用户名: 密码: 验证码:
灰葡萄孢菌抗多菌灵β-微管蛋白基因在禾谷镰孢菌中的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禾谷镰孢菌(Fusarium graminearum)是引起赤霉病最主要的病原菌之一。赤霉病不仅严重影响小麦的产量,而且降低小麦的品质,禾谷镰孢菌可产生多种衍生真菌毒素及次生代谢物质,如脱氧雪腐镰刀菌烯醇(Deoxynivalenol, DON)和雪腐镰刀菌烯醇(Nivalenol, NIV)等,可引起人类和哺乳动物中毒,严重威胁着人和动物的健康。灰葡萄孢菌(Botrytis cinerea)引起的灰霉病是我国许多果树、蔬菜、草莓、花卉等植物上的重要病害,尤其在保护地生产的蔬菜及草莓上引起果实腐烂,损失比较严重。
     自1970年沈阳化工研究院张少铭等实现多菌灵的工业化生产以来,多菌灵等苯并咪唑类杀菌剂用于赤霉病和灰霉病的防治至今已有40多年的历史。苯并咪唑类药剂可与植物病原真菌细胞的β-微管蛋白结合,阻止纺锤丝的形成,从而抑制细胞有丝分裂,植物病原真菌在生物进化过程中保持了微管蛋白基因的随机突变性质,以适应不良的生存环境,因此植物病原真菌对苯并咪唑类杀菌剂的抗药性大多是病原真菌细胞内编码β-微管蛋白的某些特定氨基酸发生突变,使苯并咪唑类杀菌剂与作用靶标的亲和性下降或丧失而表现抗药性,并且大多数植物病原真菌田间抗性菌株的氨基酸突变一般位于β-微管蛋白的198位或200位两个编码位点。灰葡萄孢菌(Botrytis cinerea)β-微管蛋白198位的谷氨酸(Glu-E)突变为丙氨酸(Ala-A)、赖氨酸(Lys-K)或缬氨酸(Val-V)都导致其对多菌灵产生高水平抗性,或200位的苯丙氨酸(Phe-F)突变为酪氨酸(Tyr-Y)导致其对多菌灵产生中等水平抗性产生。禾谷镰孢菌(Fusarium graminearum)中存在β1和β2两个微管蛋白基因,并且禾谷镰孢菌对多菌灵不同敏感型菌株的β1-微管蛋白基因相同,没有发生突变,而β2-微管蛋白73、167、198或200位氨基酸突变能够导致禾谷镰孢菌对多菌灵产生不同水平的抗药性,73位谷氨酰胺(Gln-Q)突变为精氨酸(Arg-R)或198位谷氨酸(Glu-E)突变为亮氨酸(Leu-L)导致禾谷镰孢菌对多菌灵产生高水平抗药性,167或200位苯丙氨酸(Phe-F)突变为酪氨酸(Tyr-Y)导致禾谷镰孢菌对多菌灵产生中等水平抗药性。说明禾谷镰孢菌对多菌灵的抗性机制不同于灰葡萄孢菌。
     本文采用Double-joint PCR方法体外构建含抗药性编码的灰葡萄孢菌β-微管蛋白基因载体,通过PEG介导的原生质体转化法同源置换禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因,并进一步敲除获得的转化子菌株中另外的β2-微管蛋白基因或β1-微管蛋白基因,获得抗多菌灵β-微管蛋白基因同源置换禾谷镰孢菌β1-微管蛋白基因转化子菌株及其β2-微管蛋白基因敲除突变体菌株、同源置换禾谷镰孢菌β2-微管蛋白基因转化子菌株及其β1-微管蛋白基因敲除突变体菌株。通过半定量RT-PCR测定抗多菌灵β-微管蛋白基因同源置换禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因后在禾谷镰孢菌中的表达情况,测定禾谷镰孢菌菌株和各转化子菌株对多菌灵的敏感性、菌丝生长速率、产分生孢子能力、产子囊壳能力和致病力等生物学特性,以探明不同植物病原真菌间微管蛋白基因能否替代以及抗多菌灵灰葡萄孢菌的β-微管蛋白基因能否在禾谷镰孢菌中表达,抗多菌灵β-微管蛋白基因、禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因的相互作用关系,为进一步揭示禾谷镰孢菌对多菌灵的抗性机制,以及多菌灵与β-微管蛋白的作用机制提供参考依据。本文的主要研究结果如下所述。
     本文采用Double-joint PCR方法体外构建含抗药性编码的β-微管蛋白基因载体,通过PEG介导的原生质体转化法同源置换禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因,成功获得了同源置换后的转化子菌株,表明不同植物病原真菌间β-微管蛋白基因可以替代。
     通过测定抗多菌灵β-微管蛋白基因同源置换禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因获得的转化子菌株对多菌灵的敏感性结果表明,抗多菌灵β-微管蛋白基因同源置换禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因后禾谷镰孢菌对多菌灵敏感性降低,但不表现抗药性。
     通过半定量RT-PCR测定了抗多菌灵β-微管蛋白基因同源置换禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因后在禾谷镰孢菌中的表达水平,结果表明β-微管蛋白基因在禾谷镰孢菌中在mRNA水平能够表达,同源置换β1-微管蛋白基因后的表达水平和β1-微管蛋白基因相比没有显著差异,同源置换β2-微管蛋白基因后的表达水平和β2-微管蛋白基因相比显著降低。
     通过测定抗多菌灵β-微管蛋白基因同源置换禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因转化子菌株对应的β2-微管蛋白基因和β1-微管蛋白基因敲除突变体菌株对多菌灵的敏感性、菌丝生长速率等生物学特性,结果表明禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因对抗多菌灵β-微管蛋白基因在禾谷镰孢菌中的功能表达没有抑制作用,突变体对多菌灵仍然敏感,不表现抗药性。
     通过测定禾谷镰孢菌野生型菌株、禾谷镰孢菌野生型菌株的β1-微管蛋白基因和β2-微管蛋白基因敲除突变体菌株、抗多菌灵β-微管蛋白基因同源置换禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因的转化子菌株及其敲除相应微管蛋白基因的突变体菌株对多菌灵的敏感性、菌落生长速率、产分生孢子能力、产子囊壳能力和致病力等生物学特性,结果表明β2-微管蛋白基因对禾谷镰孢菌是必需的而β1-微管蛋白基因是非必需的,但是两者在功能上是互补的,抗多菌灵β-微管蛋白基因同源置换禾谷镰孢菌β1-微管蛋白基因和β2-微管蛋白基因能够恢复禾谷镰孢菌有性生殖和无性生殖能力以及致病力。
Fusarium graminearum, which is the overriding pathogen of Fusarium head blight (FHB) on wheat, is a leading cause of economic loss in these crops. In addition to reducing seed mass and quality, the fungus contaminates grain with toxic metabolites such as DON and NIV that are a threat to human and other mammals'health. Grey mold (Botrytis cinered) is an important plant disease on several economic crops in China, especially results in severe loss to vegetables and strawberrys in protected fields, inducing fruit rot.
