用户名: 密码: 验证码:
DON诱导的小麦TaPDR1基因的克隆和特征分析以及二穗短柄草多倍体中PDR1基因的系统进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱氧雪腐镰刀菌烯醇(deoxynivalenol,简称DON)在小麦赤霉病(Fusarium head blight,FHB)发病过程中起重要作用,是一种毒性因子。禾谷镰刀菌的侵染能力依赖于其产生DON的能力,DON单独处理即可引起较典型的赤霉病症状,抗病品种能显著地降低病穗组织中DON的含量,因而具有不同FHB抗性的品种其籽粒中DON含量也有很大的差别。现在已经发现了一些和抗毒素或降解毒素积累相关的基因,但由于小麦抗DON是个复杂的数量性状,而且小麦抗赤霉病和抗DON的机理还不清楚,所以从小麦中鉴定一些新的对DON反应密切相关的基因显得尤为重要。
     本研究以高抗赤霉病小麦品种望水白为材料,利用SMART技术构建了DON诱导的小麦穗组织λ噬菌体cDNA文库,旨在揭示DON诱导后小麦基因的表达特点并克隆相关的基因。未扩增文库的滴度大约为3×106,扩增后文库的滴度大约为2×109,平均插入片段1053bp,文库以19个混合池保存。改进了基于PCR的噬菌体cDNA文库筛选方法,用液体分装的方法,替代了的文库筛选的关键步骤—涂板分区,省去了噬菌体文库铺平板、浸染、培养、划块洗脱的操作过程,使筛库的工作量减少,速度和效率提高。
     利用Affymetrix小麦基因组芯片对高抗赤霉病小麦品种望水白经DON诱导后穗组织基因表达特点进行了分析,结果发现,一个编码PDR型转运蛋白的EST受DON诱导后上调表达45倍。根据该EST设计引物筛选小麦基因组TAC文库,得到一个包含该基因的TAC单克隆。利用染色体walking对该单克隆测序,用Softberry软件进行基因预测,根据预测基因的5’和3’非翻译区设计引物,从DON诱导的小麦望水白穗组织cDNA中克隆出该转运蛋白基因。该基因基因组全长7377bp,包含19个外显子,CDS长度为4308bp,编码1435aa、分子量161kDa的蛋白质,蛋白序列比对表明该蛋白属于PDR蛋白家族,将该基因命名为TaPDR1(Triticum asetivum Pleiotropic Drug Resistance)。利用一套中国春缺体-四体系将TaPDR1基因定位在小麦5A染色体上。半定量RT-PCR表明TaPDR1在望水白穗中受DON和禾谷镰刀菌诱导表达,表明其参与了植物抗病防御反应。该基因在望水白感病突变体中低水平表达进一步证明TaPDR1与赤霉病抗性有关。TaPDR1的表达不受与生物胁迫相关的激素如JA和SA、非生物胁迫因子如热、冷、伤害和NaCl的诱导。但TaPDR1受到Al3+和游离Ca2+的诱导表达,推测[ca2+]i介导了TaPDR1的表达信号。进一步构建了双链RNA干扰载体,通过农杆菌介导转化小麦,初步研究了该基因的功能。
     二穗短柄草(短柄草)是一种禾本科新的模式植物,本研究开发了一个可以在小麦和短柄草中通用的PDR1基因特异引物TR2。从23份短柄草中克隆出39个PDR1同源基因片段,通过对这些基因序列的比对分析,发现PDR1基因在短柄草中高度保守,同源性在95%-99%。利用在PDR1基因中找到的SNP位点设计了两个CAPS标记,可以区分来自于短柄草不同染色体组的PDR1基因的两个拷贝。利用这两个CAPS标记可以将这些同源基因分成两种类型E型和H型,系统分析表明每一种类型形成一个组,支持率很高,推测六倍体短柄草中的PDR1基因的2个拷贝分别来自于2个染色体组,试验中的二倍体可能就是六倍体基因组中的一个染色体组的供体。PDR1基因的两个拷贝在多倍体中的进化速度不同,显示这两种类型在年代上的差异,或两种类型的突变率或受到的选择压不同,系统分析同样表明,六倍体短柄草中的E型PDR1基因有一个共同的染色体组起源,而六倍体短柄草中的H型PDR1基因是多起源的。以上结果反映了短柄草复杂的多倍体进化历史。利用这两类PDR1基因片段的合并序列,重建了六倍体短柄草的系统进化树。
DON (deoxynivalenol), a virulence factor, plays an important role in the infection of Fusarium graminearum in wheat. The infection ability of F. graminearum depends on its capacity of producing DON. Wheat tissue showed typical FHB symptom when treated with DON only. The production of DON by F. graminearum is significantly decreased in the wheat varieties with scab resistance. At present, several genes related to DON resistance have been isolated from various plants. In order to better understand the molecular mechanisms of FHB or DON resistance, it is critical to identify new genes that are expressed closely related to DON treatment, because the inheritance of FHB resistance and DON resistance is a complicated quantitative trait and the mechanisms under FHB resistance have not yet been clarified.
     In order to reveal the gene expression patterns of wheat induced by DON and clone genes related to DON resistance, a cDNA library of spikes of scab-resistant wheat Wangshuibai induced by DON was constructed with SMART cDNA library construction kit. The titer of the primary library was 3×106pfu/mL, and the titer of the amplified library reached at 2×109 pfu/mL. The inserted fragments size of the positive clones was 1053 bp at average. The library was stored in 19 mixing pools. In the present reseach, we improved the PCR-based procedure of screening phage cDNA library. The key step in screening library, 'plate-division' was replaced by'partition in liquid', which avoids tedious plating, infection and washing procedures. This modification not only decreased the workload of library screening, but also improved the speed and efficiency of obtaining the positive clones.
