用户名: 密码: 验证码:
稠油污水回用于热采锅炉处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国在稠油污水回用于热采锅炉方面作了大量的研究工作,部分污水处理装置已投入运行,但由于稠油污水存在水质变化大、油水密度差小、乳化严重等难点,再加上处理工艺流程不成熟等原因,稠油污水处理在回用方面尚未取得实质性的进展。
     针对以上问题,本文的研究目的是以胜利油田陈庄站稠油污水回用处理为例,设计一套适合稠油污水特点的污水回用处理工艺,为稠油污水回用于热采锅炉实现工业化提供理论基础和技术支撑。室内模拟和现场中试的主要创新性研究成果和结论如下:
     1.室内模拟研究
     1)采用限制性培养方法,针对陈庄稠油污水,构建了一组石油降解菌群SL-16。通过室内摇瓶实验测得该菌群在最佳条件下对陈庄稠油的降解率可达68 %,其适宜的生长及降解温度为35~45℃,pH值为7.0~9.0,矿化度为4000~14000 mg/L,接种量为2 %,原油初始浓度为1 %,摇床转速为140 r/min。
     2)在污水回用处理的模拟研究中,采用气浮和生物接触氧化除油,过滤除悬浮物,超滤和反渗透双膜法脱盐淡化、除硬度。气浮出水平均含油量低于20 mg/L。生物接触氧化的最佳运行条件为:温度35~45℃;停留时间为16 h;营养配比COD_(Cr):N:P=100:5:1,N源为硝酸铵,P源为磷酸氢二钾;在此条件下,生物接触氧化后出水中的含油量低于1 mg/L。在0.6 MPa的最佳过滤压力下,砂滤出水的悬浮物降低于5 mg/L。0.3 MPa进水压力下,超滤能够为反渗透提供浊度为0.19、SDI为2.6的给水。制水压力为1.5 MPa条件下,反渗透脱盐率高于90 %,钙离子去除率94 %,镁离子去除率100 %,出水水质优于热采锅炉所用清水。实验证明,采用气浮、生物接触氧化除油,过滤器去除悬浮物,双膜法脱盐淡化、除硬度的稠油污水回用处理工艺技术是可行的。
     2.现场中试研究
     1)采用换热器、冷却塔、气浮、生物接触氧化、杀菌、絮凝沉降、双介质过滤、保安过滤、超滤、反渗透等设备单元组成的污水回用处理工艺进行现场中试。稠油污水通过换热器对反渗透产水进行加温,反渗透产水可提高10℃,利用冷却塔可以将污水温度降低10~15℃,保证生化进水的温度不高于45℃;气浮可以满足生物接触氧化进水含油量低于30 mg/L的进水要求;在进水量为8.3m3/h的条件下,生物接触氧化反应器出水水质不仅达到GB8978-1996国标规定的二级排放标准,而且出水含油量低于1 mg/L;为防止生化出水中细菌对超滤膜产生污堵,采用次氯酸钠杀菌,投加量为100 ml/L(有效氯含量为10 %);生化出水中残余污染物采用絮凝、沉降、双介质过滤进一步去除,经过实验筛选确定絮凝剂为聚合氯化铝,投加量为80 mg/L,助凝剂为聚丙烯酰胺,投加量为1.25 mg/L;利用精细过滤器作为超滤的保安过滤器,避免大的颗粒物对超滤膜造成伤害;超滤作为反渗透的预处理,可以为反渗透提供SDI小于3,浊度小于0.23 NTU,悬浮物接近0 mg/L的稳定给水,能够满足反渗透的进水要求;反渗透平均脱盐率92.5 %,钙离子平均去除率93 %,镁离子的去除率100 %,产水水质优于清水,完全可以代替清水用于热采锅炉。
     2)多级生物接触氧化反应器的除油机理主要为曝气气浮、生物氧化、截留吸附和食物链分级捕食。在系统稳定运行时,随着水流方向,生物膜上的细菌群落结构发生变化,群落结构主要由生物膜上吸附的原油组分决定。经过分子生物学方法分析确认,菌群SL-16为优势菌时,生物接触氧化反应器对污水的处理效果较好。
     本论文的研究成果为稠油污水回用于热采锅炉处理实现工业化提供了理论基础和技术支撑,为超滤-反渗透在采油污水回用处理中建立了有效的预处理技术,为油田采油污水实现资源化处理有积极的指导意义。
A lot of research work has been done about reusing the heavy oil sewage in thermal steam generators in china. Part of sewage treatment equipment has been in use. No substantive progress has beeen made in research of reusing heavy oil sewage, because of the serious emulsification of heavy oil effluent and great changes happened usually to water quality and little density difference between water and oil.