     Carbendazim and other benzimidazole fungicides have been used to control FHB and grey mold for more than 40 years since Shenyang Research Institute of Chemical Industry industrialized manufacture in 1970 led by Zhang Shaoming. Benzimidazole fungicides combine withβ-tubulin in plant pathogenic fungi's cell, preventing the formation of spindle fiber, thus inhibiting mitosis. Plant pathogenic fungi retain the tubulin gene's random mutation in evolutionary process to adapt to infaust medium. Therefore, most resistance of plant pathogenic fungi to benzimidazole fungicides owes to some definite amino acid mutation ofβ-tubulin, which causes decreased affinity between benzimidazole fungicides and the target. Amino acid mutation is located inβ-tubulin site 198 or 200 generally in most field resistant strains. The site-mutation ofβ-tubulin at codon198 (Glu to Ala or Lys or Val) may lead to high resistance while mutation at codon167(Phe to Tyr) and codon200(Phe to Tyr) cause medium resistance to MBC in Botrytis cinerea. Fusarium graminearum containsβ1-tubulin andβ2-tubulin. Besides,β1-tubulin in strains of dirrenernt sensitivity patterns is identical, without any mutation. However, site mutation ofβ2-tubulin at codon 73,167,198 or 200 can result in distinct resistance, Q73R or E198L to high level while F167Y or F200Y to medium level. Data above shows that the mechanism of resistance to MBC in Fusarium graminearum to Botrytis cinerea.
     In this article we adopted Double-joint PCR to construct the vector containing MBC resistantβ-tubulin gene in vitro, using PEG-mediated protoplast transformation to homologous replaceβ1-tubulin gene andβ2-tubulin gene in Fusarium graminearum. Furthermore, we deleted the originalβ1-tubulin gene andβ2-tubulin gene of mutants we got above. Accordingly, we obtained mutant of Fusarium graminearum thatβ1/β2-tubulin gene knock-out mutants, MBC-resistantβ-tubulin gene replacingβ1/β2-tubulin gene transformants respectively and corresponding knock-outs.
     We assayed the sensitivity to MBC, mycelial growth rate, conidia productivity, perithecium productivity, pathogenicity and other biological characteristics of different Fusarium graminearum transformants by testing the expression of MBC-resistantβ-tubulin gene via homologous replacement withβ1-tubulin gene and P2-tubulin gene in Fusarium graminearum using semiquantitative RT-PCR to study whetherβ-tubulin gene of different plant pathogenic fungi can be substituted and if the MBC-resistantβ-tubulin gene of Botrytis cinerea can express in Fusarium graminearum which provided reference to further research the resistance mechanism of Fusarium graminearum to MBC and the mechanism of action between MBC andβ-tubulin. Below are our main findings.
     We adopted Double-joint PCR to construct the vector containing MBC resistantβ-tubulin gene in vitro, using PEG-mediated protoplast transformation to homologous replaceβ1-tubulin gene andβ2-tubulin gene in Fusarium graminearum, and successfully got the transformants which proved thatβ-tubulin gene of different plant pathogenic fungi can be substituted.
     The test of sensitivity to MBC of mutant strains containingβ-tubulin gene substituted forβ1-tubulin gene andβ2-tubulin gene respectively showed that the mutant strains had lower sensitivity to MBC, however, without resistance.
     The test of the expression of MBC-resistantβ-tubulin gene via homologous replacement withβ1-tubulin gene andβ2-tubulin gene in Fusarium graminearum using semiquantitative RT-PCR indicated thatβ-tubulin gene can express on mRNA level in Fusarium graminearum, and there were no significant deviation between the expression ofβ-tubulin gene after homologous replacement withβ1-tubulin gene andβ1-tubulin gene while notable reduction afterβ-tubulin gene replacedβ2-tubulin gene than P2-tubulin gene.
     The test of the sensitivity to MBC, mycelial growth rate, conidia productivity, perithecium productivity, pathogenicity and other biological characteristics of Fusarium graminearum transformants of MBC-resistantβ-tubulin gene replacingβ1-tubulin gene andβ2-tubulin gene separately manifested thatβ1-tubulin gene andβ2-tubulin gene of Fusarium graminearum had no inhibition to the expression of MBC-resistantβ-tubulin gene of Botrytis cinerea in Fusarium graminearum and the mutant remained sensitive to MBC.
     The test of the sensitivity to MBC, mycelial growth rate, conidia productivity, perithecium productivity, pathogenicity and other biological characteristics of Fusarium graminearumβ1/β2-tubulin gene knockout mutant strains, MBC-resistantβ-tubulin gene replacingβ1-tubulin gene andβ2-tubulin gene separately and their corresponding knockouts proclaimed thatβ2-tubulin gene was essential for Fusarium graminearum whileβ1-tubulin gene was not, nevertheless, two were complementary, and MBC-resistantβ-tubulin gene replacingβ1-tubulin gene andβ2-tubulin gene separately can both repair the sexual and asexual reproduction capability and pathogenicity of Fusarium graminearum.
引文
1. Bai G, Shaner G. Scab of wheat:prospects for control [J]. Plant Dis,1994,78:760-766.
    2. Chen LF, Bai GH, Desjardins AE. Recent advances in wheat head scab research in China, [online] National Agricultural Library. Available (http://www.nal.usda.gov/pgdic/WHS/whsindex.html).
    3. McMullen M, Jones R, Gallenberg D. Scab of wheat and barley:are-emerging disease of devastating impact [J]. Plant Dis,1997,81:1340-1348.
    4. Parry DW, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-a review [J]. Plant Pathol,1995,44:207-238.
    5. Goswami RS, Kistler HC. Heading for disaster:Fusarium graminearum on cereal crops [J]. Mol Plant Pathol,2004,5:515-525.
    6. 全国小麦赤霉病研究协作组.我国小麦赤霉病穗部镰刀菌种类、分布和致病性[J].上海师范大学学报,1984,3:69-82.
    7. 陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001,2-39.
    8. 姚金保,陆维忠.中国小麦抗赤霉病育种研究进展[J].江苏农业学报,2000,16(4):242-248.