     In this study, GeneChip analysis indicated that an EST encoding an ABC (ATP-Binding Cassette) transporter was up-regulated by 45 times in a wheat landrace Wangshuibai, which is resistant to DON accumulation. A pair of EST-derived primers was designed based on the EST sequence, and a clone was then isolated from a wheat genomic DNA TAC library. The TAC clone was sequenced using chromosome walking and gene prediction was conducted using Softberry. A cDNA clone of this gene was subsequently isolated from Wangshuibai induced by DON using gene-specific primers designed according to the untranslated sequence of the gene. The genome size of the gene is 7377 bp, consisting of 19 exons with coding sequences of 4308 bp. It encodes a protein with 1435 amino acid residues and the calculated molecular weight is about 161 kDa. BLAST analysis indicated that the gene may belong to PDR (pleiotropic drug resistance) sub-family, and hence designated as TaPDRl (Triticum asetivum Pleiotropic Drug Resistance). TaPDR1 was located on chromosome 5A of wheat using nullisomic-tetrasomic lines of Chinese Spring. TaPDRl was up-regulated by both DON and F. graminearum. Expression patterns of TaPDR1 were different in wildtype Wangshuibai and the fast-neutron induced Wangshuibai mutant lacking FHB1, a major QTL of FHB resistance and DON resistance in chromosome arm 3BS. These results suggested that TaPDR1 might be a candidate gene responsible for DON accumulation resistance. The expression profile showed that TaPDR1 expression was neither induced by hormones typically involved in biotic stress, such as JA and SA, nor by abiotic stresses, such as heat, cold, wounding and NaCl. However, TaPDRl expression was regulated by Al3+ and [Ca2+], indicating that [Ca2+]i might mediate the signal of TaPDR1 expression. A double stranded RNA interference vector was constructed. Preliminary function of the gene was studied by Agrobacterium mediated transformation method into wheat.
     A pair of primers, TR2, was designed based on the sequence of TaPDR1 and used for amplification in 23 ecotypes of Brachypodium distachyon from different geographical regions. Detailed sequence analysis showed that the PDR1 genes were highly conserved in B. distachyon. The sequence similarities from different B. distachyon species were more than 95%. Two CAPS markers, which were designed based on SNP sites found in the PDR1 gene of B. distachyon, could differentiate the PDR1 homologous genes from different B. distachyon genome. Based on restriction site analysis, the PDR1s were classified as E type or H type. From 23 B. distachyon ecotypes,39 PDR1s were identified. All ecotypes had either 1 or 2 PDR1 copies. All but one diploid and tetraploid ecotype had only a single H type PDR1. All but one hexaploid ecotype had both an E type and an H type PDR1. Phylogenetic analysis revealed that each type formed a well-supported cluster. The two PDR1 types appeared to evolve differently. These different evolutionary patterns could indicate a difference in age between the two types or might indicate different mutation rates or selective pressures on the two types. The phylogenetic analysis also revealed that the hexaploid ecotypes shared a genomic origin for their E type PDR1,but there were multiple origins for hexaploid H type PDR1.Overall, the results suggest that tetraploid and hexaploid might be misnomers in B. distachyon and suggest a complex polyploidization history during B. distachyon evolution.
引文
1. 曹峻岭,张矢远,莫东旭.脱氧雪腐镰刀菌烯醇对培养软骨细胞影响的超微结构观察[J].中国地方病学杂志,1995,14(1):8-10
    2. 陈怀谷,王永文,王裕中.应用赤霉菌毒素-芽鞘生测法鉴定小麦品种的抗赤霉病性[J].江苏农业利学,1990,(6):23-25
    3. 陈怀谷,蔡志祥,陈飞,等.不同小麦品种抗赤霉病性类型和抗毒素积累能力分析[J].植物保护学报,2007,34:32-36
    4. 陈利锋,宋玉立,徐雍皋.小麦赤霉病穗中脱氧雪腐镰刀菌烯醇量的变化[J].植物病理学报,1996,26(1):25-28
    5. 程旭东,董玲丽,凌宏清.基于PCR技术筛选cDNA和genome文库方法的改进[J].高技术通讯,2004,11:32-37
    6. 方玉达,刘耀光,张群宇,等.小麦-簇毛麦6VS/6AL易位系可转化人工染色体(TAC)文库的构建[J].生物工程学报,2000,16(4):433-436
    7. 黄晓敏,刘宗镇,姚泉洪,等.不同抗赤性小麦品种叶肉原生质体对DON的敏感性[J].上海农业学报.1991,7(增刊):8-15
    8. 金宏滨,刘东辉,左开井,等.植物ABC转运蛋白与次生代谢产物的跨膜转运[J].中国农业科技导报,2007,9(3):32-37
    9.康振生,黄丽丽,Buchenauer H小麦穗组织中脱氧镰刀菌烯醇毒素的免疫细胞化学定位[J].植物病理学报,2004,34(5):419-424
    10.李亚浩.抗赤霉病小麦望水白DON诱导cDNA文库构建、EST测序与表达分析[D].南京:南京农业大学硕士论文,2008
    11.李又芳,余毓君.小麦品种温州红和尚对赤霉病抗性指标的单体分析[J].华中农业大学学报,1988,7(4):327-331
    12.梁欣欣,刘录祥,赵林姝,等.农杆菌介导法向小麦茎尖导入DREB1A基因的研究初报[J].麦类作物学报,2007,27(1):16-19
    13.梁训义,陈宣民,陈楚和.小麦品种对赤霉病的感病和抗病因素研究[J].植物病理学报,1981,11(2):7-12
    14.林凡云,陆琼娴,徐剑宏,等.抑制差减杂交分离赤霉病菌诱导的小麦特异表达基因[J].西北植物学报,2008,28(3):433-439
    15.刘思衡.中国小麦抗赤霉病育种[M].北京:中国农业出版社,2003:15-17
    16.刘宗镇,陈全庆,姚泉洪,等.脱氧雪腐镰刀菌烯醉对小麦愈伤组织诱导和分化的类生长激 素作用[J].上海农业学报,1991,7(增刊):1-7
    17.刘宗镇,汪志远,赵文俊.小麦品种资源抗赤霉病性研究[J].上海农业学报,1985,1(2):75-84
    18.陆鸣,王裕中,陈怀谷,等.禾谷镰刀菌产毒素培养条件及粗毒素提取法[J].江苏农业学报,1992,8(1):30-40
    19.陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001:5
    20.罗树中,杨天畅.小麦抗赤霉病育种工作中的一些问题探讨[J].浙江农业科学,1982,(6):291-294
    21.孟昭赫.食品卫生学检验方法注解,微生物学部分[M].北京:人民出版社,1990:6
    22.裴自友.普通小麦籽粒低DON含量鉴定、配合力分析及其控制DON含量的QTL定位[D].南京:南京农业大学博士论文,2007
