用户名: 密码: 验证码:
HA/316L不锈钢生物功能梯度材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(HA)具有优良的生物相容性,作为人工骨已广泛应用于骨缺损的修复,但其力学性能较差,限制了其作为承重骨的使用;而临床上普遍应用的力学性能优越的金属植入体316L不锈钢(以下简称316L)因其生物相容性较差而导致炎症等不良反应。制备兼具二者性能优点的复合材料已成为当今生物材料领域的研究热点之一。本论文围绕这一重要课题,采用粉末冶金法制备了HA/316L生物复合材料;并针对HA/316L两相热应力不匹配的问题,制备了热应力缓和的HA/316L生物功能梯度材料(FGM),对其力学性能、物相组成、显微结构以及生物相容性评价进行了较系统深入的研究。
     首先制备了HA和ZrO_2(CaO)纳米粉末。结果表明:随着HA前驱体煅烧温度的逐渐升高,HA晶化程度越来越高,其最佳制备工艺为以5℃·min~(-1)升温速率升至750℃后保温2h。通过对HA晶粒尺寸和煅烧温度的相关计算求得HA的生长活化能为24.8kJ·mol~(-1),并提出HA晶粒长大主要为界面扩散控制机制。采用化学共沉淀与共沸蒸馏相结合在600℃至1100℃温度范围内热处理后可得到掺杂5mol%CaO的四方相ZrO_2(CaO)纳米粉末,该纳米粉末由四方相向单斜相转变的临界温度为1234.5℃,高于纯氧化锆纳米粉的转变温度,初步推断是由于稳定剂氧化钙的存在所致。
     通过真空烧结制备了HA/316L粉、HA/316L纤维和HA-ZrO_2(CaO)/316L纤维系列生物复合材料,综合力学性能顺序为HA/316L粉系     首次研究了316L纤维的长度、直径与含量对HA-ZrO_2(CaO)/316L纤维生物复合材料的力学性能的影响规律。结果表明:纤维直径为40μm的复合材料力学性能优于纤维直径为50μm的复合材料;纤维长度为0.8~1.2mm的复合材料力学性能优于纤维长度为2~3mm的复合材料;随着纤维体积分数增大,纤维之间相互接触而导致在复合材料中形成的微孔增多,并成为微裂纹源,导致材料力学性能下降。含20vol%直径为40μm、长度为0.8~1.2mm的316L纤维的
Hydroxyapatite(HA) has excellent biocompatibility and bad mechanical properties, which restricts its usage for bearing bone reconstruction. 316L stainless steel(316L) has broad applications in clinic, but it always lead to ill reaction such as inflammation because of its unqualified biocompatibility. Preparation of the composites having both advantages has become the heat point in biomaterials field. Surrounding this important task, HA/316L biocomposites were fabricated with powder metallurgy in this paper. Aim at the question of heat stress mismatch between HA and 316L phase, heat stress relaxed HA/316L biological functionally gradient materials(FGM) were prepared. At the same time, systemic researches including mechanical properties, phase structure, microstructure and biocompatibility evaluation of the FGM were carried out.HA and ZrO_2 ( CaO ) nano powder were prepared firstly. The results show that crystal degree of hydroxyapatite enhance with the increase of calcinated temperature and the optimal preparing technique is maintaining 2h at 750℃ with temperature-rising speed of 5℃·min~-1. Activated energy of HA can be calculated as 24.8 kJ·mol~-1 according to the relationship between grain size and calcinated temperature. HA's growing mechanism is interficial diffusion controlling mechanism. ZrO_2 ( CaO ) nano powder is prepared by azeotropic distillation and chemical coprecipitation method with heat treatment between 600 ℃ and 1 100 ℃ . Transformation temperature of tetragonal phase to monoclinic phase is 1 234.5 ℃ in ZrO_2 ( CaO ) nano powder, which is higher than that of pure ZrO_2 because of the existence of stabilizer CaO.HA/316L power, HA/316L fibre and HA-ZrO_2 (CaO) /316L fibre biocomposite series were fabricated by vacuum sintering. The results show that comprehensive mechanical properties can be ranked as HA/316L power system    system. Microstructure of all biocomposite systems change regularly with the components of HA and interface of HA/316L powder(or HA/316L fibre) combines tightly. Some element interdiffusion takes place between both phases in HA/316L power system and Ca, P element' s diffusibility in HA is laeger than that of Fe element in 316L powder. While there only exists diffusion of Fe element in 316L fibre to the matrix in HA/316L fibre and HA-ZrO2 (CaO) /316L systems.The approaches also address that diameter and length of 316L fibre have influence to the mechanical properties of HA-ZrO2 (CaO) /316L biocomposites. Composite's mechanical properties with fibre diameter of 40 u m is better than that of 50 U m and fibre length of 0.8-1.2mm is better that of 2~3mm. Micropores increase with volume fraction of 316L fibre because of contact among fibres, which become microflaws and lead to descending of mechanical properties. Thereof, it can be concluded that HA-ZrO2 (CaO) /316L fibre biocomposite having 20vol% with fibre diameter of 40 u m and fibre length of 0.8~1.2mm has optimal mechanical properties with bending strength, Young's modulus and fracture toughness equal tol40.1MPa, 117.8GPa and 5.81 MPa-m m, 87.1%, respectively.HA-ZrO2 (CaO) /316L fibre symmetrical and asymmetrical biological FGMs were fabricated under 1100°C by use of hot isostatic pressing(HIP) technique. The results show that there is no distortion in the FGMs and no microcracks on their surface. 