     In the light of the problems above mentioned, the main purpose of this paper is to design a set of sewage treatment techniques which offer theoretical basis and technical support for realizing industrialization of reusing of heavy oil sewage in thermal steam generator.The innovative research results and conclusions of laboratory simulation test and field pilot scale test are summarized as follows:
     1. Laboratory simulation test
     1) A bacteria community SL-16 with capacity of heavy oil degradation was constructed by the techniques of limited cultivation. Through shaking experiments, the best degradation conditions of bacteria community presented as follows: the temperature was 35~45°C, the pH was 7.0~9.0, the mineralized rate was 4 000~14 000 mg/L, the inoculation was 2 %,the initial crude oil concentration was lower than 1000mg/L,and the rotating speed was 140 r/min. In the best degradation conditions, the oil removal rate of the heavy oil reached 68 %.
     2) In the laboratory simulation, oil was removed by gas floatation and biological contact oxygen method; suspend solid was removed by sand filter; salinity was removed by double membrane of ultra-filtration and reverse osmosis. Oil content of gas floatation effluent was lower than 20 mg/L averagely. The best operating condition of biological oxygen method presented as follows: the temperature was 35~45°C, HRT was 16 h; The optimum fertilization proportions (COD_(Cr):N:P) was 100:5:1 when nitrogen was ammonium nitrate and phosphorus source was dipotassium hydrogen phosphate. In this conditions oil content of effluent of biological reactor was lower than 1mg/L.The residual suspend solids was less than 5 mg/L after filtrated by sand filtration under the filtration pressure of 0.6 MPa. SDI of producing water of ultra-filtration was 2.6, turbidity of producing water of ultra-filtration was 0.19 NTU under the operating pressure of 0.3 MPa, which can meet the request of reverse osmosis. Reverse osmosis can removed scaling ions and most of salinity, the removal rate of Ca2+ reached 94 % and the removal rate of Mg2+ reached 100 %, desalination rate was 90 %.the quality of producing water of reverse osmosis was better than fresh water. The experiment showed that the process was feasible to realize the reusing treatment of heavy oil waste water, which including gas floatation, biological contact oxygen method, sand filtration, ultrafiltration and reverse osmosis.
     2. Field pilot scale test
     1)The design of reusing treatment adopts heat exchanger, cooling tower, gas floatation, biological contact oxygen method, sterilization, flocculation sedimentation, two media filter, ultrafiltration and reverse osmosis. Heavy oil waste water heated the producing water of RO by heat exchanger, and the temperature of producing water increased 10°C.The cooling extent of cooling tower was from 10°C to 15°C, which could ensure the temperature of influent of biological contact oxygen method was not higher than 45°C.The oil concentration of gas floatation effluent was less than 30mg/L, which meet the request of biological contact oxygen method. Under the conditions of influent flow was 8.3 m3/h, the quality of effluent of biological contact oxygen method reached secondary discharge standard of national standard GB8978-1996, and oil concentration was less than 1mg/L. Sodium hypochlorite containing available chlorine 10 % was used to kill bacteria and it’s amount was 100 mL/L. the residual pollutants was removed by flocculation sedimentation and two medias filter, inputting amount of poly aluminium chloride was 80 mg/L and Polyacrylamide was 1.25 mg/L .Fine filter as security filter could avoid the damage of suspend solid to ultrafiltration membrane. SDI of producing water of ultrafiltration was no more than 3, turbidity of producing water of ultra-filtration was no more than 0.23 NTU under the operating pressure of 0.24 MPa, which could offer influent with stable quality for reverse osmosis. Reverse osmosis could remove scaling ions and most of salinity, the average removal rate of Ca~(2+) reached 93 % and the removal rate of Mg~(2+) reached 100 %, the average desalination rate was 92.5 %.The quality of producing water of reverse osmosis is better than fresh water, producing water can be used to replace fresh water.