    23.彭双清,杨进生.镰刀菌毒素DON对心肌细胞膜电位的影响及硒的保护效应[J].中华预防医学杂志,2003,37(6):423-425
    24.彭双清,杨进生.镰刀菌毒素脱氧雪腐镰刀菌烯醇对心肌细胞Ca2+通道的阻滞作用[J].中国预防医学杂志,2004,5(4):241-243
    25.瞿文全,金治平,赵德修,等.快速简便筛选cDNA文库的SSS法[J].遗传,2003,25(5):583-586
    26.史建荣,王裕中,何晨阳,等.镰刀菌单端抱霉烯毒素及其在植物病程中的作用[J].植物病理学报,1997,24(4):298-302
    27.史志诚.动物毒物学[M].北京:中国农业出版社,2001:6
    28.唐凤兰,李忠杰,张景春,等.小麦赤霉菌粗毒素的制备和活性测定及在抗病性鉴定中的作用[J].黑龙江农业科学,1993,(3):6-8
    29.王广金,孙光祖,李学湛,等.小麦赤霉病毒素对小麦抗病突变体及其亲本细胞超微结构的影响[J].植物病理学报,1997,27(3):215-219
    30.王华丙,张振义,包锐,等.ABC转运蛋白的结构与转运机制[J].生命的化学,2007,27(3):208-210
    31.王雅平,吴兆苏,刘伊强.小麦抗赤霉病性的生化研究及其机制的探讨[J].作物学报,1994,20(3):327-333
    32.王裕中,Miller J D.小麦品种对禾谷镰刀苗毒素的抗性研究[J].植物病理学报,1989,19(2):105-108
    33.王裕中,陈怀谷,杨新宁,等.禾谷镰刀菌粗毒素的生物活性及其在小麦品种抗赤霉病鉴定中的应用[J].中国农业科学,1989,22(4):54-57
    34.王仲明,胡为涛.小麦品种抗赤霉病遗传动态及其应用[J].温州农业科技,1996,(1):9-12
    35.谢茂昌,王明祖.小麦赤霉病发病程度与DON含量的关系[J].植物病理学报,1999,29(1):41-44
    36.徐雍皋,徐敬友,方中达.禾谷镰刀菌(Fusarium graminearum Schw.)菌丝融合和细胞核数目的观察[J].南京农业大学学报,1990,13(1):125-126
    37.薛伟龙,陆仕华,魏春妹,等.DON在小麦赤霉病菌早期侵染中的作用[J].上海农业学报,1993,7(增刊):30-34
    38.姚金保,陆维忠.中国小麦抗赤霉病育种研究进展[J].江苏农业学报,2000,16(4):242-248
    39.姚金保,王书文,姚国才,等.小麦品种赤霉病抗性的遗传研究[J].作物学报,2004,30(6):577-581
    40.叶华智,万永芳,伍光庆.胆碱与小麦品种抗赤霉病关系的研究[J].西南农业大学学报,2001,23(6):544-546
    41.叶兴国,Sato S,徐惠君,等.小麦农杆菌介导转基因植株的稳定获得和检测[J].中国农业科学,2001,34(5):469-474
    42.俞刚,陈利锋,谢卫平,等.禾谷镰抱的产毒与致病性[J].南京农业大学学报,2001,24(4):19-23
    43.俞刚,陈利锋,姚红燕,等.脱氧雪腐镰刀菌烯醇在小麦赤霉病病程中的作用[J].植物病理学报,2003,33(1):40-43
    44.张匀华.我国小麦赤霉病抗性机制研究进展[J].黑龙江农业科学,2000,(1):41-43
    45.张凯鸣,马鸿翔,陆维忠,等.小麦赤霉病与DON积累的抗性及其相关SSR位点差异[J].作物学报,2006,32:1788-1795
    46.亓增军,裴自友,韩航如,等.利用DONtest-HPLC检测小麦镰刀菌毒素DON含量的差异[J].南京农业大学学报,2005,28(3):6-10
    47. Alexander N J, McCormick S P, Hohn T M. TRI12, a trithothecene efflux pump from Fusarium sporotrichiodes:gene isolation and expression in yeast [J]. Molecular and General Genetics,1999, 261:977-984
    48. Anderson J A, Liu S X, Pumphrey M O. Perspective on FHB resistance breeding and research on DNA marker assisted selection. JARCS Working Report(ISSN 1341-710X),2004, NO.37:30-33
    49. Bai G H, Shaner G. Scab of wheat:Prospects for control [J]. Plant disease,1994,78:760-766
    50. Bai G H, Kolb F L, Shaner G, et al. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat [J]. Phytopathology,1999,89: 343-348
    51. Bai G H, Shaner G, Ohm H. Inheritance of resistance to Fusarim graminearum in wheat [J]. Theoretical and Applied Genetics,2000,100:1-8
    52. Bai G H, Desjardins A E, Plattner R D. Deoxynivalenol-nonproducing Fusarium graminearum Causes initial Infection, but does not Cause Disease Spread in wheat Spikes [J]. Mycopathologia, 2001a,153:91-98
    53. Bai G H, Plattner R, Desjardins A E, et al. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat [J]. Plant Breeding,2001b,120:1-6
    54. Balzi E, Wang M, Leterme S, et al. A novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1 [J]. The Journal of Biological Chemistry,1994,269: 2206-2214
    55. Bartholomew D M, Dyk D E V, Lau S C. Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates [J]. Plant Physiol,2002,130:1562-1572
    56. Bennett M D, Leitch I J. Nuclear DNA amounts in Angiosperms:progress, problems and prospects [J]. Annals of botany,2005,95:45-90
    57. Berthiller F, Dall'Asta C, Schuhmacher R, et al. Masked mycotoxins:Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry [J]. Journal of Agricultural and Food Chemistry,2005, 53:3421-3425
    58. Binder E M. Managing the risk of mycotoxins in modern feed production [J]. Animal Feed Science and Technology,2007,133:149-166
    59. Bird D A, Franceschi V R, Facchini P J. A tale of three cell types:alkaloid biosynthesis is localized to sieve elements in opium poppy [J]. Plant Cell,2003,15:2626-2635
    60. Boddu J, Cho S, Kruger W M, et al. Transcriptome Analysis of the Barley-Fusarium gramearum Interaction [J]. Molecular plant-microbe interactions,2006,19(4):407-417
    61. Boddu J, Cho S, Muehlbauer G J. Transcriptome Analysis of Trichothecene-induced Gene Expression in Barley [J]. Molecular plant-microbe interactions,2007,20(11):1364-1375
    62. Boutigny A L, Richard-Forget F, Barreau C. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes [J]. European journal of plant pathology,2008,121: 411-423
    63. Buerstmayr H, Lemmens M, Berlakovich S, et al. Combing ability of resistance to head blight caused by Fusarim culmorum (W. G. Smith) in the F1 of a seven parent diallel of winter wheat (Triticum aestivum L.) [J]. Euphytica,1999,110:199-206
    64. Buerstmayr H, Lemmens M, Hartl L, et al. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I.Resistance to fungal spread (Type II resistance) [J]. Theoretical and Applied Genetics,2002,104:84-91
    65. Buerstmayr H, Ban T, Anderson J A. QTL mapping and marker assisted selection for Fusarium head blight resistance in wheat-a review [J]. Plant Breeding,2009,128:1-26
    66. Campbell E J, Schenk P M, Kazan K, et al. Pathogen-responsive expression of a putative ATP-Binding Cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis [J]. Plant Physiology,2003,133:1272-1284.
