35(3): 23-27.
    [36] GUO B Z, HAN J Q, XI F B. Linear Tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation[J]. International Journal of System Science, 2002, 33(5): 351-358.
    [37]王朝珠,秦化淑.最优控制理论[M].北京:科学出版社,2003:107-112.
    [38]汤勇刚,何晓峰,吴美平等.非线性微分跟踪微分器在载波相位测速中的应用[J].自动测量与控制.2007,26(7):51-53.
    [39]刘志刚,杜振辉,王宝光.跟踪微分器在自主巡航系统中的设计与应用[J].系统仿真学报,2006,18(2):508-510.
    [40]韩京清,袁露林.跟踪微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
    [41]黄焕袍,万晖,韩京清.安排过渡过程提高闭环系统“鲁棒性、适应性和稳定性”的一种有效方法[J].控制理论与应用,2001,18:89-94.
    [42]张文革,韩京清.跟踪微分器用于零点配置[J].自动化学报,2001,27(5):724-727.
    [43]马冰雪,张瑞成.基于扩张状态观测器的直流电动机转速自抗扰控制器设计[J].电气应用,2006,25(2):88-91.
    [44] HUANG YI, XU KEKANG, HAN JINGQING. Flight control design usingextended state observer and non-smooth feedback[J]. IEEE Transaction on Automatic Control, 2001, 1: 223-228.
    [45] FARID A B, VINCENT L, JAN S. The generalized Maxwell-slip model: a novel model for friction simulation and compensation[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1883-1887.
    [46] ASHWANI K P, JINHYOUNG O, DENNIS S B. On the lugre model and friction induced hysteresis[C]. Proceeding of the 2006 American Control Conference, Minneapolis, Minnesota, 2006, 8: 3247-3252.
    [47] TAN Y L, CHANG J C, TAN H L. Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties[J].IEEE Transactions on Industrial Electronics, 2003, 50(5): 944-952.
    [48] WANG J, ALEXANDER L, RAJAMANI R. Friction estimation on highway vehicle using longitudinal measurements[J]. ASME Journal of Dynamic Systems, Measurement and Control, 2004, 126(2): 265-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700