     2) Degreasing mechanism of multilevel biological contact oxygen reactor includs the Aeration Flotation, biological oxygen, interception and adsorption, and food chain grade predator prey. Bacterial community structure was determined by component of oil in biofilm, which changed along the flow direction. The molecular biological analysis results showed that the effluent of biological contact oxygen reactor was of good quality when dominant bacteria community was SL-16 community.
     Research results of this paper offer theoretical basis and technical supports for realizing industrialization of reusing of heavy oil sewage in thermal steam generators, and the reseach established effective pretreatment technology for ultrafiltration and reverse osmosis. In summary, the results of this reseach have positive guiding significance for resourceful disposal of oil field waste water.
引文
[1]陈国华.环境污染治理方法原理与工艺.北京:化学化工出版社,2004.90~111
    [2]中华人民共和国石油天然气行业标准.SY0027-94.稠油集输及注蒸汽系统设计规范.北京:石油工业出版社,1994
    [3]刘坤,王磊,何群彪.稠油污水的有机组成及可生化性研究.工业用水与废水,2003,34(2):35~37
    [4]张伟,王景峰,李官贤,等.辽河油田稠油废水生物治理初步研究.工业水处理,2004,24(3):37~39
    [5]谢加才.稠油污水处理工艺技术的研究-回用和外排.上海:同济大学出版社,2001
    [6]李金林.国内外稠油采出水回用工程介绍.工业用水与废水,2006,37(3):80~83
    [7]张学鲁.油田污水高效净化与稳定处理技术及其有效利用影响研究:[博士学位论文].西南石油学院,2003
    [8]中华人民共和国石油天然气行业标准.SY/T0097-2000.稠油油田采出水用于蒸汽发生器给水处理设计规范.北京:国家石油和化学工业局文件,2000
    [9]中华人民共和国石油天然气行业标准.SY0027-94.稠油集输及注蒸汽系统设计规范.北京:石油工业出版社,1994
    [10]邹启贤,陆正宇.油田废水处理综述.工业水处理,2001,21(8):1~3
    [11]张金波,傅绍斌,曾玉彬.油田采出水回注处理技术进展.工业水处理,2000,20(10):5~8
    [12]何玉辉.含油污水处理技术的发展.油气田地面工程.2002,21(5):55~56
    [13]李发永,李阳初.含油污水的超滤法处理.水处理技术,1995,21(3):145~148
    [14]丁永寿.精细过滤技术在吐哈油田的应用.华北石油设计,1997 (4):8~12
    [15] Leech C A, Radhakrishnan S, Hillyer M J, etal. Performance evaluation to induced gas flotation (IGF) machine through mathmodeling. offshore technology conference,OTC 3342, 10th AnnualOTC Conference, Houston, 1978,8~11
    [16]陈进富.采油废水的有机构成及其CODCr的处理技术研究.石油与天然气工,2001,30 (1):47~49
    [17] Eduardo, Bessa, et al. Photocatalytic /H2O2 treatment of oilfield Produced waters.AppliedCatalysis, 2001, 29:125-134
    [18]李海涛,朱其佳,祖荣.电化学氧化法处理海洋油田废水.工业水处理,2002,22 (6):23~25
    [19] Petroleum Energy Center.Treatment and utilization of oil- containing Produced water in Oman, 1999,Survey (9) :1-7
    [20]龚争辉,吕兴东,周雅芳,等.气浮-生物接触氧化技术在采油废水处理中的应用.黑龙江环境通报,2000,24 (4):26~27
    [21] Doyle D H. Field test of produced water treatment with polymer modified bentonite. SPE ( Society Petroleum Engineers) , 1997 , (5) : 1-6
    [22] Darlington. Process for treating produced water from oil recovery for removal of oil and water soluble petroleum components. EP901805 A1 17 Mar. 1999.