    67. Chen J, Griffey C A, Maroof M A S, et al. Validation of two major quantitative trait loci for Fusarium head blight resistance in Chinese wheat line W14 [J]. Plant breeding,2006,125:99-101
    68. Chinnusamy V, Schumaker K, Zhu J. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants [J].Journal of experimental botany,2004,55:225-236
    69. Cleveland T E, Dowd P F, Desjardins A E, et al. United States Department of Agriculture-Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxi genic fungi in US crops [J]. Pest management science,2003,59:629-642
    70. Cole S P C, Bhardwaj G, Gerlach J H, et al. Overexpression of a transporter gene in a multidrug-resistant human lung-cancer cell line [J]. Science,1992,258:1650-1654
    71. Coleman J O D, Blake-Kalff M M A, Davies T G E. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation [J]. Trends in Plant Science,1997,2: 144-151
    72. Crouzet J, Trombik O, Fraysse A S, et al. Organization and function of the plant pleiotropic drug resistance ABC transporter family [J]. FEBS Letters,2006,580:1123-1130
    73. Dassa E and Bouige P. The ABC of ABCs:a phylogenetic and functional classification of ABC systems in living organisms [J]. Research in microbiology,2001,152:211-229
    74. Davidson A L and Maloney PC. ABC transporters:how small machines do a big job [J]. Trends in Microbiology,2007,15:448-455
    75. Dawson R J P and Locher K P. Structure of a bacterial multidrug ABC transporter [J]. Nature,2006, 443:180-185
    76. Dawson R J P and Locher K P. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP [J]. FEBS Letters,2007,581:935-938
    77. Desjardins A E, Proctor R H, Bai G H. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests [J]. Molecular plant-microbe interactions,1996,9(9): 775-781
    78. Desjardins A E, Hohn T M. Mycotoxins in plant pathogenesis [J]. Molecular plant-microbe interactions,1997,10:147-152
    79. Doohan F M, Parry D W, Jenkinson P. The use of species-specific PCR-based assays to analyses Fusarium ear blight of wheat [J].Plant Pathology,1998,47:197-205
    80. Draper J, Mur L A J, Jenkins G, et al. Brachypodium distachyon. A new model system for functional genomics in grasses [J]. Plant Physiology,2001,127:1539-1555
    81. Ducos E, Fraysse A S and Boutry M. NtPDR3, an irondeficiency inducible ABC transporter in Nicotiana tabacum [J]. FEBS Letters,2005,579:6791-6795
    82. Dudler R and Hertig C. Structure of an Mdr-like gene from Arabidopsis thaliana:evolutionary implications [J]. The Journal of Biological Chemistry,1992,267:5882-5888
    83. Ehlin G, Cockburn A, Snowdon P, et al. The significance of the Fusarium toxin deoxynivalenol (DON) for human and animal health [J]. Cereal research communications,1997,25:443-447
    84. Eichhorn H, Klinghammer M, Becht P, et al. Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid [J]. Journal of Experimental Botany,2006,57:2193-2201
    85. El-Banna A A, Pitt J I and Leistner L. Production of mycotoxins by Penicillium species [J]. Systematic and applied microbiology,1987,10:42-46
    86. Eriksen G S, Pettersson H, Lundh T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites [J]. Food and Chemical Toxicology,2004,42: 619-624
    87. Fleibner A, Sopalla C and Weltring K M. An ATP binding cassette multidrug-resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers [J]. Molecular plant-microbe interactions,2002,15:102-108
    88. Fuchs E, Binder E M, Heidler D, et al. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797 [J]. Food Additives and Contaminants,2002,19:379-386
    89. Fujita M and Yoshizawa T. Metabolism of deoxynivalenol, a trichothecene mycotoxin, in sweet potato root tissues [J]. Journal of the Food Hygienic Society of Japan,1990,31:474-478
    90. Gaedeke N, Klein M, Kolukisaoglu U, et al. The Arabidopsis thaliana ABC transporter AtMRPS controls root development and stomata movement [J]. EMBO J,2001,20,1875-1887
    91. Garvey G S, McCormick S P, and Rayment I. Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum; kinetic insights to combating Fusarium head blight [J]. The Journal of Biological Chemistry,2008,283:1660-1669
    92. Garvin D F. Brachypodium:a new monocot model plant system emerges [J]. Journal of the science of food and agriculture,2007,87:1177-1179
    93. Gaut B S. Molecular clocks and nucleotide substitution rates in higher plants [J]. Journal of evolutionary biology,1998,30:93-120
    94. Gaut B S. Evolutionary dynamics of grass genomes [J]. The New phytologist,2002,154:15-28
    95. Ge S, Sang T, Lu BR, et al. Phylogeny of rice genomes with emphasis on origins of allotetraploid species [J]. Proceedings of the National Academy of Sciences of the United States of America,1999, 96:4400-14405
    96. Geisler M, Blakeslee J.J. and Bouchard R. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1[J]. Plant Journal,2005,44:179-194
    97. Gong M, Luit A H, Knight M R, et al. Heal "shock" induced changes in intracellular level in tobacco seedling in reaction to thermotolerance [J]. Plant Physiology,1998,116:429-437
    98. Goodman C D, Casati P and Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays [J]. Plant Cell,2004,16:1812-1826
    99. Harris L J, Gleddie S C. A modified Rp13 gene from rice confers tolerance of Fusarium graminearum mycotoxin deoxynivalenol to transgenic tobacco [J]. Physiological and molecular plant pathology,2001,58:173-181
    100. Hashimoto T and Yamada Y. New genes in alkaloid metabolism and transport [J]. Current opinion in biotechnology,2003,14:163-168
    101. Hasterok R, Draper J, Jenkins G. Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv [J]. Chromosome research,2004,12:397-403
    102. Hasterok R, Marasek A, Donnison I S, et al. Alignment of the Genomes of Brachypodium distachyon and Temperate Cereals and Grasses Using Bacterial Artificial Chromosome Landing With Fluorescence in Situ Hybridization [J]. Genetics,2006,173:349-362
    103. Henikoff S, Matzke M A. Exploring and explaining of epigenetic effects [J]. Trends Genetic,1997, 13:293-295
    104. Higgins C F, Haag P D, Nikaido K, et al. Complete nucleotide sequence and identification of membrane components of the histidine transport operon of styphimurium [J]. Nature,1982,298: 723-727