    9. 王裕中,Mllier中国小麦赤霉病菌优势种一禾谷镰刀菌产毒素能力的研究[J].真菌学报,1994,13(3):229-234.
    10.林一波,杨竹平,吴兆苏.不同地理来源抗赤霉病小麦品种的抗性遗传分析[J].上海农业学报1992,8(1):31-36.
    11. Tekauz A, McCallum BD, Gilbert J. Fusarium head blight of barley in western Canada:a review [J]. Can J Plant Pathol,2000,22:9-16.
    12. Xu X M, Parry DW, Nicholson P, et al. Predominance and association of pathogenic fungi causing fusarium ear blight in wheat in four European countries [J]. Eur J Plant Pathol,2005,112:143-154.
    13. Desjardins AE, Manandhar HK, Plattner RD, et al. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species [J]. Appl Environ Microbial, 2000,66:1020-1025.
    14. Desjardins AE, Manandhar G, Plattner RD, et al. Occurrence of Fusarium species and mycotoxin in Nepalese maize and wheat and effect of traditional processing methods on mycotoxin levels [J]. J Agr Food Chem,2000,48:1377-1383.
    15. Yoshizawa T, Jin YZ. Natural occurrence of acetylated derivatives of deoxynivalenol and nivalenol in wheat and barley in Japan [J]. Food Addit Contam,1995,12:689-694.
    16. Chen Y, Wang JX, Zhou MG, et al. Vegetative compatibility of Fusarium graminearum isolates and genetic study on their carbendazim-resistance recombination in China [J]. Phytopathology, 2007,12:1584-1589.
    17. Chen Y, Li H, Chen C, et al. Sensitivity of Fusarium graminearum to fungicide JS399-19:in vitro determination of baseline sensitivity and the risk of developing fungicide resistance [J]. Phytoparasitica,2008,36:326-337.
    18. Pirgozliev SR, Edwards SG, Hare MC et al. Strategies for the control of Fusarium head blight in cereals [J]. Eur J Plant Pathol,2003,109:731-742.
    19. Proctor RH, Hohn TM, McCormick SP. Reduced virulence of Gibberella zeae caused by disruption of trichothecene toxin biosynthesis gene [J]. Mol Plant-Microbe Interact,1995,8:593-601.
    20. Casale WL, Hart LP. Inhibition of 3H-leucine incorporation by trichothecene mycotoxins in maize and wheat tissue [J]. Phytopathology,1988,78:1673-1677.
    21. Forsyth OM, Yoshizawa T, Morooka N. Emetic and refusal activity of deoxynivalenol to swine [J]. Appl Environ Microbial,1997,34:547-552.
    22. Gilbert J, Abramson D, McCallum S, et al. Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins [J]. Mycopath,2001,153:209-215.
    23. Snijders CHA. Fusarium head blight and mycotoxin contamination of wheat, a review [J]. Neth J Plant Pathol,1990,96:187-198.
    24.董金皋.农业植物病理学第二版[M].北京:中国农业出版社,2007,61-66.
    25. Starkey DE, Ward TJ. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity [J]. Fungal Genet Biol,2007,44:1191-1204.
    26. Cromey MG, Shorter SC, Lauren DR, et al. Cultivar and crop management influences on Fusarium head blight and mycotoxins in spring wheat (Triticum aestivum) in New Zealand [J]. Crop Hortic Sci,2002,30:235-247.
    27. Gale LR, Chen LF, Hemick CA, et al. Population analysis of Fusarium graminearum from wheat fields in eastern China [J]. Phytopathology,2002,92:1315-1322.
    28. Sutton JC. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum [J]. Can J Plant Pathol,1982,4:195-209.
    29. Champeil A, Dore T, Fourbet JF. Fusarium head blight:epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains [J]. Plant Sci,2004,166:1389-1415.
    30. Bai GH, Plattner R, Desjardins A, et al. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat [J]. Plant Breeding,2001,120:1-6.
    31. Pugh GW, Johann H, Dickson JG. Factors affecting infection of wheat heads by Gibberella saubinetii [J]. JAgric Res,1933,46:771-797.
    32. Strange RN, Smith H. A fungal growth stimulant in anthers which predisposes wheat to attack by Fusarium graminearum [J]. Physiol Plant Pathol,1971,1:141-150.
    33.王裕中,杨新宁,肖庆璞,等.小麦赤霉病抗性鉴定技术的改进及其抗源的开拓[J].中国农业科学,1982,5:67-71.
    34.王雅平,王进先,刘伊强.小麦品种对赤霉病抗扩展性的遗传研究[J].作物学报,1992,18(5):373-379.
    35.姚金保,葛永福,王书文,等.小麦品种苏麦3号抗赤霉病基因的染体定位研究[J].作物笋报,1997,23(4):450-453.
    36. Dill-Macky R, Jones RK. Effects of previous crop and tillage on Fusarium head blight of wheat [J]. Phytopathology,1999,89:21.
    37. Windels CE, Kommedahl T. Population differences in indigenous Fusarium Species by corn culture of prairie soil [J].Am J Bot,1974,61:141-145.
    38. Sturz AV, Johnston HW. Characterization of Fusarium colonization of spring barely and wheat produced on stubble and fallow soil [J]. Can J Plant Pathol,1985,7:270-276.
    39. Celetti MJ, Johnston HW, Kimpinski J, et al. Incidence of soil-borne plant pathogens isolate from barely and winter wheat, arid other crops in the rotation, on Prince Edward Island [J]. Plant Pathol, 1990,39:606-611.
    40. Fernandez MR. The effect of Trichoderma harzianum on fungal pathogens infesting wheat and black oat straw [J]. Soil Biol Biochem,1992,24:1031-1034.
    41. Khan NI, Schisler DA, Boehm MJ, et al. Biological control of scab of wheat incited by Gibberella zeae.In:Proceedings of the 1998 National Fusarium Head Blight Forum [C]. Michigan:Michigan State University East Lansing,1998,45-46.
    1.沈阳化工研究院农药第一室杀菌剂组.内吸性杀菌剂多菌灵(苯并咪唑44#)研究(第一报)[J].农药,1973,01:11-25.
    2. Schroeder WT, Provvidenti R. Resistance to benomyl in powdery mildew of cucurbits [J]. Plant Dis Rep,1969,53:271-275.
    3.周明国,叶钟音.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性[J].植物保护,1987,13(2):31-33.
    4. Vonk J W, Sijpesteijn A K. Methyl benzimidazole-2-ylcarbamate, the fungitoxic principle of thiophanate-methyl [J]. Pestic Sci,1971,2:160-164.