    [23]李旭东,李亚峰,刘元.物理化学法处理采油废水的研究进展.辽宁化工,36(2):92-95
    [24]祝威.采油废水处理方法与技术研究进展.环境工程,2007,25 (5):4-7
    [25] Gilbert TTellez, NirmalakhandanbN, JorgeLGardea-Torresdey.Performance evaluation of Anactivated sludge system for removing Petroleum hydrocarbons from oilfield produced water.Advances in Environmental Research, 2002, 6: 455-470.
    [26] Janeiro DeRio. Biological treatment of oilfield wastewater in a sequencing batch reactor. Environmental Technology, 2001, 22 (10):1125-1135
    [27]李顺成.SBR+高效菌剂处理采油废水.城市环境与城市生态,2003,16(5):74~75
    [28] Campos J C.Oil field waste water treatment by combined micro-filtration and biological processes. WaterResearch,2002,36: 95~104
    [29] Bozo Dalmacija.Tertiary treatment of oil field brine in a biosorption system with granulated activated carbon.Water Research,1996, 30(5):1065~1068
    [30] Nakhla G,Al-Sabawi M,Bassi A,et al.Anaerobic treatability of high oil and grease rendering wastewater. Journal of Hazardous Materials, 2003, 102(2-3): 243~255
    [31]闫毓霞.胜利油田采油废水污染现状及达标处理技术探讨.山东环境,2000, (增刊):146 ~147
    [32]黄廷林,杨利伟.采油废水回注处理技术.工业用水与废水,2000,31 (4):1~3
    [33] Murray-Gulde C. Heatley J. E. Karanfil T. et al. Performance of a hybrid reverse osmosisconstructed wetland treatment system for brackish oilfield producedwater.Water Research,2003, 37:705~713.
    [34]杜卫东.采油污水CODCr处理设计和实验研究.油气田环境保护,1999,10 (1):17~19
    [35]竺建荣.厌-好氧交替工艺处理辽河油田废水的实验.环境科学,1999,20 (1):62~64
    [36]许谦.序批式生物膜法处理油田采油废水.油气田环境保护,2003,13 (3):23~25.
    [37] Li Q X, Kang C B, Zhang C K. Wastewater produced from an oilfield and continuous treatment with an oil-degrading bacterium. Process Biochemistry, 2005, 40: 873~877.
    [38]杨二辉,李大平,赵长洪,等.高温优势菌生物膜法处理含油污水的中试.环境工程,2004,22(3):11-13
    [39]金明权,范廷骞,贺廷昭.冀东油田含油污水生化处理技术应用.天然气勘探与开发,2005,28(1):44-46
    [40]国家环境保护局(科技标准司与环境工程科技协调委员会)主持.生物接触氧化处理废水技术.北京:中国环境科学出版社,1989
    [41]刘晓旭.生物接触氧化工艺中填料性能的研究:[硕士学位论文].大连:大连交通大学,2007
    [42]汪艳霞.生物接触氧化填料性能试验研究:[硕士学位论文].太原:太原理工大学,2004
    [43]吴为中,王占生.不同生物接触氧化法的净化效果及其生物膜特性的比较.坏境科学学报,2000,20(增刊):44~50
    [44] Goncalves RF, Le Grand L, Rogalla F. Biological phosphrus uptake in submerged biofilters with nitrogen removal. Water Science Technology,1994, 29(10-11):119~125
    [45]艾恒雨,汪群慧,谢维民,等.接触氧化工艺中生物填料的发展及应用.给水排水,2005,31(2):88-92
    [46] Mallada R,Menedez M. Inorganic membranes:synthesis,characteristics and applications. Elsevier Science ,1991,289~291
    [47]古玉洪,薛家惠,刘凯文,等.陶瓷微滤膜处理油田采出水试验.油气田地面工程,2001,20(1):18~19
    [48] Bilstad T, Espedal E. Membrane separation of produced water.1996,34(9):239~246
