用户名: 密码: 验证码:
负载型铂催化剂上甲醛的CO低温催化氧化反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,空气污染问题日益加剧,对环境和人类的健康造成了极大的危害。如何有效消除一氧化碳及一些可挥发性有机化合物(例如甲醛)已经成为人们广泛关注的研究课题。治理这些污染物的方法有很多种,如吸附技术、化学反应技术等。其中,低温催化氧化技术被认为是一种消除空气污染物的有效方法。特别是一些负载型贵金属催化剂对氧化消除HCHO及CO等空气污染物表现出了优良的催化性能,能够在较低的反应温度下实现有效净化空气的目的。目前,研究和开发适用于HCHO和CO低温催化氧化反应的高性能催化剂体系仍是亟待解决的主要问题。此外,如何能深入理解催化剂活性中心性质及催化作用机制等问题也是当前所面临的主要任务。
     本论文主要研究了不同方法制备的负载型Pt催化剂对HCHO和CO氧化反应的催化性能;系统的考察了制备方法(包括制备条件)、载体种类等因素对负载的Pt催化剂反应性能的影响;同时结合各种表征手段对催化剂的组成、结构及氧化还原性质进行了研究,并与催化的反应性能进行了关联,探讨了催化剂活性中心的性质和催化作用机制等问题。论文的主要研究内容和取得的结果概述如下:
     一.Pt/Fe_2O_3催化剂上HCHO氧化性能研究
     采用胶体沉积法、沉积沉淀法和浸渍法等方法制备了一系列Pt/Fe_2O_3催化剂,并考察了其对HCHO催化氧化反应的性能。结果表明:采用胶体沉积法制备的Pt/Fe_2O_3催化剂在室温条件下即可将HCHO完全氧化生成CO2和H2O。而浸渍法和沉积沉淀法制备的Pt/Fe_2O_3催化剂则需要在相对较高的反应温度下(70℃和90℃)才能将HCHO完全转化。胶体沉积法制备的Pt/Fe_2O_3催化剂除了具有良好的活性和稳定性,还具有很强的湿度增强效应。各种表征结果证实:不同方法制备的Pt/Fe_2O_3催化剂上,Pt物种粒子的大小、价态及与Fe_2O_3载体之间相互作用力强度都有明显不同,并且氧化铁载体的结构及性能也会产生一定的变化。对于胶体沉积法制备的Pt/Fe_2O_3催化剂,当Pt0和Ptn+按一定比例存在时,对提高催化剂的反应活性有利;而金属和载体之间存在的一定强度的相互作用(Pt-O-Fe)可以使Pt物种保持一个稳定的化学价态,同时还可以稳定Pt粒子使其不发生聚集,从而有利于HCHO氧化反应的进行。
     二.Pt/SiO2催化剂上HCHO氧化性能研究
     选用不同类型的SiO2载体制备了一系列Pt/SiO2-based催化剂,并用于甲醛催化氧化反应。结果表明:SiO2载体种类对负载型贵金属催化剂的结构和性能影响很大。以Fumed SiO2(f-SiO2)为载体制备的Pt催化剂在室温条件下即可将HCHO完全氧化为CO2和H2O。以SBA-15和p-SiO2为载体制备的Pt催化剂分别在50℃和110℃实现甲醛的完全氧化。各种表征结果表明:SiO2载体种类的不同会影响催化剂表面Pt粒子的大小和化学价态,进而影响催化剂的反应性能。其中,Pt/f-SiO2催化剂上存在相对较多的Pt0物种,并且催化剂能够在常温下实现氧化-还原循环,显示出良好的低温活化氧的能力,使得Pt/f-SiO2催化剂表现出很高的甲醛低温氧化活性。
     此外,通过沉淀法制备了一系列Pt/SiO2催化剂,并用于甲醛低温氧化。研究发现,该法制备的Pt/SiO2催化剂结构和性能受到焙烧温度等制备条件的影响。其中,500℃焙烧的1%Pt/SiO2催化剂在室温下即可实现HCHO的完全转化。值得注意的是,随着焙烧温度的提高,Pt/SiO2催化剂上Pt粒子并未发生明显的聚集。这说明该法制备的Pt/SiO2催化剂上Pt粒子具有很好的热稳定性。
     三.Pt/Fe_2O_3催化剂上CO氧化反应活性中心性质的探索
     采用胶体沉积法制备了三种Pt/Fe_2O_3催化剂(Pt/Fe_2O_3-a, Pt/Fe_2O_3-b和Pt/Fe_2O_3-c),并用于CO低温氧化反应。主要通过调变Pt胶体的制备参数,对Pt胶体粒子的大小进行了调控,并考察了Pt胶体粒径大小对催化剂性能的影响。结果表明:三种催化剂在CO氧化反应中表现出不同的催化活性。其中,Pt/Fe_2O_3-b催化剂在室温条件下即可实现CO的完全氧化,性能明显优于其它两种催化剂。XRD和TEM结果表明,Pt/Fe_2O_3-a、Pt/Fe_2O_3-b和Pt/Fe_2O_3-c三种催化剂上Pt粒子都均匀的分散在载体表面,但粒径大小略有不同,平均粒径大小分别为1.1、1.9和2.7nm。H2-TPR和XPS等表征结果表明:三种催化剂的氧化还原性能有一定差异,并且Pt粒子的价态也随粒径大小的变化而有所不同。CO滴定结果证实Pt/Fe_2O_3-b催化剂具有很强的低温活化氧能力。结合相关文献报道结果,可以推测Pt/Fe_2O_3-b催化剂在低温条件下强的活化氧的能力应该同金属-载体间适宜的相互作用有密切关系(即Pt-O-Support)。通过这种Pt-O-Support之间的相互作用,氧物种可以在低温条件下活化,并进行有效传递,这是Pt/Fe_2O_3-b催化剂能够在低温反应条件下表现出高活性的一个重要原因。此外,In-situ FTIR结果表明:三种Pt/Fe_2O_3催化剂上CO吸附能力不同,这可能与金属-载体间的相互作用(即Pt-O-Fe)有一定关系。这种相互作用能够在一定程度上改变Pt粒子的电荷性能,使CO在Pt粒子表面的吸附能力减弱,从而更有利于氧物种的竞争吸附,这应该也是Pt/Fe_2O_3-b催化剂表现出高活性的一个主要因素。
Formaldehyde (HCHO) and carbon monoxide (CO) are regarded as the majorindoor pollutants, which are harmful to human health and air condition. Great effortshave been made to eliminate HCHO and CO in the indoor air in order to satisfy thestringent environmental regulations. Low-temperature catalytic oxidation is anattractive technique for removing these air pollutants. Especially,supported noblemetal catalysts are promising for their excellent catalytic oxidation properties atrelatively low reaction temperature. Currently, it is still a interesting subject todevelop highly efficient catalysts for low-temperature oxidation of HCHO and CO,and also more work is required for the purpose to clarify the nature of active centersof supported noble catalysts, and to underatand reaction mechanism.