    5. Hastie A C. Benlate-induced instability of Aspergillus diploids [J]. Nature,1970,226:771.
    6. Clemons GP, Sisler HD. Localization of the site of action of a fungitoxic benomyl derivative [J]. Pestic Biochem Physiol,1971,1:32-43.
    7. Davidse LC. Antimitotic activity of methyl benzimidazole-2-yl carbamate (MBC) in Aspergillus nidulans [J]. Pestic Biochem Physiol,1973,3:317-325.
    8. Hammerschlag RS, Sisler HD. Benomyl and methyl-2-benzimidazole carbamate (MBC): Biochemical, cytological and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cerevisiae [J]. Pestic Biochem Physiol,1973,3:42-54.
    9. Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact [J]. Ann Rev Phytoathol,1986,24:43-65.
    10. Cleveland D W, Sullivan K F. Molecular biology and genetics of tubulin [J]. Ann Rev Biochem, 1985,54:331-365.
    11. Chaowei Bi, Jianbo Qiu, Mingguo Zhou, et al. Effects of carbendazim on conidial germination and mitosis in germlings of Fusarium graminearum and Botrytis cinerea [J]. Inter J Pest Manage.2009,55:157-163.
    12. De Brabander MJ, Van de Veire RML, Aerts FEM, et al. The effects of methyl [5-(2-thienyl-carbonyl)-1H-benzimidazol-2-yl]-carbamate (R17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules on mammalian cells cultured in vitro [J]. Cancer Res,1976,36:1011-1018.
    13. Hoebeke RJ, Van Nyen G, De Brabander M. Interaction of oncodazole (R17934), a new antitumoral drug with rat brain tubulin [J]. Biochem Biophys Res Commun,1976,69:319-324.
    14. Davidse LC, Flach W. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans [J]. J Cell Biol,1977,72:174-193.
    15. Davidse LC. Biochemical aspects of benzimidazole fungicides action and resistance [M]. In: Lyr H eds.Modern selective fungicides-properties, applications, mechanisms of action. London: Longman Group UK,1987,245-257.
    16. Bollen G J, Scholten G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen [J]. Neth J Plant Pathol,1971,77:83-90.
    17. Wicks T. Tolerance of the apple scab fungus to benzimidazole fungicides [J]. Plant Dis Rep, 1974,58:886-889.
    18. Locke T. Current incidence in the UK of fungicide resistance in pathogens of cereals [C]. Proceedings 1986 British Crop Protection Conference,1986:781-786.
    19. Kendall S, Hollomon D W, Ishii H, et al. Characterisation of benzimidazole resistant strains of Rhynchosporium secalis [J]. Pestic Sci,1993,40:175-181.
    20.周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    21. Kendall S, Hollomon D W, Ishii H, et al. Characterisation of benzimidazole resistant strains of Rhynchosporium secalis [J]. Pestic Sci,1993,40:175-181.
    22. Nakata A, Snao S, Hashimoto S, et al. Negatively correlated cross -resistant to N-phylformamidoximes in benzimidazole-resistant phytopathogenic fungi [J]. Ann Phytopa Soc Japan,1987,53:659-662.
    23. Josepovits G, Gasztonyi M, Mikite G. Negative cross-resistance to N-phenylanilines in benzimidazole-resistant strains of Botrytis cinerea, Venturia nashicola and Venturia inaequalis [J]. Pestic Sci,1992,35:237-242.
    24. Jung M K, Oakley B R. Identification of an amino acid substitution in the benA, β-tubulin, gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity [J]. Cell Motil Cytos,1990,17:87-94.
    25. Jung MK. Amino aid alterations in the benA gene of Aspergillus nidulans that confer benomyl resistance [J]. Cell Motil Cytos,1992,22:170-174.
    26. Ma Z, Yoshimura M, Michailides TJ. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Appl Environ Microbiol,2003,69:7145-7152.
    27. Koenraadt H, Somerville SC, Jones AL. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi [J]. Phytopathology,1992,82:1348-1354.
    28. Luck JE, Gillings MR. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction [J]. Mycol Res,1995,99:1483-1488.
    29. Shinpei B, Fumiyasu F, Akihiko I. et al. Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays [J]. Phytopathology,2008,98:397-404.
    30. Koenraadt H, Jones AL. Resistance to benomyl conferred by mutions in codon 198 or 200 in the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198[J]. Photopathology,1993,83:850-854.
    31. Fujimura M, Kanakura T, Yamaguchi I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa [J]. JPestic Sci,1992,17:237-242.
    32. Fujimura M. Model action of deethofencarb to benzimidazole-resistance strains in Neuropora crassa [J]. J Pestic Sci,1994,19:333-334.
    33. Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005,24:853-863.
    34. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that corelate with benomyl resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483.
    35. Butters JA, Hollomon DW. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms [J]. Pestic Sci,1999,55:501-503.
    36. Kawchuk LM, Hutcgison LJ, Vergaegh CA, et al. Isolation of the β-tubulin gene and characterization of thiabendazole resistancein Gibberella pulicaris [J]. Can J Plant Pathol, 2002,24:233-238.
    37.陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    38.李红霞,陆悦健,王建新,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较[J].南京农业大学学报,2002,25(3):41-44.
    39.李红霞,陆悦健,王建新,等.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43:424-429.
    40.陈长军.禾谷镰孢菌(Fusarium graminearum)多菌灵抗性抗性基因的克隆[D].南京:南京农业大学,2004.
    41.陈长军,王建新,周明国.禾谷镰孢菌γ-微管蛋白基因克隆及其与多菌灵抗药性关系分 析[J].植物病理学报2005,35:161-167.
    42.陈长军,李俊,祁之秋,等.禾谷镰孢菌αα-微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].维生物学报,2005,45:288-291.
    43.陈长军,周立邦,毕朝位,等.禾谷镰孢菌对多菌灵的抗药性与αα2-微管蛋白序列无关析[J].微生物学报,2008,48(10):1356-1361.
    44.陈长军,李俊,于俊杰,等.禾谷镰孢菌微管相关蛋白基因(map)克隆及其与多菌灵抗药性关系分析[J].南京农业大学学报,2009,32(1):160-163.
    45. Changjun C, Junjie Y, Chaowei B, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    46.王建新,周明国,陆悦健,等.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    47. Kato T, Suzuki D, Takahashi J, et al. Negatively correlated cross-resistance between benzimidazole fungicides and methyl N-(3,4-dichlorophenyl)-carbamate [J]. J Pestic Sci,1984, 9:485-495.
    48. Rosenberger DA, Meyer FW. Negatively correlated cross-resistance to diphenylamine in benomyl-resistant [J]. Penic exp Phytopa,1985,75:74-79.