    [49] Karakulski K, Kozlowskib A, Morawskia AW. Purification of oily wastewater by ultrafiltration. Separations Technology, 1995, 5(4):197~205
    [50]李发永,李阳初,孙亮,等.含油污水的超滤法处理.水处理术,1995,21(3):145~148
    [51]尹赐禹,张洪良.超滤法处理油田含油污水的试验研究.石油机械,2003,31(8):1~3
    [52]王静荣,吴光夏,王正军,等.超滤法处理乳化油废水的研究.环境科学,1997,18(4):53~55
    [53]徐英.用聚砜和磺化聚砜超滤膜处理含油污水的研究.石油大学学报,1997,21(2):67~69
    [54] Merten U. Desalination by reverse osmosis.Cambridge:MIT Press,1966,88-89
    [55]许振良.污水处理膜分离技术的研究进展.净化技术,2000,20(3):3~6
    [56] SUZUKI Y. Technological Delopment of a Wastewater Reclamatio Process for Recreational Process for Recreational Reuse: an Approach to Advanced Wastewater Treatment Featuring Reverse Osmosis Membrane,Water Science Technology,1991,23(Kyoto):1629~1638
    [57] Hurd S, Kennedy K, Droste J,et a1.Low-pressurosmosis treatment of landfill leachate [J]. Journal of Soild Waste Technology and Management, 2001, 27(1):1~14
    [58] Angelo C, Rolando R, Nicola V.Treatment of landfill leachate by reverse osmosis [J],Water Research, 1999, 33(3):647~652
    [59]任建新,膜分离技术及其应用.北京:化学工业出版社,2003:148~158
    [60]张宏忠,孟香兰,方少明,等.纺丝油剂废水处理工艺研究.过滤与分离,2005,15(4):79~81
    [61] Sanghhyun,Gyetkin. Synthesis of Ceramic Micro filtration Membranes for Oil wastewater separation Separation Science and Technology,1997,32(18):2927~2943
    [62] Arlene K. Roman, etal. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiology ecology, 2003(43):195~206
    [63] Schram A, Larsen L H, Revsbech, et al. Structure and function of a nitrifying biofilm as determined by insitu hybridization and the use of microelectrodes.Appl Environ,microbial,1996,62:4641~4647
    [64]彭永臻,高守有.分子生物学技术在污水处理微生物检测中的应用.环境科学学报,2005,25(9):1143~1147
    [65] J.M.沃克,R.拉普勒.分子生物学与生物技术.北京:化学工业出版社,2003,55~59
    [66] Ursula Dorigo, Laurence Volatier, Jean-Franc-ois Humbert. Molecular approaches to the assessment of biodiversity in aquatic microbial communities.Water Research,2005(39): 2207~2218
    [67] Martin Eschenhagen, Markus Schuppler, Isolde Roske. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents.Water Researh, 2003(37):3224~3232
    [68] Marsh TL, Saxman P, Cole J, Tiedje J (2000) Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis.Appl Environ Microbiol 66:3616~3620
    [69] Metcalf, Eddy. Wastewater Engineering: Treatment and Reuse(Fourth Edition).Beijing:Tsinghua University Press:129~130
    [70] Muyzer G, Waal E C, and Uittrlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16SrRNA. Appl Environ Microbiol, 1993, 59(3):695~700.