     In this work, various supported Pt catalysts were prepared by adopting differentpreparation strategies (e.g., changing preparation methods, supports, and pretreatmentconditions). And their catalytic activities were investigated for the complete oxidationof HCHO and CO. A number of characterization means were carried out in order tobuild a clear relationship between the physicochemical properties of the catalysts andtheir catalytic oxidative performance. The main research contents and results are asfollows:
     1. Catalytic performance of HCHO oxidation over Pt/Fe_2O_3catalysts
     The catalytic properties of iron oxide supported platinum catalysts (Pt/Fe_2O_3),prepared by a colloid deposition route, were investigated for the complete oxidation offormaldehyde. It is found that all the Pt/Fe_2O_3catalysts calcined at differenttemperatures (200-500℃) were active for the oxidation of formaldehyde. Amongthem, the catalysts calcined at lower temperatures (i.e.,200and300℃) exhibited relatively high catalytic activity and stability, which could completely oxidize HCHOeven at room temperature. Based on a variety of physical-chemical characterizationresults, it is proposed that the presence of suitable interaction between Pt particles andiron oxide supports, which is mainly in the form of Pt-O-Fe bonds, should play apositive role in determining the catalytic activity and stability of the supportedPt/Fe_2O_3catalysts.
     2. Catalytic performance of HCHO oxidation over Pt/SiO2-based catalysts
     A series of silica materials, including fumed SiO2, porous granular SiO2andmesoporous SBA-15, were adopted to prepare supported Pt catalysts by impregnationmethod. The catalytic properties of these silica supported Pt catalysts wereinvestigated for the complete oxidation of HCHO. Among them, fumed SiO2supported Pt catalyst (Pt/f-SiO2) shows very high catalytic activity, which couldcompletely oxidize HCHO even at ambient temperature. According to the results ofcatalyst characterization, it was proposed that the nature of silica supports could affectthe particle size and the chemical states of the platinum species and then furtherinfluence the redox property of Pt/SiO2-based catalysts. Compared with other silicasupported Pt catalysts, the Pt/f-SiO2catalyst possesses higher ratio of metallic Ptspecies, which might be a key factor in improving its capability to activate molecularoxygen, thus showing excellent catalytic activity in HCHO oxidation at lowtemperature.
     3. Research of nature active sites over Pt/Fe_2O_3catalysts in CO oxidation
     The formation of Pt particles in small molecule organic media has been studied bytransmission electron microscopy and UV-visible spectrophotometry. Throughadjusting the synthesis conditions, Pt particles with various particle sizes could beeffectively prepared in the nanoscale. Based on the results of physicochemicalcharacterizations, the formation mechanism of the Pt particles has been proposed.
     A series of Pt/Fe_2O_3catalysts was prepared by a colloid deposition route, toinvestigate the structure of catalyst active sites and the mechanism of CO oxidation. A systematical study of supported Pt catalysts by means of transmission electronmicroscopy, X-ray photoelectron spectroscopy, temperature programmed reduction,time-resolved CO titration and in-situ DRIFT spectra is reported. The structure ofplatinum-support interface (i.e., Pt-O-Fe) was relatively easily formed over thePt/Fe_2O_3-b catalyst, which displayed high activity for CO oxidation at lowtemperature. Furthermore, the interaction (i.e., Pt-O-Fe) may also play a crucial rolein activating the oxygen species and weakening the intensity of CO-Pt bond at lowtemperature,showing excellent catalytic activity in CO oxidation at low temperature.
引文
[1] GINESTET A, PUGNET D, ROWLEY J, et al. Development of a NewPhotocatalytic Oxidation Air Filter for Aircraft Cabin [J]. Indoor Air,2005,15:326-34.
    [2]陈群玉.室内甲醛污染的来源及控制[J].资源与人居环境,2008,3:59-61.
    [3] DAUBERT T E, DANNER R P. Physical and Thermodynamic Properties of PureChemicals: Data Compilation [J]. Hemisphere Publishing Corporation,1976,(2):167-9.
    [4] VAIZOGLU S A, AYCAN S, AKIN L, et al. Determination of FormaldehydeLevels in100Furniture Workshops in Ankara [J]. Tohoku J Exp Med,2005,207:157-63.
    [5] MARSH G M, YOUK A O. Reevaluation of Mortality Risks fromNasopharyngeal Cancer in the Formaldehyde Cohort Study of the National CancerInstitute [J]. Regul Toxicol Pharmacol,2005,42:275-83.
    [6] COLLINS J J, LINEKER G A. A Review and Meta-Analysis Of FormaldehydeExposure and Leukemia [J]. Regul Toxicol Pharmacol,2004,40:81-91.
    [7] HAUPTMANN M, LUBIN J H, STEWART P A, et al. Mortality from SolidCancers among Workers in Formaldehyde Industries [J]. Am J Epidemiol,2005,161:1090-1.
    [8] KONDO T, MORIKAWA Y, HAYASHI N, et al. Purification andCharacterization of Formate Oxidase from a Formaldehyde Resistant Fungus [J].FEMS Microbiol Lett,2002,214:137-42.
    [9] KONDO T, HASEGAWA K, UCHIDA R, et al. Absorption of AtmosphericFormaldehyde by Deciduous Broad Leaved, Evergreen Broad Leaved, and ConiferousTree Species [J]. Bull Chem Soc Jpn1996,69:3673-9.
    [10]SAWADA A, OYABU T, YOSHIDA T, et al. Effect of Soil-Kinds and RoomTemperature on Purification Capability of Foliage Plant for AtmosphericFormaldehyde [J]. Trans IEE Jpn,2002,122:300-5.
    [11] OYABU T, ONODERA T, SAWADA A, et al. Purification Capability of PottedPlants for Removing Atmospheric Formaldehyde [J]. ElectrochemistryCommunications,2003,71(6):463-7.
    [12]GIESE M, BAUERDORANTH U, LANGEBARTELS C, et al. Detoxification ofFormaldehyde by the Spider Plant (Chlorophytum-Comosum L) and by Soybean(Glycine-Max L) cell-Suspension Cultures [J]. Plant Physiol,1994,104:1301-9.
    [13]RONG H Q, RYU Z Y, ZHENG J T, et al. Effect of Air Oxidation ofRayon-Based Activated Carbon Fibers on the Adsorption Behavior for Formaldehyde[J]. Carbon,2002,40:2291-300.
    [14]RONG H Q, RYU Z Y, ZHENG J T, et al. Influence of Heat Treatment ofRayon-Based Activated Carbon Fibers on the Adsorption of Formaldehyde [J]. JColloid Interface Sci,2003,261:207-12.
    [15]BOONAMNUAYVITAYA V, SAEUNG S, TANTHAPANICHAKOON W.Preparation of Activated Carbons from Coffee Residue for the Adsorption ofFormaldehyde [J]. Sep Purif Technol,2005,42:159-68.
    [16]CHUANG C L, CHIANG P C, CHANG E E. Modeling VOCs Adsorption ontoActivated Carbon [J]. Chemosphere,2003,53:17-27.
    [17]ERIK R J. A Passive Filter Including a Self-regenerating Composition ofMaterials for Sorption of Gaseous Substances [J]. PCT Int Appl WO,1992,16:291-308.
    [18]TAO W H, YANG T C K, HANG C Y N. Effect of Moisture on the Adsorption ofVolatile Organic Compounds by Zeolite13X [J]. J Environ Eng2004,130:1210-6.
    [19]YEN S H, JENG F T, TSAI J H. Adsorption of Methyl-Ethyl Ketone Vapor ontoZeolites [J]. J Environ Sci Heal A,1997,32:2087-100.