316L fibre is evenly distributed in the FGMs. 316L fibre is enwrapped in the HA-ZrO2 ( CaO ) matrix and both integrate each other tightly. The combining mechanism of matrix to 316L fibre is physical adhering force. With increase of HA contents, both fracture toughness and Young's modulus of the gradient layer in HA-ZrO2 (CaO) /316L fibre FGMs decrease gradually, which results in mechanical properties relaxation design of the FGMs. It can be deduced that fibre pulling out and interbedded crack deflexion are the major toughing mechanism in the FGMs.HA/316L powder symmetrical and asymmetrical FGMs were
    fabricated by hot pressing(HP) technique. The results show that obvious gradient changes on the macroscopic are shown in the FGMs. While the components changes continuously in microcosmic and the interfaces among all gradient layers unites tightly. The addition of 316L powder changes the fracture way of the composites and improves their mechanical properties. There exists several toughing mechanism including interbedded crack deflexion, crack deflexion and crack bridging in the FGMs.HA contents in HA/316L biological FGMs change regularly with different gradient layer, which is coincided with the componets design. Grain size of 316L grows gradually with the decrease of HA contents, which suggests HA has restraining erTect on the growth of 316L grain size. Major sub-structure of 316L component are dislocation and stacking. Conbining circumstance of phase interface is very well and both phase bite into each other at the interface. There approximately exists 20 nm transition area at the interface. The two phases of HA and 316L powder dissolve into each other in some degree during hot pressing and the combining mechanism is dissolving behavior.Acute toxicity experiment, sub-acute toxicity experiment, heat resource experiment, bacteria-restraining experiment, blood-dissolving experiment, skin-implanting experiment, Ames experiment and cell toxicity experiment were carried out to HA/316L powder FGMs. The results show that HA/316L powder FGMs have excellent biocompatibility and possess broad clinical value in bearing bone reconstruction.
引文
[1] 俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000:124-145
    [2] Suetsugu Y, Tanaka J. Crystal growth and structure analysis of twin-free monoclinic hydroxyapatite[J]. Journal of Materials Science: Materials in Medicine, 2002, 13(8): 767-772
    [3] 储成林,王世栋.致密羟基磷灰石(HA)生物陶瓷烧结行为和力学性能[J].功能材料,1999,30(6):606-609
    [4] 廖其龙,杨世源,郑昌琼.羟基磷灰石的冲击波活化与体外溶解性研究[J].中国生物医学工程学报.2004,23(5):443-447
    [5] Smith J L, Massa-Schlueter E A, Webster T J. Solubility properties of hydroxyapatite doped with divalent and trivalent ions[J]. Materials Research Society Symposium-Proceedings, 2003, 735: 57-62
    [6] Fulmer M T, Ison I C, Hankermayer C R, et al. Measurements of the solubilities and dissolution rates of several hydroxyapatites[J]. Biomaterials, 2002, 23(3): 751-755
    [7] Asaoka K, Kon M. Sintered porous titanium and titanium alloys as advanced biomaterials[J]. Materials Science Forum, 2003, 432(4): 3079-3084
    [8] Shi W, Kamiya A, Zhu J, et al. Properties of titanium biomaterial fabricated by sinter-bonding of titanium/hydroxyapatite composite surface-coated layer to pure bulk titanium[J]. Materials Science and Engineering A, 2002, 337(1): 104-109
    [9] Tengvall P, Lundstrom I. Physico-chemical considerations of titanium as a biomaterial[J]. Clinical Materials, 1992, 9(2): 115-134