    [71] Edwards C. Environmental Monitoring of Bacterial.Totowa, New Jersey: Hamana press, 1999, 175~186
    [72]王峰,傅以钢.PCR-DGGE技术在城市污水化学生物絮凝处理中的特点.环境科学,2004,25(6):74~80
    [73] Marsh T L, Liu W T,Forney L J. Beginning a molecular analysis of the enkaryal community in activated sludge.Water science technology.1998,37(4):455~460
    [74]裘湛,闻岳,黄翔峰,等.PCR-DGGE技术在水解酸化-缺氧法处理采油废水的微生物研究中的应用.环境污染与防治,2006,28(6):439~442
    [75] LaPara T M, Konopka A A, Nakastu C H,et al. Effects of elevated temperature on bacterial community structure and function in bioreactors treating a synthetic waste water[J]. Biotechnology 2001, 24(2):140~145.
    [76] Santegoeds C M, Nold S, and Ward D M. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat [J]. Appl Environ Microbiol,1996, 62(11):3922~3928
    [77]佘跃惠,张凡,向廷生,等.PCR-DGGE方法分析原油储层微生物群落结构及种群多样性.生态学报,2005,25(2):237~242
    [78] Wawer C, Jetten M S M, and Muyzer G. Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio sp In environmental samples.Appl Environ Microbiol, 1997, 63(11):4360~4369
    [79] Lukow T, Dunfield PF, Liesack W. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbial Ecol,2000,32 (3):241~247
    [80] Dunbar J, Ticknor L0, Kuske CR. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16SrRNA genes from bacterial communities. Appl & Environ Microbiol, 2001,67(1):190~197
    [81] Wu XL, Chin KJ, Conrad R. Effect of temperature stress on the structure and function of the methanogenic archaeal community in a rice field soil, FEMS Microbiol Ecol,2002,39 (3):211~218
    [82] Marsh TL. Terminal restriction fragment length polymorphism(T-HELP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol, 1999, 2 (3):323~327
    [83] Clement BG, Kehl LE, DeBord KL, et al. Terminal restriction fragment patterns (TRFPs),a rapid, PCR-based method for the comparison of complex bacterial communities. Microbial Methods, 1998, 31(3):135~142
    [84]余素林,吴晓磊,钱易.环境微生物群落分析的T-RFLP技术及其优化措施.应用与环境生物学报,2006,12(6):861-868
    [85] Liu WT, Marsvh TL, Cheng H, Forney IJ. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16SrRNA. Appl & Environ Micro6iol, 1997,63(11):4516~4522
    [86] Eschenhagena M, Schupplerb M, Roske I. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res , 2003,37(13):3224~3232
    [87] Edel-Hermann V, Dreumont C, Perez-Piqueres A, et al. Terminal restriction fragment length polymorphism analysis of ribosomal HIYA genes to assess changes in fungalcommunity structure in soils. EMS Microbiol Ecol, 2004,47(3):397~404
    [88] Rousseaux S, Hartmann A, Rouard N, Soulas G. A simplied procedure for terminal restriction fragment length polymorphism analysis of the soil bacterial community to study the effects of pesticides on the soil microflora using 4,6-dinitroorthocresol as a test case. Biol & Fertil Soils, 2003, 37 (4):250~254
    [89] Yu T.Stratification of microbial metabolic processes and redox potential change in an aerobic biofilm studied using microelectrodes.Water Science and Teehnologys,1998,37(4-5):195~198
    [90] Inan Beydilli M.Biological determination of the azo dye reactive red under vallous oxidation-reduction condition.Water Environment Research,2000,72(6):698~705.
    [91] Challenor K C A Bromley.Decolorization of an ago dye by unacclimated activated sludge under anaerobic conditions.Water Research,2000,34(18):4410~4418.
    [92]刘颖,张朝辉,张焕胜,等.污水可生化性及其影响因素研究.中国海洋大学学报,2005,35(6):1029~1032
    [93]中国石油天然气总公司.SY/T0530-93.油田污水中含油量测定方法-分光光度法.北京:石油工业出版社,2005
    [94]国家环境保护局.GB11901-89.水质--悬浮物的测定-重量法.北京:中国标准出版社,2007
    [95]国家环保局《水和废水监测分析方法》编委会编.水和废水监测分析方法.北京:中国环境科学出版社,1997
    [96]国家环保总局.HJ/T399-2007.水质化学需氧量的测定快速消解分光光度法.北京:中国环境科学出版社,2008
    [97]中国石油化工股份有限公司石油勘探开发研究院无锡实验地质研究所,中国石油天然气股份有限公司勘探开发研究院石油地质实验研究中心.SY/T 5119-1995.岩石中可溶有机物及原油族组分分析.北京:石油工业出版社,2008
    [98]大庆石油管理局设计院.SY/T 0532-93.油田注入水细菌分析方法.北京:石油工业出版社,2004
    [99]奚旦立,孙裕生,刘秀英.环境监测.北京:高等教育出版社,1995:323~324.