    [20]GUPTA A, GAUR V, VERMA N. Breakthrough Analysis for Adsorption ofSulfur-Dioxide over Zeolites [J]. Chem Eng Process,2004,43:9-22.
    [21]梁夫艳,张彭义,余刚.气相中甲苯的臭氧光催化降解[J].环境科学,2002,23(6):17-23.
    [22]许太明,陈刚,牛炳晔.新型等离子体与光催化复合空气净化技术研究[J].环境与健康杂志2006,23(6):535-6..
    [23]白雁斌,刘兴荣.吊兰净化室内甲醛污染的研究[J].海峡预防医学杂志,2003,9(3):26-7.
    [24]DANIELS S L. On the ionization of air for removal noxious deeluvia (Airionization of indoor environments for control of volatile and particulate contaminantswith nonthermal plasmas generated by dielectric-barrier discharge)[J]. IEEETransactions on Plasmas Science,2002,30(4):1471-81.
    [25]CHANG M B, LEE C C. Destruetion of Formaldehyde with Dielectric BarrierDischarge Plasmas [J]. Environ Sci Technol,1995,29:181-6.
    [26]黄立维,谭天恩,施耀.高压脉冲电晕法治理有机废气实验研究[J].环境污染与防治1998,20:4-7.
    [27]梁文俊,李坚,金毓岑,等.低温等离子体法处理甲醛气体[J].环境污染治理技术与设备,2005,6:50-2.
    [28]张增凤,丁慧贤.低温等离子体催化脱除室内voc中的甲醛[J].黑龙江科技学院学报,2004,1:15-7.
    [29]LIU M F, YE X J, LIAN Z W, et al. Kinetic Analysis of Photocatalytic Oxidationof Ga-Phase Formaldehyde over Titanium Dioxide [J]. Chemosphere,2005,60:630-5.
    [30]LIU F M, YE X J, LIAN Z W, et al. Experimental Study of PhotoeatalyticOxidation of Formaldehyde and its By Products [J]. Res Chem Intermed2006,32:9-16.
    [31]SHIRAISHI F, TOYODA K, MIYAKAWA H. Decomposition of GaseousFormaldehyde in a Photocatalytic Reactor with a Parallel Array of Light Sources [J].Chem Eng J,2005,114:145-51.
    [32]FOSTER J J, MASEL R I. Formaldehyde oxidation on nickel oxide [J]. Industrial&Engineering Chemistry Product Research and Development,1986,25(4):563-8.
    [33]IMAMURA S, UEMATSU Y, UTANI K, et al. Combustion of Formaldehyde onRuthenium/Cerium(IV) Oxide Catalyst [J]. Ind Eng Chem Res,1991,30:18-21.
    [34]CHUANG K T, ZHOU B, TONG S M. Kinetics and Mechanism of CatalyticOxidation of Formaldehyde over Hydrophobic Catalysts [J]. Ind Eng Chem Res,1994,33:1680-6.
    [35]IMAMURA S, UCHIHORI D, UTANI K. Oxidative Decomposition ofFormaldehyde on Silver-Cerium Composite Oxide Catalyst [J]. Catal Lett,1994,24:377-84.
    [36]SEKINE Y. Oxidative decomposition of formaldehyde by metal oxides at roomtemperature [J]. Atmospheric Environment,2002,36(35):5543-7.
    [37]ALVAREZ-GALV N M C, PAWELEC B, DELAPEA OSHEA V A, et al.Formaldehyde/methanol combustion on alumina-supported manganese-palladiumoxide catalyst [J]. Applied Catalysis B: Environmental,2004,51(2):83-91.
    [38]ZHANG C B, HE H, TANAKA K I. Perfect Catalytic Oxidation of Formaldehydeover a Pt/TiO2Catalyst at Room Temperature [J]. Catal Commun,2005,6:211-4.
    [39]SALEH J M, HUSSIAN S M. Adsorption, desorption and surface decompositionof formaldehyde and acetaldehyde on metal films nickel, palla-dium and aluminum[J]. J Chem Soc Faraday Trans,1986,82:2221-34.
    [40]CHRISTOSKOVA S G, DANOVA N, GEORGIEVA M, et al. Investigation of anickel oxide system for heterogeneous oxidation of organic compounds [J]. AppliedCatalysis A: General,1995,128(2):219-29.
    [41]SEKINE Y, NISHIMURA A. Removal of formaldehyde from indoor air bypassive type air-cleaning materials [J]. Atmospheric Environment,2001,35(11):2001-7.
    [42]ALVAREZ-GALV N M C, DE LA PE A OSHEA V A, FIERRO J L G, et al.Alumina-supported manganese-and manganese-palladium oxide catalysts for VOCscombustion [J]. Catalysis Communications,2003,4(5):223-8.
    [43]唐幸福,黄秀敏,邵建军.氧化锰八面体分子筛纳米棒的合成及其催化甲醛低温氧化性能[J].催化学报,2006,2:97-9.
    [44]CHEN H, HE J, ZHANG C, et al. Self-Assembly of Novel MesoporousManganese Oxide Nanostructures and Their Application in Oxidative Decompositionof Formaldehyde [J]. The Journal of Physical Chemistry C,2007,111(49):18033-8.
    [45]CHEN T, DOU H, LI X, et al. Tunnel structure effect of manganese oxides incomplete oxidation of formaldehyde [J]. Microporous and Mesoporous Materials,2009,122(1-3):270-4.
    [46]TIAN H, HE J, ZHANG X, et al. Facile synthesis of porous manganese oxideK-OMS-2materials and their catalytic activity for formaldehyde oxidation [J].Microporous and Mesoporous Materials,2011,138(1-3):118-22.
    [47]TIAN H, HE J, LIU L, et al. Highly active manganese oxide catalysts forlow-temperature oxidation of formaldehyde [J]. Microporous and MesoporousMaterials,2012,151:397-402.
    [48]ZHANG C B, SHI X Y, GAO H W. The elimination of formaldehyde overCu-Al2O3at room temperature [J]. J Environ Sci,2005,17(3):429-32
    [49]YANG X Z, SHEN Y N, YUAN Z F, et al. Ferric ions doped5A molecular sievesfor the oxidation of HCHO with low concentration in the air at moderate temperatures[J]. Journal of Molecular Catalysis A: Chemical2005,237(1-2):224-31.
    [50]YANG B L, CHAN S F, CHANG W S. Surface enrichment in mixed oxides ofcopper, cobalt, and manganese and its effect on carbon monoxide oxidation [J]. JCatal,1991,130:52-61.
    [51]YANG B L, LEE S B, CHENG D S, et al. Calcination-induced surfaceenrichment of impurities and its effect on catalytic properties of iron oxide [J]. Journalof Catalysis,1993,141(1):161-70.
    [52]IMAMURA S, SAWADA H, UEMURA K, et al. Oxidation of carbon monoxidecatalyzed by manganese-silver composite oxides [J]. Journal of Catalysis,1988,109(1):198-205.
    [53]HUTCHINGS G J, MIRZAEI A A, JOYNER R W, et al. Effect of preparationconditions on the catalytic performance of copper manganese oxide catalysts for COoxidation [J]. Applied Catalysis, A: General,1998,166(1):143-52.