    105. Higgins C F. ABC transporters:from microorganisms to man [J]. Annual review of cell biology, 1992,8:67-113
    106. Hillis D M. Approaches for accessing phylogenetic accuracy [J]. Systematic biology,1995,44: 3-16
    107. Hollenstein K, Dawson R J and Locher K P. Structure and mechanism of ABC transporter proteins [J]. Current Opinion in Structural Biology,2007a,17:412-418
    108. Hollenstein K, Fre D C and Locher K P. Structure of an ABC transporter in complex with its binding protein [J]. Nature,2007b,446:213-216
    109. Ito H and Gray W M.A Gain-of-Function Mutation in the Arabidopsis Pleiotropic Drug Resistance Transporter PDR9 Confers Resistance to Auxinic Herbicides [J]. Plant Physiology,2006,142: 63-74
    110. Jansen C, Wettstein D V, Schafer W, et al. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(46):16892-16897
    111.Jasinski M, Stukkens Y, Degand H,et al. A plant plasma membrane ATP binding cassette-transporter is involved in antifungal terpenoid secretion [J]. Plant Cell,2001,13: 1095-1107
    112. Jasinski M, Ducos E, Martinoia E, et al. The ATP-Binding cassette transporters:structure, function, and gene family comparison between rice and Arabidopsis [J]. Plant Physiology,2003,131: 1169-1177
    113. Jiang G L Dong Y, Shi J R, et al. QTL analysis of resistance to Fusarium head blight in the novel Wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss [J]. Theoretical and Applied Genetics,2007,115:1043-1052
    114. Jones P and Vogt T. Glycosyltransferases in secondary plant metabolism:tranquilizers and stimulant controllers [J]. Planta,2001,213:164-174
    115. Kang Z, Buchenauer H. Immunocytochemical localization of fusarium toxins in infected wheat spikes by Fusarium culmorum [J]. Physiological and molecular plant pathology,1999,55:275-288
    116. Kang Z, Buchenauer H. Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum [J], Physiological and molecular plant pathology,2000,57:255-268
    117. Kang Z, Buchenauer H. Studies on the infection process of Fusarium culmorum in wheat spikes: degradation of host cell wall components and localization of trichothecene toxins in infected tissue [J]. European journal of plant pathology,2002,108:653-660
    118. Kang Z, Buchenauer H. Immunocytochemical localization of cell wall-bound thionins and hydroxyproline-rich glycoproteinsin Fusarium culmorum-Infected Wheat Spikes [J]. Journal of phytopathology,2003,151:120-129
    119. Kellogg E A. Evolutionary History of the Grasses [J]. Plant Physiology,2001,125:198-205
    120. Kenton P, Mur L A J and Draper J. A requirement for calcium and protein phosphatase in the jasmonate-induced increase in tobacco leaf acid phosphatase specific activity [J]. Journal of experimental botany,1999,50(337):1331-1341
    121. Kimura M, Kaneko I, Komiyama M, et al. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins-Cloning and characterization of Tri101 [J]. Journal of Biological Chemistry,1998,273:1654-1661
    122. Kimura M, Takahashi-Ando N, Nishiuchi T, et al. Molecular biology and biotechnology for reduction of Fusarium mycotoxin contamination [J]. Pesticide Biochemistry and Physiology,2006, 86:117-123
    123. Knight M R, Anthory KC, Steven M S, et al. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium [J]. Nature,1991,352:524-526
    124. Knight H, Trewaras A J, Knight M R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation [J]. Plant Cell,1996,8:489-503
    125. Knight H, Trewaras A J, Knight M B. Calcium signaling in Arabidopsis thliana responding to drought and salinity [J]. Plant Journal,1997,12 (5):1067-1078
    126. Kobae Y, Sekino T, Yoshioka H, et al. Loss of AtPDR8, a Plasma Membrane ABC Transporter of Arabidopsis thaliana, Causes Hypersensitive Cell Death Upon Pathogen Infection [J]. Plant Cell Physiology,2006,47(3):309-318
    127. Kolaczkowski M, Van Der Rest M, Cybularz-Kolaczkowska A, et al. Anticancer drugs, ionophoric peptides and steroids as substrates of the yeast multidrug transporter Pdr5p [J]. The Journal of Biological Chemistry,1996,271:31543-31548
    128. Krattinger S G, Lagudah E S, Spielmeyer W, et al. A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat [J]. Science Express,2009 Feb 19
    129. Kreuz K, Tommasini R and Martinoia E. Old enzymes for a new job:herbicide detoxification in plants [J]. Plant Physiology,1996,111:349-353
    130. Kuang H, Woo S S, Meyers BC, et al. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce [J]. Plant Cell,2004,16: 2870-2894
    131. Kushnir S, Babiychuk E, Storozhenko S, et al. A mutation of the mitochondrial ABC transporter Stal leads to dwarfism and chlorosis in the Arabidopsis mutant starik [J]. Plant Cell,2001,13: 89-100
    132. Lee M, Lee K, Lee J, et al. AtPDR12 contributes to lead resistance in Arabidopsis [J]. Plant Physiology,2005,138:827-836
    133. Lemmens M, Scholz U, Berthiller F, et al. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat [J]. Molecular Plant-Microbe Interactions,2005,18:1318-1324
    134. Leonhardt N, Marin E, Vavasseur A, et al. Evidence for the existence of a sulfonylurea-receptor-like protein in plants:modulation of stomatal movements and guard cell potassium channels by sulfonylureas and potassium channel openers [J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94:14156-14161
    135. Leonhardt N, Vavasseur A and Forestier C. ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells [J]. Plant Cell,1999,11:1141-1152
    136. Li Z S, Szczypka M, Lu Y P, et al. The yeast cadmium factor protein (YCFI) is a vacuolar glutathione S-conjugate pump [J]. The Journal of Biological Chemistry,1996,271:6509-6517
    137. Lin F, Kong Z X, Zhu H L, et al. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 X Wangshuibai population.I. Type Ⅱ resistance [J]. Theoretical and Applied Genetics,2004,109:1504-1511
    138. Liu S X, Anderson J A. Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice [J]. Genome,2003,46(5):817-823
    139. Liu S X, Zhang X L, Pumphtry M O, et al, Complex microcolinearity among wheat, rice and barley revealed by fine mapping of the genomic region harbouring a major QTL for resistance to Fusarium head blight in wheat [J]. Funct Integr Genomics,2006 (6):83-89