    49.祁之秋,王建新,陈长军,等.现代杀菌剂抗性研究进展[J].农药,2006,45(10):655-659.
    50. Faretra F, Pollastro KS, Ditonno AP. New natural variants of Botryotinia fuckeliana(Botrytis cinerea) couling benzimidazole-resistance to insensitivity toward the N-phenylcarbamate diethofencarb [J]. Phytopathol Mediterr,1989,28:98-104.
    51. Eald Y, Yunis H, Katan T. Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel [J]. PlantPathology,1992, 41:41-46.
    1. 叶钟音,周明国.江淮地区小麦赤霉病菌对多菌灵耐药性的测定[J].植物保护学报,198512(3):188-189.
    2. 顾宝根,刘经芬.小麦赤霉病对多菌灵耐药的研究[J].南京农业大学学报,1990,13(1):57-61.
    3. 王建新,周明国,陆悦健,等.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    4. 周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    5. 周明国.我国几种植物病害的抗药性监测情况[J].农药群学与管理,1999,20(3):39-40.
    6. 王建新,周明国.小麦赤霉病对多菌灵抗药性监测技术研究[J].植物保护学报,2002,29(1):73-77.
    7. Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005,24:853-863.
    8. 张雁南,樊坪升,陈长军,等.禾谷镰刀菌对多菌灵抗性的监测及其演变规律[J].农药,2009,48(8):603-613.
    9. 王建新,周明国.禾谷镰刀菌对多菌灵抗药性的快速监测技术研究[C].周明国主编.中植物病害化学防治研究(第一卷),北京:中国农业科技出版社,1998:325-328.
    10.周明国,王建新.禾谷镰孢菌对多菌灵的敏感基线及抗药菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    11.王建新.禾谷镰孢霉对多菌灵抗药性研究[C].南京农业大学植物保护学院硕士学位论文,2000,46-49.
    12.顾宝根,刘经芬.小麦赤霉病菌对多菌灵抗药性的研究.Ⅱ.抗性检测和诱导[J].南京农业大学学报,1990,13(1):57-61.
    13.周明国,王建新,陆悦健,等.小麦赤霉病菌对多菌灵抗药性变异研究[J].南京农业大学学报1994,17:106-112.
    14.袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478.
    15.袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的室内抗药性突变体的诱导及其抗药性遗传分析[J].遗传学报,2004,31(4):363-368.
    16. Fujimura M, Kanakura T, Yamaguchi I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa [J]. J Pestic Sci,1992,17:237-242.
    17. Chaowei Bi, Jianbo Qiu, Mingguo Zhou, et al. Effects of carbendazim on conidial germination and mitosis in germlings of Fusarium graminearum and Botrytis cinerea [J]. Inter J Pest Manag.2009,55:157-163.
    18. Jung MK, Oakley BR. Identification of an amino acid substitution in the benA, β-tubulin, gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity [J]. Cell Motil Cytos,1990,17:87-94.
    19. Jung MK. Amino aid alterations in the benA gene of Aspergillus nidulans that confer benomyl resistance [J]. Cell Motil Cytos,1992,22:170-174.
    20. Ma Z, Yoshimura M, Michailides TJ. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Appl Environ Microbiol,2003.69:7145-7152.
    21. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that corelate with benomyl resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483.
    22. Butters JA, Hollomon DW. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms [J]. Pestic Sci,1999,55:501-503.
    23.陆悦健.小麦赤霉病菌对多菌灵抗药性分子机制初探[C].周明国主编.中国植物病害化学防治研究(第一卷).北京:中国农业科技出版社,1998:150-153.
    24.陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    25.李红霞,陆悦健,王建新,等.禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43:424-429.
    26.李红霞,陆悦健,王建新,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较[J].南京农业大学学报,2002,25(3):41-44.
    27.陈长军.禾谷镰孢菌(Fusarium gram inearum)多菌灵抗性抗性基因的克隆[D].南京:南京农业大学,2004.
    28.陈长军,王建新,周明国.禾谷镰孢菌γ-微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].植物病理学报,2005,35:161-167.
    29.陈长军,李俊,祁之秋,等.禾谷镰孢菌α-微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].微生物学报2005,45:288-291.
    30.陈长军,李俊,于俊杰,等.禾谷镰孢菌微管相关蛋白基因(map)克隆及其与多菌灵抗药性关系分析[J].南京农业大学学报,2009,32(1):160-163.
    31.陈长军,周立邦,毕朝位,等.禾谷镰孢菌对多菌灵的抗药性与α2-微管蛋白序列无关析[J].微生物学报,2008,48(10):1356-1361.
    32. Changjun C, Junjie Y, Chaowei B, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    1. 全国小麦赤霉病研究协作组.我国小麦赤霉病穗部镰刀菌种类、分布和致病性[J].上海师范大学学报1984,3:69-82.
    2. 陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001,2-39.
    3. Gale LR, Chen LF, Hernick CA, et al. Population analysis of Fusarium graminearum from wheat fields in eastern China [J]. Phytopathology,2002,92:1315-1322.
    4. Parry DW, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-a review [J]. Plant Pathol,1995,44:207-238.
    5. McMullen M, Jones R, Gallenberg D. Scab of wheat and barley:are-emerging disease of devastating impact [J]. Plant Dis,1997,81:1340-1348.
    6. Goswami RS, Kistler HC. Heading for disaster:Fusarium graminearum on cereal crops [J]. Mol Plant Pathol,2004,5:515-525.
    7. 姚金保,陆维忠.中国小麦抗赤霉病育种研究进展[J].江苏农业学报2000,16(4):242-248.
    8. 王裕中,Mllier,中国小麦赤霉病菌优势种一禾谷镰刀菌产毒素能力的研究[J].真菌学报1994,13(3):229-234.
    9. 林一波,杨竹平,吴兆苏.不同地理来源抗赤霉病小麦品种的抗性遗传分析[J].上海农业学报,1992,8(1):31-36.
    10. Bai G, Shaner G. Scab of wheat:prospects for control [J]. Plant Dis,1994,78:760-766.
    11. Chen LF, Bai GH, Desjardins AE. Recent advances in wheat head scab research in China, [online] National Agricultural Library. Available (http://www.nal.usda.gov/pgdic/WHS/whsindex.html).
    12. McMullen MP, Jones R, Gallenberg D. Scab of wheat and barley:a re-emerging disease of devastating impact [J]. Plant Dis,1997,81:1340-1348.
    13. Chen Y, Wang JX, Zhou MG, et al. Vegetative compatibility of Fusarium graminearum isolates and genetic study on their carbendazim-resistance recombination in China [J]. Phytopathology, 2007,12:1584-1589.