    [100]刘颖,张朝辉,张焕胜.污水可生化性及其影响因素研究.中国海洋大学学报,2005,35(6):1029~1032
    [101]韩玮.污污水可生化性评价方法的可行性研究.江苏环境科技,2004,17(3):8~10.
    [102]孙洪伟,王亚娥,,李杰,等.工业污水可生化性及其测定方法的比较研究.甘肃环境研究与监测,2003,16(3):213~215.
    [103]韩玮,何康林.奎河污水可生化性研究.环境技术,2004,6:37~39.
    [104] Challenor K C A Bromley.Decolorization of anago dye by unacclimat.edactivated sludge under anaerobic conditions.Water Research.2000,34(18):4410~4418.
    [105] Komukai-Nakamura S, Sugiura K, Yamauchi-Inomata Y. Construction of bacterial consortia that degrade Arabian light crude oil. Journal of Fermentation and Bioengineering, 1996, 82:570~574
    [106]李宝明.石油污染土壤微生物修复的研究:[博士学位论文].北京:中国农业科学院,2007
    [107]丁明宇,黄健,李永祺.海洋微生物降解石油的研究.环境科学学报,2001,21(1):84~88
    [108]刘俊强.烃类降解菌的筛选及油田污水室内生化实验研究:[硕士学位论文].青岛:中国海洋大学,2007
    [109]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001,370~374
    [110]马永安.加拿大海洋石油污染防治对策.海洋环境科学,1989,8(3):103~105.
    [111] R.Margesin, F.Schinner. Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. Microbiology Ecology, 1997, 24: 243~249.
    [112]谢鲲鹏,宫正,赵慧.高效原油降解菌的筛选及其降解能力的研究.辽宁师范大学学报,2005,28(2):228~231
    [113]李伟光,朱文芳,吕炳南.混合菌培养降解含油废水的研究.给水排水,2003,29(11):42~41
    [114]叶仲斌.提高采收率原理.北京:石油工业出版社,2000
    [115]谢加才,王正江,刘喜林,等.稠油产出水深度处理回用与热采锅炉的中试研究.石油学报,2003,24(5):93~98
    [116]李金林.国内外稠油采出水回用工程介绍.工业用水与废水,2003,37(3):80~83
    [117]孙绳坤.用于热采锅炉的稠油废水处理.油气田地面工程,2000,19(5):28-30
    [118]王洪臣,杨向平,涂兆林.城市污水处理厂运行控制与维护[M].北京:科学出版社1997
    [119]何良菊,李培杰,魏德洲,等.石油烃微生物降解的营养平衡及降解机理.环境科学,2004,25(1):91~94
    [120]龚争辉,吕兴东,周雅芳,等.气浮-生物接触氧化技术在采油废水处理中的应用.黑龙江环境通报,2000,24(4):26~28
    [121] Sverre M. Myklestad,Elin Skantby,Solveig Hestmann.A sensitiveand rapid method for analysis of dissolved mono and polysaccharides in seawater.Marine Chcmistry,1997,56(3-4):279~286
    [122] Chin Chang Hung, Degui Tang, Kent W Warnken, et al.Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Marine Chemistry, 2001, 73(3-4):305~318
    [123] Vishwas B Khodse, Fernandes Loreta, Gopalkrishna V.Distribution and seasonal variation of concentrations of particulate carbohydrates and uronic acids in the northern Indian Ocean. Marine Chemistry,2007, 103(3-4):327~346
    [124] Zor T, Selinger Z.Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem, 1996, 236(2):302~308
    [125]陆金仁.采油污水COD化学组成剖析及归趋模型:[博士学位论文].青岛:中国海洋大学,2003
    [126] APHA-AWWA-WPCF.Standard methods for the examination of water and Wastewater.l7th edition, Washington D.C.:APHA,1990
    [127]李进,张葆宗.反渗透水处理系统微生物污染特性分析及对策.工业水处理,2005,20(5):10~12
    [128]赵义.A2/O2生物膜法处理焦化废水中试研究.太原理工大学博士论文,2006
    [129]张东,许简化.受污染原水的弹性填料生物接触氧化处理挂膜实验研究.重庆环境科学,2001,23(1):59-61
    [130]秦磷源.废水生物处理.上海:同济大学出版社,1988,204~205
    [131] Curbs, T P, Head L M, and Graham DW.Theoretical Ecology for engineering biology. Environmental Science&Technology, 2003, 37(3):64~70
    [132] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993, 59(3): 695~700.