    140. Liu S X, Pumphery M O, Gill B S, et al. Toward positional cloning of FHB1, a major QTL for Fusarium Head Blight resistance in wheat,3rd Int. FHB Symposium[J]. Cereal Research Communications,2008,36, (Suppl. B):195-201
    141. Liu Y G, Liu H M, Chen L T, et al. Development of new transformation-artificial chromosome vectors and rice genomic libraries for efficient gene cloning [J]. Gene,2002,282:247-255
    142. Liu Y, Walker F, Hoeglinger B, et al. Solvolysis procedures for the determination of bound residues of the mycotoxin deoxynivalenol in Fusarium species infected grain of two winter wheat cultivars and preinfected with Barley yellow dwarf virus [J]. Journal of Agricultural and Food Chemistry, 2005,53(17):6864-6869
    143. Locher K P, Lee A T and Rees D C. The E.coli BtuCD structure:a framework for ABC transporter architecture and mechanism [J]. Science,2002,296:1091-1098
    144. Locher K P. Structure and mechanism of ABC transporters [J]. Current Opinion in Structural Biology,2004,14:426-431
    145. Lu Y P, Li Z S and Rea P A. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene [J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94:8243-8248
    146. Lu Y P, Li Z S, Drozdowicz Y M, et al. AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport lutathione S-conjugates and chlorophyll catabolites:functional comparisons with Atrnrpl [J]. Plant Cell,1998,10,267-282
    147. Lucyshyn D, Busch B L, Abolmaali S, et al. Cloning and characterization of the ribosomal protein L3 (RPL3) gene family from Triticum aestivum [J]. Molecular and General Genetics,2007,277: 507-517
    148. Ma H X, Zhang K M, Gao L, et al. Quantitative trait loci for resistance to Fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions [J]. Plant Pathology 2006,55:739-745
    149. Manoharan M, Dahleen L S, Hohn T M, et al. Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) arid effects on deoxynivalenol [J]. Plant Science,2006,171: 699-706
    150. Mardi M, Buerstmayr H, Ghareyazie B, et al. Combining ability analysis of resistance to head blight caused by Fusarium graminearum in spring wheat. Euphytica,2004,139:45-50
    151. Marrs K A, Alfenito M R and Lloyd A M. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2 [J]. Nature,1995,375:397-400
    152. Martinoia E, Grill E, Tommasini R, et al. ATP dependent glutathione S-conjugate export pump in the vacuolar membrane of plants [J]. Nature,1993,364:247-249
    153. Martinoia E, Klein M, Geisler M, et al. Multifunctionality of plant ABC transporters:more than just detoxifiers [J]. Planta,2002,214:345-355
    154. Massin D P, Thouvenot D. In vitro toxicity of trichothecenes on rat haematopoieticprogenitors [J]. Food additives & contaminants,1995,12(1):41-49
    155. McCormick S P, Alexander N J, Trapp S E, et al. Disruption of TRI101, the Gene Encoding Trichothecene 3-O-Acetyltransferase, from Fusarium sporotrichioid.es [J] Applied and environmental microbiology,1999,65(12):5252-5256
    156. McMullen M P, Jones R, Gallenberg D. Scab of wheat and barley:A re-emerging disease of devastating impact [J]. Plant Disease,1997,81:1340-1348
    157. Mesterhazy A. Types and components of resistance to Fusarium head blight [J]. Planting Breeding, 1995,114:377-386
    158. Mikami O, Yamamoto S, Yamanaka N, et al. Porcine hepatocyte apoptosis and reduction of albumin secretion induced by deoxynivalenol [J].Toxicology,2004,204(2-3):241-249
    159. Miller J D, Young J C, Trenholm H L. Fusarium toxins in field corn. I. Time course of fungal growth and production of deoxynivalenol and other mycotoxins [J], Canadian journal of botany, 1983,61:3080-3087
    160. Miller J D, Young J C, Sampson D R. Deoxynivalenol and Fusarium head blight resistance in spring cereals [J]. Phytopathology,1985,113(4):359-367
    161. Miller J D and Arnison P G. Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana [J]. Canadian journal of plant pathology,1986,8: 147-150
    162. Mitterbauer R and Adam G. Saccharomyces cerevisae and Arabidopsis thaliana:useful model systems for the identification of molecular mechanisms involved in resistance of plants to toxins [J]. European journal of plant pathology,2002,108:699-703
    163. Miyamoto M M, Fitch M W. Testing species phylogenies and phlogenetic methods with congruence [J]. Systematic biology,1995,44:64-76
    164. Moller S G, Kunkel T and Chua N H. A plastidic ABC protein involved in intercompartmental communication of light signaling [J]. Genes & development,2001,15:90-103
    165. Moons A. OsPDR9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots [J]. FEBS Letters,2003,553:370-376
    166. Ohsato S, Ochiai-Fukuda T, Nishiuchi T, et al. Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol [J]. Plant Cell Reports,2007,26:531-538
    167. Okubara P A, Blechl A E, McCormick S P, et al. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene [J]. Theoretical and Applied Genetics,2002,106:74-83
    168. Olmstead R G, Sweere J A. Combining data in phylogenetic systematics:an empirical approach using three molecular data sets in the Solanaceae [J]. Systematic biology,1994,43:467-481
    169. Parry D W, Jenkinson P, Mcleod L. Fusarium ear blight (scab) in small grain cereals a review [J]. Plant Pathology,1995,44:207-238
    170. Paterson A H, Bowers J E, Peterson D G, et al. Structure and evolution of cereal genomes [J]. Current opinion in genetics & development,2003,13:644-650
    171. Pearce R B, Strange R N, Smith H. Glycinebetaine and choline in wheat:Distribution in relation to infection by Fusarium graminearum [J]. Phytochemistry,1976,15:953-954
    172. Pestka J J, Yan D, King L E. Flow cytometric analysis of the effects of in vitroexposure to vomitoxin (deoxynivalenol) on apoptosis in marine T, B and IgA cells [J]. Food and chemical toxicology,1994,32(12):1125-1136
    173. Pinkett H W, Lee A T, Lum P, et al. An Inward-Facing Conformation of a Putative Metal-Chelate-Type ABC Transporter [J]. Scince,2007,315:373-377
    174. Piper P, Mahe Y, Thompson S, et al. The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast [J]. The EMBO journal,1998,17:4257-4265
    175. Poppenberger B, Berthiller F, Lucyshyn D, et al. Detoxification of the Fusarium Mycotoxin Deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana[J].The Journal of Biological Chemistry,2003,278:47905-47914.