    14. Chen Y, Li H, Chen C, et al. Sensitivity of Fusarium graminearum to fungicide JS399-19:in vitro determination of baseline sensitivity and the risk of developing fungicide resistance [J]. Phytoparasitica,2008,36:326-337.
    15. Pirgozliev SR, Edwards SG., Hare MC, et al. Strategies for the control of Fusarium head blight in cereals [J]. Eur J Plant Pathol,2003,109:731-742.
    16. Proctor RH, Hohn TM, McCormick SP. Reduced virulence of Gibberella zeae caused by disruption of trichothecene toxin biosynthesis gene [J]. Mol Plant-Microbe Interact,1995,8:593-601.
    17. Casale WL, Hart LP. Inhibition of 3H-leucine incorporation by trichothecene mycotoxins in maize and wheat tissue [J]. Phytopathology,1988,78:1673-1677.
    18. Forsyth OM, Yoshizawa T, Morooka N. Emetic and refusal activity of deoxynivalenol to swine [J]. Appl Environ Microbial,1997,34:547-552.
    19. Gilbert J, Abramson D, McCallum S, et al. Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins [J]. Mycopathologia,2001,153:209-215.
    20. Snijders CHA. Fusarium head blight and mycotoxin contamination of wheat, a review [J]. Neth J Plant Pathol,1990,96:187-198.
    21.周明国,叶钟音.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性[J].植物保护,1987,13(2):31-33.
    22.沈阳化工研究院农药第一室杀菌剂组.内吸性杀菌剂多菌灵(苯并咪唑44#)研究(第一报)[J].农药,1973,01:11-25.
    23. Schroeder WT, Provvidenti R. Resistance to benomyl in powdery mildew of cucurbits [J]. Plant Dis Rep,1969,53:271-275.
    24. Bollen G J, Scholten G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen [J]. Neth J Plant Pathol,1971,77:83-90.
    25. Wicks T. Tolerance of the apple scab fungus to benzimidazole fungicides [J]. Plant Dis Rep,1974, 58:886-889.
    26.周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,7(3):33-41.
    27. Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact [J]. Ann Rev Phytoathol,1986,24:43-65.
    28. Chaowei Bi, Jianbo Qiu, Mingguo Zhou, et al. Effects of carbendazim on conidial germination and mitosis in germlings of Fusarium graminearum and Botrytis cinerea [J]. Inter J Pest Manag.2009,55:157-163.
    29. Davidse LC, Flach W. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans [J]. J Cell Biol,1977,72:174-193.
    30. Davidse LC. Biochemical aspects of benzimidazole fungicides action and resistance [M]. In: Lyr H eds. Modern selective fungicides-properties, applications, mechanisms of action. London:Longman Group UK,1987,245-257.
    31. Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005,24:853-863.
    32. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that corelate with benomyl resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483.
    33. Butters JA, Hollomon DW. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms [J]. Pestic Sci,1999,55:501-503.
    34. Luck JE, Gillings MR. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction [J]. My col Res,1995,99:1483-1488.
    35. Shinpei B, Fumiyasu F, Akihiko I. et al. Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays [J]. Phytopathology,2008,98:397-404.
    36.陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    37.李红霞,陆悦健,王建新,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较[J].南京农业大学学报,2002,25(3):41-44.
    38.李红霞,陆悦健,王建新,等.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43:424-429.
    39. Changjun C, Junjie Y, Chaowei B, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    40. Mullins ED, Chen X, Romaine P, et al. Agrobacterium-mediated transformation of Fusarium oxysporum:An efficient tool for insertional mutagenesis and gene transfer [J]. Phytopathology,2001,91:173-180.
    41. Khang CH, Park SY, Lee YH, Kang S, A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum [J]. Fungal Genet Biol,2005,42:483-492.
    42.于俊杰.禾谷镰孢菌(Fusarium graminearum)对多菌灵抗性机制的研究[D].南京:南京农业大学,2009.
    43. Maier FJ, Malz S, Losch A P, et al. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker [J]. FEMS Yeast Research,2005,5:653-662.
    44. Yu JH, Hamarib Z, Han KH, et al. Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi [J]. Fungal Genet Biol,2004,41:973-981.
    45. Doohan FM, Weston G, Rezanoor HN, et al. Development and use of a reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in plants [J]. Appl Environ Microbiol,1999,65:3850-3854.
    1. 全国小麦赤霉病研究协作组.我国小麦赤霉病穗部镰刀菌种类、分布和致病性[J].上海师范大学学报,1984,3:69-82.
    2. 陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001,2-39.
    3. Gale LR, Chen LF, Hernick CA, et al. Population analysis of Fusarium graminearum from wheat fields in eastern China [J]. Phytopathology,2002,92:1315-1322.
    4. 沈阳化工研究院农药第一室杀菌剂组.内吸性杀菌剂多菌灵(苯并咪唑44#)研究(第一报)[J].农药, 1973,01:11-25.
    5. Schroeder WT, Provvidenti R. Resistance to benomyl in powdery mildew of cucurbits [J]. Plant Dis Rep,1969,53:271-275.
    6. Bollen G J, Scholten G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen [J]. Neth J Plant Pathol,1971,77:83-90.
    7. Wicks T. Tolerance of the apple scab fungus to benzimidazole fungicides [J]. Plant Dis Rep,1974, 58:886-889.
    8. 周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    9. Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact [J]. Ann Rev Phytopath,1986,24:43-65.
    10. Fujimura M, Kanakura T, Yamaguchi I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa [J], J Pestic Sci,1992,17:237-242.
    11. Jung MK, Oakley BR. Identification of an amino acid substitution in the benA, β-tubulin, gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity [J]. Cell Motil Cytos,1990,17:87-94.
    12. Jung MK. Amino aid alterations in the benA gene of Aspergillus nidulans that confer benomyl resistance [J]. Cell Motil Cytos,1992,22:170-174.
    13. Ma Z, Yoshimura M, Michailides TJ. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Appl Environ Microbiol,2003.69:7145-7152.
    14. Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005,24:853-863.
    15. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that corelate with benomyl resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483.
    16. Butters JA, Hollomon DW. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms [J]. Pestic Sci,1999,55:501-503.
    17.陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    18.李红霞,陆悦健,王建新,等.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报2003,43:424-429.
    19.李红霞,陆悦健,王建新,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较[J].南京农业大学学报,2002,25(3):41-44.
    20. Changjun C, Junjie Y, Chaowei B, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    21. Mullins ED, Chen X, Romaine P, et al. Agrobacterium-mediated transformation of Fusarium oxysporum:An efficient tool for insertional mutagenesis and gene transfer [J]. Phytopathology,2001,91:173-180.