    [54]YOON C, CHAN D L, CHANG W D. Effects of Copper Phase on CO Oxidationover Supported Wacker-Type Catalysts [J]. J Catal,1998,113:267.
    [55]SONG H Y, PARK E D, LEE J S. Oxidative carbonylation of phenol to diphenylcarbonate over supported palladium catalysts [J]. Journal of Molecular Catalysis A:Chemical,2000,154(1-2):243-50.
    [56]GULARI E, CULDUR C, SRIVANNAVIT S, et al. Co oxidation by silver cobaltcomposite oxide [J]. Appl Catal, A:,1999,182:147.
    [57]TANG X, LI Y, HUANG X, et al. MnOx-CeO2mixed oxide catalysts forcomplete oxidation of formaldehyde: Effect of preparation method and calcinationtemperature [J]. Applied Catalysis B: Environmental,2006,62(3-4):265-73.
    [58]WANG R, LI J. OMS-2Catalysts for Formaldehyde Oxidation: Effects of Ce andPt on Structure and Performance of the Catalysts [J]. Catalysis Letters,2009,131(3):500-5.
    [59]HARUTA M, YAMADA N, KOBAYASHI T, et al. Gold catalysts prepared bycoprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. Journal of Catalysis,1989,115(2):301-9.
    [60]HARUTA M, TSUBOTA S, KOBAYASHI T, et al. Low-Temperature Oxidationof CO over Gold Supported on TiO2, Fe2O3, and Co3O4[J]. Journal of Catalysis,1993,144(1):175-92.
    [61]HARUTA M, UEDA A, TSUBOTA S, et al. Low-temperature catalyticcombustion of methanol and its decomposed derivatives over supported gold catalysts[J]. Catalysis Today,1996,29(1-4):443-7.
    [62]HARUTA M, DAT M. Advances in the catalysis of Au nanoparticles [J].Applied Catalysis A: General,2001,222(1-2):427-37.
    [63]HARUTA M. Gold as a novel catalyst in the21st century: Preparation, workingmechanism and applications [J]. Gold Bulletin,2004,37(1-2):27-36.
    [64]KECSK S T, RASK J, KISS J. FTIR and mass spectrometric studies on theinteraction of formaldehyde with TiO2supported Pt and Au catalysts [J]. AppliedCatalysis A: General,2004,273(1-2):55-62.
    [65]LI C, SHEN Y, JIA M, et al. Catalytic combustion of formaldehyde ongold/iron-oxide catalysts [J]. Catalysis Communications,2008,9(3):355-61.
    [66]ZHANG J, JIN Y, LI C, et al. Creation of three-dimensionally orderedmacroporous Au/CeO2catalysts with controlled pore sizes and their enhancedcatalytic performance for formaldehyde oxidation [J]. Applied Catalysis B:Environmental,2009,91(1-2):11-20.
    [67]SHEN Y, YANG X, WANG Y, et al. The states of gold species in CeO2supportedgold catalyst for formaldehyde oxidation [J]. Applied Catalysis B: Environmental,2008,79(2):142-8.
    [68]MINIC S, SCIR S, CRISAFULLI C, et al. Influence of catalyst pretreatmentson volatile organic compounds oxidation over gold/iron oxide [J]. Applied Catalysis B:Environmental,2001,34(4):277-85.
    [69]MINIC S, SCIR S, CRISAFULLI C, et al. Catalytic combustion of volatileorganic compounds on gold/iron oxide catalysts [J]. Applied Catalysis B:Environmental,2000,28(3-4):245-51.
    [70]SCIR S, MINIC S, CRISAFULLI C, et al. Catalytic combustion of volatileorganic compounds over group IB metal catalysts on Fe2O3[J]. CatalysisCommunications,2001,2(6-7):229-32.
    [71]ZHANG Y, SHEN Y, YANG X, et al. Gold catalysts supported on the mesoporousnanoparticles composited of zirconia and silicate for oxidation of formaldehyde [J].Journal of Molecular Catalysis A: Chemical,2010,316(1-2):100-5.
    [72]LI H F, ZHANG N, CHEN P, et al. High surface area Au/CeO2catalysts for lowtemperature formaldehyde oxidation [J]. Applied Catalysis B: Environmental,2011,110:279-85.
    [73]金佳佳,史喜成,王东辉. Au/TiO2催化剂室温催化燃烧甲醛的研究[J].北京化工大学学报,2009,36(3):20-5.
    [74]SEHUBERT M, PLZAK V, GARCHE J. Activity,selectivity,and long-termstability of different metal oxide supported gold catalysts for the Preferential COoxidation in H2-rich gas [J]. Catal Lett,2001,76(3-4):143-50.
    [75]MOREAU F, BOND G C. Gold on titania catalysts, influence of somePhysicochemical Parameters on the activity and stability for the oxidation of carbonmonoxide [J]. Appl Catal A: Gen,2006,302:110-7.
    [76]王东辉,董同欣,史喜成,等.纳米金催化剂的存放失活[J].催化学报,2007,28(2):148-52.
    [77]PENG J, WANG S. Performance and characterization of supported metalcatalysts for complete oxidation of formaldehyde at low temperatures [J]. AppliedCatalysis B: Environmental,2007,73(3-4):282-91.
    [78]TANG X, CHEN J, HUANG X, et al. Pt/MnOx-CeO2catalysts for the completeoxidation of formaldehyde at ambient temperature [J]. Applied Catalysis B:Environmental,2008,81(1-2):115-21.
    [79]HUANG H, LEUNG D Y C. Complete elimination of indoor formaldehyde oversupported Pt catalysts with extremely low Pt content at ambient temperature [J].Journal of Catalysis,2011,280(1):60-7.
    [80]HUANG H, LEUNG D Y C, YE D. Effect of reduction treatment on structuralproperties of TiO2supported Pt nanoparticles and their catalytic activity forformaldehyde oxidation [J]. Journal of Materials Chemistry,2011,21(26):9647-52.
    [81]YU X, HE J, WANG D, et al. Facile Controlled Synthesis of Pt/MnO2Nanostructured Catalysts and Their Catalytic Performance for OxidativeDecomposition of Formaldehyde [J]. The Journal of Physical Chemistry C,2011,116(1):851-60.
    [82]CHEN D, QU Z, ZHANG W, et al. TPD and TPSR studies of formaldehydeadsorption and surface reaction activity over Ag/MCM-41catalysts [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2011,379(1-3):136-42.
    [83]HUANG H, LEUNG D Y C. Complete Oxidation of Formaldehyde at RoomTemperature Using TiO2Supported Metallic Pd Nanoparticles [J]. ACS Catalysis,2011,1(4):348-54.
    [84]TANG X, CHEN J, LI Y, et al. Complete oxidation of formaldehyde overAg/MnOx-CeO2catalysts [J]. Chemical Engineering Journal,2006,118(1-2):119-25.
    [85]BUSCA G. Mechanism of Selective Methanol Oxidation over VanadiumOxide-Titanium Oxide Catalysts: A FT-IR and Flow Reactor Study [J]. J Phys Chem,1987,91:5263-9
    [86]BUSCA G, LAMOTTE J, LAVALLEY J C, et al. FT-IR Study of the Adsorptionand Transformation of Formaldehyde on Oxide Surfaces [J]. J Am Chem SOC,1987,109:5197-202.