    [133] Yoshida N,Yagi K, Sato I, et al.Bacterial petroleum oil in stockpiles.Journal ofBioscience and bioengineering,2005,99( 2):143~149
    [134] Isbii K, Fukui M.Optimization of annealing teanperature to reduce bias caused by a primer mismatch in multitemplate PCR.Applied and Environmental Microbiolog,2001,67(8):3753~ 3755.
    [135] Kjellerup B V,Veeh B H,Sumitln-aratne P, et al. Monitoring of microbial souring in chemically treated,Produced water biofilm systems using molecular techniques.Journal of Industrial Microbiology and Biotechnology, 2005, 32(4):163~170
    [136] Suzuki K,KoyanagiM,Yamashita H. Genetic characterization and specific detection of beer spoilage Lactobacillus sp.LA2 and related strains[J],Journal of Applied Microbiology, 2004,96( 4):677~683
    [137] HashizumeT,TakaiC,NaitoM, et al.Characteristics of the mucus layer on the surface of the bluegill (Lepomismacrochirus) and the bacterial flora in the mucus[J].Microbes and Environments, 2005,20(1):69~80
    [138]严兴.A2/O固定生物膜法焦化废水处理系统群落空间演替模式的系统轨迹分析及应用:[博士学位论文].上海:上海交通大学,2007
    [139] Wagner M.Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek, 2002. 81(1-4): 665~680
    [140] Cole A C, Semmens M J, LaPara T M.Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen. Applied and Environmental Microbiology .2004. 70(4): 1982~1989
    [141] Orman R S, Moeller P, McDonald T J,et al.Effect of pyocyanin on a crude-oil-degrading microbial community. Appl EnvironMicrobiol, 2004, 70(7): 4004~4011
    [142] Kaplan C W,Kitts C L. Bacterial succession in a petroleum land treatment unit [J]. Appl Environ Microbiol,2004, 70 (3):1777~1786
    [143] Paddick J S, Brailsford S R, Kidd E A M, et al. Effect of the environment on genotypic diversity of Actinomyces naeslundii and Streptococcus oralis in the oral biofilm. Appl Environ Microbiol,2003,69(11): 6475~6480
    [144] Song B, Young L Y, Palleroni N J. Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. Int JSyst Bacteriol, 1998. 48 (3): 889~894
    [145] Anders H J,Kaetzke A,Kampfer P. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol, 1995. 45(2): 327-33
    [146] Paula M, van Schie, Young L Y. Isolation and characterization of phenol-degrading denitrifying bacteria. Appl Environ Microbiol, 1998. 64(7): 2432-8.
    [147]游胜杰.并同生物膜活性污泥程序之硝化及脱硝除磷特性研究:[博士学位论文].台湾:台湾国立中央大学,2001
    [148]王海燕,周岳溪,戴欣.16S rDNA克隆文库方法分析MDAT2IAT同步脱氮除磷系统细菌多样性研究.环境科学学报,2006,26(2):903-911

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700