    22. Khang CH, Park SY, Lee YH, et al. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum [J]. Fungal Genet Biol,2005,42:483-492.
    23.于俊杰.禾谷镰孢菌(.Fusarium graminearum)对多菌灵抗性机制的研究[D].南京:南京农业大学,2009.
    24. Maier FJ, Malz S, Losch A P, et al. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker [J]. FEMS Yeast Research,2005,5:653-662.
    25. Yu JH, Hamarib Z, Han KH, et al. Reyes Dominguez Y and Scazzocchio C, Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi [J]. Fungal Genet Biol, 2004,41:973-981.
    26. Chaowei Bi, Jianbo Qiu, Mingguo Zhou, et al. Effects of carbendazim on conidial germination and mitosis in germlings of Fusarium graminearum and Botrytis cinerea [J]. Inter J Pest Manag,2009,55:157-163.
    1. 全国小麦赤霉病研究协作组.我国小麦赤霉病穗部镰刀菌种类、分布和致病性[J].上海师范大学学报,1984,3:69-82.
    2. 陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001,2-39.
    3. Gale LR, Chen LF, Hernick CA, et al. Population analysis of Fusarium graminearum from wheat fields in eastern China [J]. Phytopathology,2002,92:1315-1322.
    4. Parry DW, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-a review [J]. Plant Pathol,1995,44:207-238.
    5. McMullen M, Jones R, Gallenberg D. Scab of wheat and barley:are-emerging disease of devastating impact [J]. Plant Dis,1997,81:1340-1348.
    6. Goswami RS, Kistler HC. Heading for disaster:Fusarium graminearum on cereal crops [J]. Mol Plant Pathol,2004,5:515-525.
    7. Bai G, Shaner G. Scab of wheat:prospects for control [J]. Plant Dis,1994,78:760-766.
    8. Chen LF, Bai GH, Desjardins AE. Recent advances in wheat head scab research in China, [online] National Agricultural Library. Available (http://www.nal.usda.gov/pgdic/WHS/whsindex.html).
    9. Chen Y, Wang JX, Zhou MG, et al. Vegetative compatibility of Fusarium graminearum isolates and genetic study on their carbendazim-resistance recombination in China [J]. Phytopathology, 2007,12:1584-1589.
    10. Chen Y, Li H, Chen C, et al. Sensitivity of Fusarium graminearum to fungicide JS399-19:in vitro determination of baseline sensitivity and the risk of developing fungicide resistance [J]. Phytoparasitica,2008,36:326-337.
    11. Pirgozliev SR, Edwards SG, Hare MC, et al. Strategies for the control of Fusarium head blight in cereals [J]. Eur J Plant Pathol,2003,109:731-742.
    12. Proctor RH, Hohn TM, McCormick SP. Reduced virulence of Gibberella zeae caused by disruption of trichothecene toxin biosynthesis gene [J]. Mol Plant-Microbe Interact,1995,8:593-601.
    13. Casale WL, Hart LP. Inhibition of 3H-leucine incorporation by trichothecene mycotoxins in maize and wheat tissue [J]. Phytopathology,1988,78:1673-1677.
    14. Forsyth OM, Yoshizawa T, Morooka N. Emetic and refusal activity of deoxynivalenol to swine [J]. Appl Environ Microbial,1997,34:547-552.
    15. Gilbert J, Abramson D, McCallum S, et al. Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins [J]. Mycopathologia,2001,153:209-215.
    16. Snijders CHA. Fusarium head blight and mycotoxin contamination of wheat, a review [J]. Neth J Plant Pathol,1990,96:187-198.
    17.周明国,叶钟音.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性[J].植物保护,1987,13(2):31-33.
    18.沈阳化工研究院农药第一室杀菌剂组.内吸性杀菌剂多菌灵(苯并咪唑44#)研究(第一报)[J].农药,1973,01:11-25.
    19. Schroeder WT, Provvidenti R. Resistance to benomyl in powdery mildew of cucurbits [J]. Plant Dis Rep,1969,53:271-275.
    20. Bollen GJ, Scholten G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen [J]. Net J Plant Pathol,1971,77:83-90.
    21. Wicks T. Tolerance of the apple scab fungus to benzimidazole fungicides [J]. Plant Dis Rep,1974, 58:886-889.
    22.周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    23. Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact [J]. Ann Rev Phytopathol,1986,24:43-65.
    24. Fujimura M, Kanakura T, Yamaguchi I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa [J], J Pestic Sci,1992,17:237-242.
    25. Jung MK, Oakley BR. Identification of an amino acid substitution in the benA, β-tubulin, gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity [J]. Cell Motil Cytos,1990,17:87-94.
    26. Jung MK. Amino aid alterations in the benA gene of Aspergillus nidulans that confer benomyl resistance [J]. Cell Motil Cytos,1992,22:170-174.
    27. Ma Z, Yoshimura M, Michailides TJ. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Appl Environ Microbiol,2003.69:7145-7152.
    28. Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005,24:853-863.
    29. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that corelate with benomyl resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483.
    30. Butters JA, Hollomon DW. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms [J]. Pestic Sci,1999,55:501-503.
    31.陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    32.李红霞,陆悦健,王建新,等.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43:424-429.
    33.李红霞,陆悦健,王建新,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较[J].南京农业大学学报,2002,25(3):41-44.
    34. Changjun C, Junjie Y, Chaowei B, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    35. Mullins ED, Chen X, Romaine P, et al. Agrobacterium-mediated transformation of Fusarium oxysporum:An efficient tool for insertional mutagenesis and gene transfer [J]. Phytopathology,2001,91:173-180.
    36. Khang CH, Park SY, Lee YH, et al. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum [J]. Fungal Genet Biol,2005,42:483-492.
    37.于俊杰.禾谷镰孢菌(Fusarium graminearum)对多菌灵抗性机制的研究[D].南京:南京农业大学,2009.
    38. Maier FJ, Malz S, Losch A P, et al. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker [J]. FEMS Yeast Research,2005,5:653-662.
    39. Yu JH, Hamarib Z, Han KH, et al. Reyes Dominguez Y and Scazzocchio C, Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi [J]. Fungal Genet Biol, 2004,41:973-981.
    40. Doohan FM, Weston G, Rezanoor HN, et al. Development and use of a reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in plants [J]. Appl Environ Microbiol,1999,65:3850-3854.