    176. Poppenberger B, Berhiller F, Lucyshyn D, et al. Glucosyltransferases from Arabidopsis thaliana inactivating the Fusarium mycotoxin deoxynivalenol and zearalenone. Page251 In:Proceedings of the 2nd International Symposium on Fusarium Head Blight.Wyndham Orlando Resort Orlando, FL, USA 11-15 December,2004
    177. Pritsch C, Muehlbauer G J, Buschnell W R, et al. Fungal development and induction of defence response genes during early infection of wheat spikes by Fusarium graminearum. Molecular plant-microbe interactions,2000,13:159-169
    178. Pritsch C, Vance C P, Bushnell W R, et al. Systemic expression of defense response genes in wheat spikes as a response to Fusarium graminearum infection [J]. Physiological and Molecular Plant Pathology,2001,58(1):1-12
    179. Proctor R H, Hohn T M, McCormick S P, et al. TR16 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sportrichioides [J]. Applied and environmental microbiology,1995,61:1923-1930
    180. Rizzo A F, Atroshi F, Hirvi T, et al. The hemolytic activity of eoxynivalenol and T2 Toxins [J].1992, 1(2):106-110
    181.Rocha V, Ansari K, Doohan F M. Effects of trichothecene mycotoxins on eukaryotic cells. A review [J]. Food Additives and Contamants,2005,22(4):369-378
    182. Rogers B, Decottignies A, Kolaczkowski M, et al. The pleiotropic drug ABC transporters from Saccharomyces cerevisiae [J]. Molecular Biotechnology,2001,3:207-214
    183. Rose U S and TumLinson J H. Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds [J]. Planta,2004,218:824-832
    184. Rosenberg M F, Velarde G, Ford RC, et al. Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle [J]. The EMBO journal,2001,20:5615-5625
    185. Salse J, Bolot S, Throude M, et al. Identification and Characterization of Shared Duplications between Rice and Wheat Provide New Insight into Grass Genome Evolution [J]. Plant Cell,2008, 20:11-24
    186. Sanchez-Fernandez R, Davies T G S, Coleman J O, et al. The Arabidopsis thaliana ABC protein superfamily:a complete inventory [J]. The Journal of Biological Chemistry,2001,276: 30231-30244
    187. Sang T. Utility of Low-Copy Nuclear Gene Sequences in Plant Phylogenetics [J]. Critical reviews in biochemistry and molecular biology,2002,37:121-147
    188. Santelia D, Vincenzetti V and Azzarello E. MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development [J]. FEBS Letters,2005,579,5399-5406
    189. Sasabe M, Toyoda K, Shiraishi T, et al. cDNA cloning and characterization of tobacco ABC transporter:NtPDRI is a novel elicitor-responsive gene [J]. FEBS Letters,2002,518:164-168
    190. Sasaki T, Ezaki B, Matsumoto H. A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat [J]. Plant Cell Physiology,2002, 43(2):177-185
    191. Schatzmayr G, Zehner F, Taubel M, et al. Microbiologicals for deactivating mycotoxins [J]. Molecular Nutrition and Food Research,2006,50:543-551
    192. Schmitt L and Tampe R. Structure and mechanism of ABC transporters [J]. Current Opinion in Structural Biology,2002,12:754-760
    193. Schoonbeek H, Del Sorbo G and De Waard M A. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil [J]. Molecular Plant-Microbe Interactions,2001,14:562-571
    194. Schulz B and Kolukisaoglu H U. Genomics of plant ABC transporters:the alphabet of photosynthetic life forms or just holes in membranes? [J]. FEBS Letters,2006,580:1010-1016
    195. Scott P M, Nelson K, Kanhere S R, et al. Decline in deoxynivalenol (vomitoxin) concentrations in 1983 Ontario winter wheat before harvest [J]. Applied and Environmental Microbiology,1984.48: 884-886
    196. Shitan N, Bazin I, Dan K, et al. Involvement of CjMDR1, a plant MDR-type ABC protein, in alkaloid transport in Coptis japonica [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100:751-756
    197. Siranidou E, Kang Z, Buchenauer H. Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to Fusarium head blight [J]. Journal of phytopathology,2001,150:200-208
    198. Smart, C C and Fleming A J. Hormonal and environmental regulation of a plant PDR5-like ABC transporter [J]. The Journal of Biological Chemistry,1996,271:19351-19357
    199. Soltis D E, Soltis P S. Molecular Data and the Dynamic Nature of Polyploid [J]. Critical reviews in plant sciences,1993,12:243-273
    200. Soltis D E, Johnson LA, Looney C. Discordance between ITS and chloroplast topologies in the Boykinia group (Saxifragaceae) [J]. Systematic botany,1996,21:169-185
    201. Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat [J]. Genome,2003,46:555-564
    202. Stein M, Dittgen J, Sanchez-Rodnguez C, et al. Arabidopsis PEN3/PDR8, an ATP Binding Cassette Transporter, Contributes to Nonhost Resistance to Inappropriate Pathogens That Enter by Direct Penetration [J]. The Plant Cell,2006,18:731-746
    203. Storchova Z, Breneman A, Cande J, et al. Genome-wide genetic analysis of polyploidy in yeast,. Nature,2006,443:541-547
    204. Strange R N, Smith H. A fungal stimulant in anthers which predisposes wheat to attack by Fusarium graminearum [J]. Physiological Plant Pthology,1971, (1):141-150
    205. Strange R N, Smith H and Major J R. Choline, one of two fungal growth stimulants in anthers responsible for the susceptibility of wheat to Fusarium graminearum [J]. Nature,1972, (5359): 103-104