    [87]BUSCA G. On the mechanism of methanol oxidation over vanadia-basedcatalysts: a FT-IR study of the adsorption of methanol, formaldehyde and formic acidon vanadia and vanadia-silica [J]. Journal of Molecular Catalysis,1989,50(2):241-9.
    [88]ZHOU J, MULLINS D R. Adsorption and reaction of formaldehyde on thin-filmcerium oxide [J]. Surf Sci,2006,600(7):1540-6.
    [89]GOMES J R B, GOMES J A N F. A theoretical study of dioxymethylene,proposed as intermediate in the oxidation of formaldehyde to formate over copper [J].Surface Science,2000,446(3):283-93.
    [90]王文峰,章永凡,李俊. NiO催化甲酸分解机理的密度泛函研究[J].催化学报,2004,25(2):129-32.
    [91]王正烈,周亚平,李松林.物理化学[M].北京:高等教育出版社,2001.
    [92]BANDARA A, KUBOTA J, WADA A, et al. Adsorption and Reactions of FormicAcid on (22)-NiO(111)/Ni(111) Surface: Part2. IRAS Study under CatalyticSteady-State Conditions [J]. Journal of Physical Chemistry B,1997,101(3):361-8.
    [93]OKI S, MEZAKI R. Identification of rate-controlling steps for the water-gas shiftreaction over an iron oxide catalyst [J]. Journal of Physical Chemistry B,1973,77(4):447-52.
    [94]MEZAKI R, DRAPER N R. Adequacy of a multisite model suggested for thecatalytic hydrogenation of olefins [J]. Journal of Catalysis,1973,28(1):179-81.
    [95]OKI S, MEZAKI R. Investigation of the rate-controlling step of the water gasshift reaction with use of various isotopic tracers [J]. Industrial&EngineeringChemistry Research,1988,27(1):15-21.
    [96]WATANABE N, IWATSU K, YAMAKATA A, et al. SFG study of formic acid ona Pt(110) surface [J]. Surface Science,1996,1:357-8.
    [97]MATSUMOTO T, BANDARA A, KUBOTA J, et al. Adsorption anddecomposition of formic acid (DCOOD) on NiO(111) and Ni(111) surfaces by SFG[J]. J Phys Chem B,1998,102(16):2979.
    [98]BANDARA A, KUBOTA J, WADA A, et al. Adsorption and decomposition offormic acid (DCOOD) on NiO(111) and Ni(111) surfaces by SFG [J]. Applied PhysicsB: Lasers and Optics1999,68(3):573-8.
    [99]ZHANG C, HE H, TANAKA K I. Catalytic performance and mechanism of aPt/TiO2catalyst for the oxidation of formaldehyde at room temperature [J]. AppliedCatalysis B: Environmental,2006,65(1-2):37-43.
    [100]ZHANG C, HE H. A comparative study of TiO2supported noble metal catalystsfor the oxidation of formaldehyde at room temperature [J]. Catalysis Today,2007,126(3-4):345-50.
    [101]BORASIO M, RODR GUEZ DE LA FUENTE O, RUPPRECHTER G, et al. InSitu Studies of Methanol Decomposition and Oxidation on Pd(111) by PM-IRAS andXPS Spectroscopy [J]. The Journal of Physical Chemistry B,2005,109(38):17791-4.
    [102]LIN S D, CHENG H, HSIAO T C. In situ DRIFTS study on the methanoloxidation by lattice oxygen over Cu/ZnO catalyst [J]. Journal of Molecular CatalysisA: Chemical,2011,35-40:342-3.
    [103]TENG B T, JIANG S Y, YANG Z X, et al. A density functional theory study offormaldehyde adsorption and oxidation on CeO2(111) surface [J]. Surface Science,2010,604(1):68-78.
    [104]SHEN B, FAN K, WANG W, et al. Ab initio study on the adsorption andoxidation of HCHO with Ag2cluster [J]. Journal of Molecular Structure:THEOCHEM,1999,469(1–3):157-61.
    [105]沈百荣,王文宁,范康年.银表面甲醇氧化反应机理的abinitio计算研究I银表面静态吸附物种的几何构型和吸附性质[J].化学学报,1997,55:13-9.
    [106]HONG Y C, SUN K Q, HAN K H, et al. Comparison of catalytic combustion ofcarbon monoxide and formaldehyde over Au/ZrO2catalysts [J]. Catalysis Today,2010,158(3-4):415-22.
    [107]MAO C F, VANNICE M A. Fomraldehyde oxidation over Ag catalysts [J]. JCatal,1995,154(2):230-44.
    [108]LIU B, LI C, ZHANG Y, et al. Investigation of catalytic mechanism offormaldehyde oxidation over three-dimensionally ordered macroporous Au/CeO2catalyst [J]. Applied Catalysis B: Environmental,2012,111–112:467-75.
    [109]MA C, WANG D, XUE W, et al. Investigation of Formaldehyde Oxidation overCo3O4-CeO2and Au/Co3O4-CeO2Catalysts at Room Temperature: Effective Removaland Determination of Reaction Mechanism [J]. Environmental Science&Technology,2011,45(8):3628-34.
    [110]CHEN D, QU Z, SHEN S, et al. Comparative studies of silver based catalystssupported on different supports for the oxidation of formaldehyde [J]. Catalysis Today,2011,175(1):338-45.
    [111]FERN NDEZ-GARCIA M, MARTINEZ-ARIAS A, SALAMANCA L N, et al.Influence of Ceria on Pd Activity for the CO+O2Reaction [J]. Journal of Catalysis,1999,187(2):474-85.
    [112]MONTEIRO R S, DIEGUEZ L D C, SCHMAL M. The role of Pd precursors inthe oxidation of carbon monoxide over Pd/Al2O3and Pd/CeO2/Al2O3catalysts [J].Catalysis Today,2001,65(1):77-89.
    [113]BOURANE A, BIANCHI D. Oxidation of CO on a Pt/Al2O3Catalyst: From theSurface Elementary Steps to Light-Off Tests: I. Kinetic Study of the Oxidation of theLinear CO Species [J]. Journal of Catalysis,2001,202(1):34-44.
    [114]KOZLOVA A P, KOZLOV A I, SUGIYAMA S, et al. Study of Gold Species inIron-Oxide-Supported Gold Catalysts Derived from Gold-Phosphine ComplexAu(PPh3)(NO3) and As-Precipitated Wet Fe(OH)3[J]. Journal of Catalysis,1999,181(1):37-48.
    [115]QIAN K, HUANG W, FANG J. Low-temperature CO oxidation overAu/ZnO/SiO2Catalysts: Some mechanism insights [J]. J Catal,2008,255:269-78.
    [116]HODGE N A, KIELY C J, WHYMAN R. Mierostructural comparison ofcalcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation[J]. Catal Taday,2002,72:133-14.
    [117]SCHUBERT M M, HACKENBERG S, VAN VEEN A C, et al. CO Oxidationover Supported Gold Catalysts-“Inert” and “Active” Support Materials and Their Rolefor the Oxygen Supply during Reaction [J]. Journal of Catalysis,2001,197(1):113-22.
    [118]HAO Z, FEN L, LU G Q. In situ electron paramagnetic resonance (EPR) studyof surface oxygen species on Au/ZnO catalyst for low-temperature carbon monoxideoxidation [J]. Appl Catal A,2001,213:173-7.