    41. Chaowei Bi, Jianbo Qiu, Mingguo Zhou, et al. Effects of carbendazim on conidial germination and mitosis in germlings of Fusarium graminearum and Botrytis cinerea [J]. Inter J Pest Manag,2009,55:157-163.
    42. Davidse LC, Flach W. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans [J]. J Cell Biol,1977,72:174-193.
    43. Davidse LC. Biochemical aspects of benzimidazole fungicides action and resistance [M]. In: Lyr H eds. Modern selective fungicides-properties, applications, mechanisms of action. London:Longman Group UK,1987,245-257.
    44. Luck JE, Gillings MR. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction [J]. Myco Res,1995,99:1483-1488.
    45. Shinpei B, Fumiyasu F, Akihiko I, et al. Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays [J]. Phytopathology,2008,98:397-404.
    1. 全国小麦赤霉病研究协作组.我国小麦赤霉病穗部镰刀菌种类、分布和致病性[J].上海师范大学学报,1984,3:69-82.
    2. 陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001,2-39.
    3. Gale LR, Chen LF, Hernick CA, et al. Population analysis of Fusarium graminearum from wheat fields in eastern China [J]. Phytopathology,2002,92:1315-1322.
    4. 沈阳化工研究院农药第一室杀菌剂组.内吸性杀菌剂多菌灵(苯并咪唑44#)研究(第一报)[J].农药1973,01:11-25.
    5. Schroeder WT, Provvidenti R. Resistance to benomyl in powdery mildew of cucurbits [J]. Plant Dis Rep,1969,53:271-275.
    6. Bollen G J, Scholten G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen [J]. Neth J Plant Pathol,1971,77:83-90
    7. Wicks T. Tolerance of the apple scab fungus to benzimidazole fungicides [J]. Plant Dis Rep,1974, 58:886-889.
    8. 周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    9. Davidse LC. Benzimidazole fungicides:mechanism of action and biological impact [J]. Ann Rev Phytopathol,1986,24:43-65.
    10. Fujimura M, Kanakura T, Yamaguchi I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa [J], JPestic Sci,1992,17:237-242.
    11. Jung MK, Oakley BR. Identification of an amino acid substitution in the benA, β-tubulin, gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity [J]. Cell Motil Cytos,1990,17:87-94.
    12. Jung MK. Amino aid alterations in the benA gene of Aspergillus nidulans that confer benomyl resistance [J]. Cell Motil Cytos,1992,22:170-174.
    13. Ma Z, Yoshimura M, Michailides TJ. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Appl Environ Microbiol,2003.69:7145-7152.
    14. Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005,24:853-863.
    15. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that corelate with benomyl resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483.
    16. Butters JA, Hollomon DW. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms [J]. Pestic Sci,1999,55:501-503.
    17.陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    18.李红霞,陆悦健,王建新,等.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43:424-429.
    19.李红霞,陆悦健,王建新,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较[J].南京农业大学学报,2002,25(3):41-44.
    20. Changjun C, Junjie Y, Chaowei B, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    21. Mullins ED, Chen X, Romaine P, et al. Agrobacterium-mediated transformation of Fusarium oxysporum:An efficient tool for insertional mutagenesis and gene transfer [J]. Phytopathology,2001,91:173-180.
    22. Khang CH, Park SY, Lee YH, et al. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum [J]. Fungal Genet Biol,2005,42:483-492.
    23.于俊杰.禾谷镰孢菌(Fusarium graminearum)对多菌灵抗性机制的研究[D].南京:南京农业大学,2009.
    24. Maier FJ, Malz S, Losch AP, et al. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker [J]. FEMS Yeast Research,2005,5:653-662.
    25. Yu JH, Hamarib Z, Han KH, et al. Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi [J]. Fungal Genet Biol,2004,41:973-981.
    1. 徐雍皋.玉蜀黍赤霉致病力分化的研究[J].南京农业大学学报,1986,10(3):41-45.
    2. Sambrook J, Russell DW. Molecular Cloning:A Laboratory Manual, third edition [M]. New York Cold Spring Harbor Laboratory Press:2001.
    3. Nogales E, Wolf SG, Downing K H. Structure of the αβ tubulin dimmer by electron crystallography [J]. Nature,1998,391(6663):199-203.
    4. Davidse LC, Flach W. Differential binding of methyl-benzimidazole-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans [J]. J Cell Biol,1977,72:174-193.
    5. Monnat J, Perez RO, Turian G. Molecular cloning and expression studies of two divergent a-tubulin genes in Neurospora crassa [J]. FEMS Microbiology Letters,1997,150:33-41.
    6. Luduena RF. Multiple forms of tubulin:different gene forms and covalent modifications [J]. Int Rev Cytol,1998,178:207-275.
    7. May GS. The highly divergent β-tubulins of Aspergillus nidulans are functionally interchangeable [J]. J Cell Biol,1989,109:2267-2274.
    8. Weatherbee JA, May GS, Gambino J, et al. Involvement of a particular species of beta-tubulin (beta 3) in conidial development in Aspergillus nidulans [J]. J Cell Biol,1985,101:706-711.
    9. 全国小麦赤霉病研究协作组.我国小麦赤霉病穗部镰刀菌种类、分布和致病性[J].上海师范大学学报,1984,3:69-82.
    10.陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001,2-39.
    11. Gale LR, Chen LF, Hernick CA, et al. Population analysis of Fusarium graminearum from wheat fields in eastern China [J]. Phytopathology,2002,92:1315-1322.
    12.陈长军.禾谷镰孢菌(Fusarium graminearum)多菌灵抗性抗性基因的克隆[D].南京:南京农业大学,2004.
    13.于俊杰.禾谷镰孢菌(Fusarium graminearum)对多菌灵抗性机制的研究[D].南京:南京农业大学,2009.
    14.陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    15.李红霞,陆悦健,王建新,等.禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43:424-429.
    16.李红霞,陆悦健,王建新,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的 比较[J].南京农业大学学报,2002,25(3):41-44.
    17. Changjun C, Junjie Y, Chaowei B, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    18. Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005,24:853-863.
    19. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that corelate with benomyl resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483.
    20. Luck JE, Gillings MR. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction [J]. Mycol Res,1995,99:1483-1488.
    21. Shinpei B, Fumiyasu F, Akihiko I, et al. Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays [J]. Phytopathology,2008,98:397-404.
    22. Mullins ED, Chen X, Romaine P, et al. Agrobacterium-mediated transformation of Fusarium oxysporum:An efficient tool for insertional mutagenesis and gene transfer [J]. Phytopathology,2001,91:173-180.
    23. Khang CH, Park SY, Lee YH, Kang S. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum [J]. Fungal Genet Biol,2005,42:483-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700