    206. Strange R N, Mjer J R, Smith H. The isolation and identification of choline and betaine as two major components in anthers and wheat germ that stimulate Fusarium graminearum in vitro [J]. Physiological Plant Pthology,1974, (4):277-290
    207. Stukkens Y, Bultreys A, Grec S, et al. NpPDRl, a pleiotropic drug resistancetype ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense [J]. Plant Physiology,2005,139:341-352
    208. Swanson S P, Helaszek C, Buck W B, et al. The role of intestinal microflora in the metabolism of trichothecene mycotoxins [J]. Food and Chemical Toxicology,1988,26:823-829
    209. Szczypka M S, Wemmie J A, Moye-Rowley W S, et al. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein [J]. The Journal of Biological Chemistry,1994,269:22853-22857
    210. Tabata, M, Tanaka, S. and Cho, H.J. (1993) Production of an antiallergic triterpene bryonolic acid, by plant cell cultures. Journal of natural products,56,165-174
    211. Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Molecular biology and evolution,2007,24:1596-1599
    212. Terasaka K, Shitan N and Sato F. Application of vanadate-induced nucleotide trapping to plant cells for detection of ABC proteins [J]. Plant Cell Physiology,2003,44:198-200
    213. Terasaka K, Blakeslee J J and Titapiwatanakun B. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots [J]. Plant Cell,2005,17:2922-2939
    214. Theodoulou F L. Plant ABC transporters [J]. Biochim Biophys Acta,2000,1465:79-103
    215. Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL-X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic acids research, 1997,25:4876-4882
    216. Tommasini R, Vogt E, Fromenteau M, et al. An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity [J]. Plant Journal,1998,13: 773-780
    217. Trombik T, Jasinski M, Crouzet J, et al. Identification of a cluster IV pleiotropic drug resistance transporter gene expressed in the style of Nicotiana plumbaginifolia [J]. Plant molecular biology, 2008,66:165-175
    218. Urban M, Daniels S, Mott E, et al. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusium graminearum and Fusarium culmorum [J]. The plant Journal,2002,32:961-973
    219. van den Brule S, Muller A, Fleming A J, et al. The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol [J]. Plant Journal,2002,30:649-662
    220. van den Brule S and Smart C C. The plant PDR family of ABC transporters [J]. Planta,2002,216; 95-106
    221. Vandepoele K, Simillion C, vandePeer Y. Evidence that rice and other cereals are ancient aneuploids [J]. Plant Cell,2003,15:2192-2202
    222. Vesely D, Vesela D. Embryotoxic effects of a combination of zearalenone and vomitoxin (4-dioxynivalenole) on the chick embryo [J]. Veterinary Medicine,1995,40(9):279-281
    223. Vigano C, Grimard V, Margolles A, et al. A new experimental approach to detect longrange conformational changes transmitted between the membrane and cytosolic domains of LmrA, a bacterial multidrug transporter [J]. FEBS Letters,2002,530:197-203
    224. Vogel J P, Garvin D F, Leong O M, et al. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon [J]. Plant Cell,2006,84:199-211
    225. Walter S, Brennan J M, Arunachalam C, et al. Components of the gene network associated with genotype-dependent response of wheat to the Fusarium mycotoxin deoxynivalenol [J]. Functional & integrative genomics,2008,8:421-427
    226. Wang Y, Yang L, Xu H, et al. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum [J]. Proteomics,2005,5:4496-4503
    227. Windels C E. Economic and social impacts of Fusarium head blight:Changing farms and rural communities in the Northern Great Plains [J].Phytopathology,2000,90:17-21
    228. Wolfe K H. Yesterday's polyploids and the mystery of diploidization [J]. Nature reviews Genetics, 2001,2:333-341
    229. Wong L S, Tekauz A, Leisle D, et al. Prevalence, distribution and importance of Fusarium head blight in wheat in Manitoba [J]. Canadian Journal of Plant Pathology,1992,14:233-238
    230. Yao Q, Liu Z and Zeng Y. Detoxification of deoxynivalenol by scab resistant wheat and the bioactivities of the product [J]. Acta Mycologica Sinica,1996,15,59-64
    231. Yazaki K, Shitan N, Takamatsu H, et al. A novel Coptis japonica multidrug-resistant protein preferentially expressed in the alkaloid-accumulating rhizome [J]. Journal of experimental botany, 2001,52:877-879
    232. Yazaki K T. Transporters of secondary metabolites [J]. Current opinion in plant biology,2005,8: 301-307
    233. Yazaki K. ABC transporters involved in the transport of plant secondary metabolites [J]. FEBS Letters,2006,580:1183-1191
    234. Yu J, Bai G H, Zhou W, et al. Mapping QTLs for Different Types of Resistance to Fusarium Head Blight in Wangshuibai. In:Proceedings of the 2005 National Fusarium Head Blight Forum p:96
    235. Zhao T J, Zhao S Y,-Chen H M, et al. Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling [J]. Plant cell reports, 2006,25:1199-1204
    236. Zhou W C, Kolb F L, Bai G H, et al. Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers [J]. Genome,2002,45:719-727
    237. Zhou W C, Kolb F L, Riechers D E. Idntification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum) [J]. Genome,2005,48: 770-780
    238. Zhu Y Y, Machleder E M, Chenchik A, et al. Reverse transcriptase template switching:a SMART approach for full-length cDNA library construction [J]. Biotechniques,2001,30(4):892-897

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700