    [119]MAVRIKAKIS M, STOLTZE P, NCRSKOV J K. Making gold less noble [J].Catal Lett,2000,64:101-6.
    [120]GRUNWALDT J D, BAIKER A. Gold/Titania Interfaces and Their Role inCarbon Monoxide Oxidation [J]. J Phys Chem B,1999,103:1002-12.
    [121]KOZLOV A I, KOZLOVA A P, LIU H, et al. A new approach to active supportedAu catalysts [J]. Appl Catal A,1999,182(1):9-28.
    [122]KOTOBUKI M, WATANABE M. Reaction mechanism of preferential oxidationof carbon monoxide on Pt, Fe, and Pt-Fe/mordenite catalysts [J]. J Catal,2005,236:262-9.
    [123]SUH D J, KWAK C, KIM J H. Removal of carbon monoxide fromhydrogen-rich fules by selective low-temperature oxidation over base metal addedplatinum catalyst [J]. Journal of Power Sources,2005,142:70-4.
    [124]KO E Y, PARK E D, WSEO K. Selective CO oxidation in the presence ofhydrogen over supported Pt catalysts promoted with transition metals [J]. KoreanJournal of Chemical Engineering,2006,23(2): l82-187.
    [125]KO E Y, PARK E D, SEO K W. PtNi/y-A12O3catalyst for the preferential COoxidation in the hydrogen stream [J]. Catalysis Letters,2006,11(3-4):275-9.
    [126]CHEN Y, CRAWFORD P, HU P. Recent Advances in Understanding COOxidation on Gold Nanoparticles Using Density Functional Theory [J]. Catal Lett2007,119:21-8.
    [127]POLSTER C S, ZHANG R, CYB M T, et al. Selectivity loss of Pt/CeO2PROXcatalysts at low CO concentrations: mechanism and active site study [J]. Journal ofCatalysis,2010,273:50-8.
    [128]BAIDYA T, GUPTA A, DESHPANDEY P A. High Oxygen Storage Capacityand High Rates of CO Oxidation and NO Reduction Catalytic Properties ofCe1-xSnxO2and Ce0.78Sn0.2Pd0.02O2-δ[J]. J Phys Chem C,2009,113(10):4059-68.
    [129]SEDMAK G, HOCEVAR S, LEVEC J. Kinetics of selective CO oxidation inexcess of H2over the nanostructured Cu0.1Ce0.9O2ycatalyst [J]. J catal,2003,213:135-50.
    [130]WANG J B, LIN S C, HUANG T J. Selective CO oxidation in rich hydrogenover CuO/samaria-doped ceria [J]. Appl Catal A,2002,232:107-20.
    [131]GRISEL R J H, NIEUWENHEYS B E. Selective Oxidation of CO overSupported Au Catalysts [J]. J Catal,2001,199:48-59.
    [132]JERNIGAN G G, SOMORJAI G A. Carbon Monoxide Oxidation over ThreeDifferent Oxidation States of Copper: Metallic Copper, Copper (I) Oxide, and Copper(II) Oxide-A Surface Science and Kinetic Study [J]. J Catal,1994,147:567-77.
    [133]JANSSON J. Low-Temperature CO Oxidation over Co3O4/Al2O3[J]. J Catal,2000,194:55-60.
    [134]BUNLUESIN T, PUTNA E S, GORTE R J. A comparison of CO oxidation onceria-supported Pt,Pd,and Rh [J]. Catal Lett,1996,41:1-5.
    [135]DOW W P, HUANG T J. Yttria-stabilized zirconia supported copper oxidecatalyst II. Effect of oxygen vacancy of support on catalytic activity for CO oxidation[J]. J Catal1996,160:17l-182.
    [136]FEMANDEZ G M, MARTINEZ A A, SALAMANCA L N. Influence of ceria onPd activity for the CO+O2reaction [J]. J Catal,1999, l87:474-85.
    [137]PRIOLKAR K R, BERA P, SARODE P R, et al. Formation of Ce1-xPdxO2-δSolidSolution in Combustion-Synthesized Pd/CeO2Catalyst: XRD, XPS, and EXAFSInvestigation [J]. Chemistry of Materials,2002,14(5):2120-8.
    [138]BERA P, GAYEN A, HEGDE M S, et al. Promoting Effect of CeO2inCombustion Synthesized Pt/CeO2Catalyst for CO Oxidation [J]. The Journal ofPhysical Chemistry B,2003,107(25):6122-30.
    [139]BERA P, PRIOLKAR K R, GAYEN A, et al. Ionic Dispersion of Pt over CeO2by the Combustion Method: Structural Investigation by XRD, TEM, XPS, andEXAFS [J]. Chemistry of Materials,2003,15(10):2049-60.
    [1] ELLISA A V, ARCY-GALLA J D. Phase transitions in octanethiol-capped Agnanocluster microfilm assemblies [J]. Thermochimica Acta,2005,426:207-12.
    [2]程敬泉,姚素薇.超声场下不同形貌银胶体的制备与表征[J].天津大学学报,2006,39(1):34-8.
    [3]赵斌.可降低空气中氧化污染物的化合物[J].石油化工,1995,25:159-62.
    [4]彭子飞,汪国忠.用银氨配离子还原法制备纳米银[J].材料研究学报,1997,11:104-6.
    [5] MASSIMILIANO C, CRISTINA D P, ROBERTO M, et al. The catalytic activityof "naked" gold particles [J]. Angewandte Chemie (International ed in English),2004,43:5812-5.
    [6] YANG L, LIU Z. Study on light intensity in the process of photocatalyticdegradation of indoor gaseous formaldehyde for saving energy [J]. EnergyConversion and Management,2007,48:882-9.
    [7]谢娟.粒径可控纳米金的制备及表征[J].工业应用,2008,7:3-5.
    [8]孙秀兰,赵晓联,汤坚.单分散性胶体金的制备工艺优化[J].免疫学杂志,2004,20:151-4.
    [9] EN ST N B V, TURKEVICH J. Coagulation of Colloidal Gold [J]. J Am ChemSoc,1963,85:3317-28.
    [10]彭菊村,卢强华,吴波英.试剂的浓度和加入顺序对水相合成金纳米颗粒的影响[J].稀有金属,2006,30:552-5.
    [11]彭菊村,卢强华,吴波英.金纳米颗粒水相合成工艺研究[J].稀有金属材料与工程,2006,35:954-8.
    [12]WANG Y, REN J, DENG K, et al. Preparation of Tractable Platinum, Rhodium,and Ruthenium Nanoclusters with Small Particle Size in Organic Media [J].Chemistry of Materials,2000,12(6):1622-7.
    [13]SIANI A, WIGAL K R, ALEXEEV O S, et al. Synthesis and characterization ofPt clusters in aqueous solutions [J]. Journal of Catalysis,2008,257(1):5-15.
    [14]FU X, WANG Y. Shape-selective preparation and properties of oxalate-stabilizedPt colloid [J]. Langmuir2002,18:4619-24.
    [15]兰支利.金属铂胶体的制备及其催化性能[J].南昌大学学报,1998,22:130-5.
    [16]YU S, TROITSKI. Synthesis and study of palladium colloids and related catalysts[J]. Journal of Molecular Catalysis A: Chemical,2000,158:461-5.
    [17]COMOTTI M, LI W C, SPLIETHOFF B, et al. Support Effect in High ActivityGold Catalysts for CO Oxidation [J]. Journal of the American Chemical Society,2005,128(3):917-24.
    [18]王桂英,余加佑,廉红蕾,等.沉淀剂对Au/ZnO催化剂上CO氧化性能及催化结构的影响[J].高等化学学报,2001,22(11):1873-6.
    [19]王桂英,李雪梅,白妮,等. Au/ZnO催化剂的制备及常温条件下CO氧化催化性能[J].高等化学学报,2001,22(3):431-4.
    [20]LI S, LIU G, LIAN H, et al. Low-temperature CO oxidation over supported Ptcatalysts prepared by colloid-deposition method [J]. Catalysis Communications,2008,9(6):1045-9.
    [21]CHANG F W, ROSELIN L S, OU T C. Hydrogen production by partial oxidationof methanol over bimetallic Au-Ru/Fe2O3catalysts [J]. Applied Catalysis A: General,2008,334(1-2):147-55.
    [22]HATANAKA M, TAKAHASHI N, TAKAHASHI N, et al. Reversible changes inthe Pt oxidation state and nanostructure on a ceria-based supported Pt [J]. Journal ofCatalysis,2009,266(2):182-90.
    [23]DACQUIN J P, CABI M, HENRY C R, et al. Structural changes of nano-Ptparticles during thermal ageing: Support-induced effect and related impact on thecatalytic performances [J]. Journal of Catalysis,2010,270(2):299-309.
    [24]GONZ LEZ I D, NAVARRO R M, WEN W, et al. A comparative study of thewater gas shift reaction over platinum catalysts supported on CeO2, TiO2andCe-modified TiO2[J]. Catalysis Today,2010,149(3-4):372-9.
    [25]BARRABES N, FOTTINGER K, LLORCA J, et al. Pretreatment Effect onPt/CeO2Catalyst in the Selective Hydrodechlorination of Trichloroethylene [J]. TheJournal of Physical Chemistry C,2010,114(41):17675-82.
    [26]GONZ LEZ I D, NAVARRO R M, ALVAREZ-GALV N M C, et al. Performanceenhancement in the water-gas shift reaction of platinum deposited over acerium-modified TiO2support [J]. Catalysis Communications,2008,9(8):1759-65.
    [27]GRACIA F J, MILLER J T, KROPF A J, et al. Kinetics, FTIR, and ControlledAtmosphere EXAFS Study of the Effect of Chlorine on Pt-Supported Catalysts duringOxidation Reactions [J]. Journal of Catalysis,2002,209(2):348-54.
    [28]SEN F, G KAGA G. Different Sized Platinum Nanoparticles Supported onCarbon: An XPS Study on These Methanol Oxidation Catalysts [J]. The Journal ofPhysical Chemistry C,2007,111(15):5715-20.
    [29]KUO P L, CHEN W F, HUANG H Y, et al. Stabilizing Effect of Pseudo-DendriticPolyethylenimine on Platinum Nanoparticles Supported on Carbon [J]. The Journal ofPhysical Chemistry B,2006,110(7):3071-7.
    [30]SEO P W, CHOI H J, HONG S I, et al. A study on the characteristics of COoxidation at room temperature by metallic Pt [J]. Journal of Hazardous Materials,2010,178(1-3):917-25.
    [31]NAGAI Y, DOHMAE K, IKEDA Y, et al. In Situ Redispersion of PlatinumAutoexhaust Catalysts: An On-Line Approach to Increasing Catalyst Lifetimes [J].Angewandte Chemie International Edition,2008,47(48):9303-6.
    [32]NAGAI Y, HIRABAYASHI T, DOHMAE K, et al. Sintering inhibitionmechanism of platinum supported on ceria-based oxide and Pt-oxide-supportinteraction [J]. Journal of Catalysis,2006,242(1):103-9.
    [33]FERREIRA A P, ZANCHET D, ARA JO J C S, et al. The effects of CeO2on theactivity and stability of Pt supported catalysts for methane reforming, as addressed byin situ temperature resolved XAFS and TEM analysis [J]. Journal of Catalysis,2009,263(2):335-44.
    [1] WANG L, SAKURAI M, KAMEYAMA H. Study of catalytic decomposition offormaldehyde on Pt/TiO2alumite catalyst at ambient temperature [J]. Journal ofHazardous materials,2009,167(1-3):399-405.
    [2] HUANG H, LEUNG D Y C. Complete elimination of indoor formaldehyde oversupported Pt catalysts with extremely low Pt content at ambient temperature [J].Journal of Catalysis,2011,280(1):60-7.
    [3] AN N, YU Q, LIU G, et al. Complete oxidation of formaldehyde at ambienttemperature over supported Pt/Fe2O3catalysts prepared by colloid-deposition method[J]. Journal of Hazardous materials,2011,186(2-3):1392-7.
    [4] TANG X, CHEN J, HUANG X, et al. Pt/MnOx-CeO2catalysts for the completeoxidation of formaldehyde at ambient temperature [J]. Applied Catalysis B:Environmental,2008,81(1-2):115-21.
    [5] HUANG H, LEUNG D Y C. Complete Oxidation of Formaldehyde at RoomTemperature Using TiO2Supported Metallic Pd Nanoparticles [J]. ACS Catalysis,2011,1(4):348-54.
    [6] LI C, SHEN Y, JIA M, et al. Catalytic combustion of formaldehyde ongold/iron-oxide catalysts [J]. Catalysis Communications,2008,9(3):355-61.
    [7] ZHANG C, HE H, TANAKA K I. Catalytic performance and mechanism of aPt/TiO2catalyst for the oxidation of formaldehyde at room temperature [J]. AppliedCatalysis B: Environmental,2006,65(1-2):37-43.
    [8] ZHANG C, HE H. A comparative study of TiO2supported noble metal catalystsfor the oxidation of formaldehyde at room temperature [J]. Catalysis Today,2007,126(3-4):345-50.
    [9] PENG J, WANG S. Performance and characterization of supported metalcatalysts for complete oxidation of formaldehyde at low temperatures [J]. AppliedCatalysis B: Environmental,2007,73(3-4):282-91.
    [10]SHEN Y, YANG X, WANG Y, et al. The states of gold species in CeO2supportedgold catalyst for formaldehyde oxidation [J]. Applied Catalysis B: Environmental,2008,79(2):142-8.
    [11] ZHANG J, JIN Y, LI C, et al. Creation of three-dimensionally orderedmacroporous Au/CeO2catalysts with controlled pore sizes and their enhancedcatalytic performance for formaldehyde oxidation [J]. Applied Catalysis B:Environmental,2009,91(1-2):11-20.
    [12]ITO S I, TOMISHIGE K. Steam reforming of ethanol over metal-oxide-promotedPt/SiO2catalysts: Effects of strong metal-oxide interaction (SMOI)[J]. CatalysisCommunications,2010,12(3):157-60.
    [13]SEN F, G KAGA G. Different Sized Platinum Nanoparticles Supported onCarbon: An XPS Study on These Methanol Oxidation Catalysts [J]. The Journal ofPhysical Chemistry C,2007,111(15):5715-20.
    [14]HATANAKA M, TAKAHASHI N, TAKAHASHI N, et al. Reversible changes inthe Pt oxidation state and nanostructure on a ceria-based supported Pt [J]. Journal ofCatalysis,2009,266(2):182-90.
    [15]DACQUIN J P, CABI M, HENRY C R, et al. Structural changes of nano-Ptparticles during thermal ageing: Support-induced effect and related impact on thecatalytic performances [J]. Journal of Catalysis,2010,270(2):299-309.
    [16]ONO L K, YUAN B, HEINRICH H, et al. Formation and Thermal Stability ofPlatinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects [J]. TheJournal of Physical Chemistry C,2010,114(50):22119-33.
    [17]VILLANI K, VERMANDEL W, SMETS K, et al. Platinum Particle Size andSupport Effects in NOx Mediated Carbon Oxidation over Platinum Catalysts [J].Environmental Science&Technology,2006,40(8):2727-33.
    [18]ARRII S, MORFIN F, RENOUPREZ A J, et al. Oxidation of CO on GoldSupported Catalysts Prepared by Laser Vaporization: Direct Evidence of SupportContribution [J]. Journal of the American Chemical Society,2004,126(4):1199-205.
    [19]CUNNINGHAM D A H, VOGEL W, KAGEYAMA H, et al. The Relationshipbetween the Structure and Activity of Nanometer Size Gold When Supported onMg(OH)2[J]. Journal of Catalysis,1998,177(1):1-10.
    [20]HUANG H, LEUNG D Y C, YE D. Effect of reduction treatment on structuralproperties of TiO2supported Pt nanoparticles and their catalytic activity forformaldehyde oxidation [J]. Journal of Materials Chemistry,2011,21(26):9647-52.
    [1] HARUTA M, YAMADA N, KOBAYASHI T, et al. Gold catalysts prepared bycoprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. Journal of Catalysis,1989,115(2):301-9.
    [2] MARGITFALVI J L, BORB TH I, HEGEDUS M, et al. Low-Temperature COOxidation over New Types of Sn-Pt/SiO2Catalysts [J]. Journal of Catalysis,2000,196(1):200-4.
    [3] ARRII S, MORFIN F, RENOUPREZ A J, et al. Oxidation of CO on GoldSupported Catalysts Prepared by Laser Vaporization: Direct Evidence of SupportContribution [J]. Journal of the American Chemical Society,2004,126(4):1199-205.
    [4] WANG L C, HUANG X S, LIU Q, et al. Gold nanoparticles deposited onmanganese(III) oxide as novel efficient catalyst for low temperature CO oxidation [J].Journal of Catalysis,2008,259(1):66-74.
    [5] LI S, LIU G, LIAN H, et al. Low-temperature CO oxidation over supported Ptcatalysts prepared by colloid-deposition method [J]. Catalysis Communications,2008,9(6):1045-9.
    [6] MU R, FU Q, XU H, et al. Synergetic Effect of Surface and Subsurface NiSpecies at Pt Ni Bimetallic Catalysts for CO Oxidation [J]. Journal of the AmericanChemical Society,2011,133(6):1978-86.
    [7] ALLIAN A D, TAKANABE K, FUJDALA K L, et al. Chemisorption of CO andMechanism of CO Oxidation on Supported Platinum Nanoclusters [J]. Journal of theAmerican Chemical Society,2011,133(12):4498-517.
    [8] LIU L, ZHOU F, WANG L, et al. Low-temperature CO oxidation over supportedPt, Pd catalysts: Particular role of FeOxsupport for oxygen supply during reactions [J].Journal of Catalysis,2010,274(1):1-10.
    [9] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation usingPt1/FeOx [J]. Nat Chem,2011,3(8):634-41.
    [10]SEO P W, CHOI H J, HONG S I, et al. A study on the characteristics of COoxidation at room temperature by metallic Pt [J]. Journal of Hazardous Materials,2010,178(1-3):917-25.
    [11] WANG Y, REN J, DENG K, et al. Preparation of Tractable Platinum, Rhodium,and Ruthenium Nanoclusters with Small Particle Size in Organic Media [J].Chemistry of Materials,2000,12(6):1622-7.
    [12]SIANI A, WIGAL K R, ALEXEEV O S, et al. Synthesis and characterization ofPt clusters in aqueous solutions [J]. Journal of Catalysis,2008,257(1):5-15.
    [13]SPIEKER W A, LIU J, MILLER J T, et al. An EXAFS study of the co-ordinationchemistry of hydrogen hexachloroplatinate(IV):1. Speciation in aqueous solution [J].Applied Catalysis A: General,2002,232(1-2):219-35.
    [14]TU W, LIU H. Rapid synthesis of nanoscale colloidal metal clusters bymicrowave irradiation [J]. Journal of Materials Chemistry,2000,10(9):2207-11.
    [15]ZHANG M, JIN Z, ZHANG Z, et al. Study of strong interaction between Pt andTiO2under oxidizing atmosphere [J]. Applied Surface Science,2005,250(1-4):29-34.
    [16]LI Q, WANG K, ZHANG S, et al. Effect of photocatalytic activity of COoxidation on Pt/TiO2by strong interaction between Pt and TiO2under oxidizingatmosphere [J]. Journal of Molecular Catalysis A: Chemical,2006,258(1-2):83-8.
    [17]GONZ LEZ I D, NAVARRO R M, WEN W, et al. A comparative study of thewater gas shift reaction over platinum catalysts supported on CeO2, TiO2andCe-modified TiO2[J]. Catalysis Today,2010,149(3-4):372-9.
    [18]BARRABéS N, FO TTINGER K, LLORCA J, et al. Pretreatment Effect onPt/CeO2Catalyst in the Selective Hydrodechlorination of Trichloroethylene [J]. TheJournal of Physical Chemistry C,2010,114(41):17675-82.
    [19]AN N, YU Q, LIU G, et al. Complete oxidation of formaldehyde at ambienttemperature over supported Pt/Fe2O3catalysts prepared by colloid-deposition method[J]. Journal of Hazardous materials,2011,186(2-3):1392-7.
    [20]VILLANI K, VERMANDEL W, SMETS K, et al. Platinum Particle Size andSupport Effects in NOx Mediated Carbon Oxidation over Platinum Catalysts [J].Environmental Science&Technology,2006,40(8):2727-33.
    [21]BOCK C, PAQUET C, COUILLARD M, et al. Size-Selected Synthesis of PtRuNano-Catalysts: Reaction and Size Control Mechanism [J]. Journal of the AmericanChemical Society,2004,126(25):8028-37.
    [22]MERLEN E, BECCAT P, BERTOLINI J C, et al. Characterization of BimetallicPt-Sn/Al2O3Catalysts: Relationship between Particle Size and Structure [J]. Journal ofCatalysis,1996,159(1):178-88.
    [23]BERA P, GAYEN A, HEGDE M S, et al. Promoting Effect of CeO2inCombustion Synthesized Pt/CeO2Catalyst for CO Oxidation [J]. The Journal ofPhysical Chemistry B,2003,107(25):6122-30.
    [24]BERA P, PRIOLKAR K R, GAYEN A, et al. Ionic Dispersion of Pt over CeO2bythe Combustion Method: Structural Investigation by XRD, TEM, XPS, and EXAFS[J]. Chemistry of Materials,2003,15(10):2049-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700