    [10] 范德增,莫宣学.钛及钛合金在医学上的应用研究[J].口腔材料器械杂志,1999,8(1):46-48
    [11] 于思荣.生物医学钛合金的研究现状及发展趋势[J].材料科学与工程,2000,18(2):131-134
    [12] Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr[J]. Biomaterials, 2003, 24(16): 2673-2683
    [13] Henriques V A R, da Silva C R M. Production of titanium alloys for medical implants by powder metallurgy[J]. Key Engineering Materials, 2001, 189: 443-448
    [14] Suska F, Esposito M, Gretzer C, et al. IL-1α, IL-1β and TNF-α secretion during in vivo/ex vivo cellular interactions with titanium and copper[J]. Biomaterials, 2003, 24(3): 461-468
    [15] 浦素云主编.金属植入材料及其腐蚀.北京:北京航空航天大学,1990
    [16] Shi L Q, Northwood D O, Cao Z W. Alloy design and microstructure of a biomedical Co-Cr alloy[J]. Journal of Materials Science, 1993, 28(5): 1312-1316
    [17] Escobedo J, Mendez J, Cortes D, et al. Effect of nitrogen on the microstructure and mechanical properties of a Co-Cr-Mo alloy[J]. Materials & Design, 1996, 17(2): 79-83
    [18] Iwase H, Inoue Y. Experimental study of ceramic coated stainless steel as a biomaterial[J]. Journal of Japanese Society of Tribologists, 1991, 36(12): 917
    [19] 陆世英等编著.不锈钢.北京:原子能出版社,1995
    [20] 张恩科,李宪军.不锈钢植入物材料及其抗腐蚀性能探讨[J].医疗设备信息,2001,16(11):36-37
    [21] Sumita M, Hanawa T, Teoh S H. Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials-Review[J]. Materials Science and Engineering C, 2004, 24(6): 753-760
    [22] Molinari A, Tesi B, Tiziani A, et al. Composition, microstructure and mechanical property relations in sintered stainless steel[J]. International Journal of Powder Metallurgy 1991, 27(1): 15-21
    [23] Giordani E J, Guimaraes V A, Pinto T B, et al. Effect of precipitates on the corrosion-fatigue crack initiation of ISO 5832-9 stainless steel biomaterial[J]. International Journal of Fatigue, 2004, 26(10): 1129-1136
    [24] Granchi D, Ciapetti G, Savarino L, et al. Assessment of metal extract toxicity on human lymphocytes cultured in vitro[J]. Journal of Biomedical Materials Research, 1996, 31(2): 183-191
    [25] Pereira M C, Pereira M L, Sousa J P. Evaluation of nickel toxicity on liver, spleen, and kidney of mice after administration of high-dose metal ion[J]. Journal of Biomedical Materials Research, 1998, 40(1): 40-47
    [26] Paquay Y C G J, De Blieck-Hogervorst J M A, Jansen J A. Corrosion behaviour of metal fibre web structures[J]. Journal of Materials Science: Materials in Medicine, 1996, 7(10): 585-589
    [27] 梁成浩,郭亮.Hank‘s人工模拟体液中离子注氮对4种植入金属材料腐蚀行为的影响[J].稀有金属材料与工程,2002,31(4):274-278
    [28] 陈吉华,杨大智.金属植入物的抗蚀性研究进展[J].材料科学与工程,2000,18(4):130-134
    [29] Mazzei A C A, Ferreira I, Reis Jr G M, et al. Surface characterization of titanium implant materials[J]. Transaetions-7th World Biomaterials Congress, Transactions-7th World Biomaterials Congress, 2004, 1392
    [30] Gomez-Vega J M, Saiz E, Tomsia A P, et al. Bioaetive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing[J]. Biomaterials, 2000, 21(2): 105-111
    [31] Jae-Man C, Young-Min K, Sona K, et al. Formation and characterization of hydroxyapatite coating layer on Ti-based metal implant by electron-beam deposition[J]. Journal of Materials Research, 1999, 14(7): 2980-2985
    [32] Habibovie P, Barrere F, Van Blitterswijk C A, et al. Biomimetie hydroxyapatite coating on metal implants[J]. Journal of the American Ceramic Society, 2002, 85(3): 517-22
    [33] 陈彩凤.金属基纳米羟基磷灰石涂层材料研究进展[J].陶瓷学报,2002,23(4):241-245
    [34] Fu L, Khor K A, Lim J P. Processing, microstructure and mechanical properties of yttria stabilized zireonia reinforced hydroxyapatite coatings[J]. Materials Science & Engineering A, 2001, A316(1): 46-51
    [35] Li H, Khor K A, Cheang P. Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel(HVOF)spray[J]. Biomaterials, 2002, 23(1): 85-91
    [36] Gautier S, Champion E, Bernache-Assollant D. Toughening characterization in alumina platelet-hydroxyapatite matrix composites[J]. Journal of Materials Science: Materials in Medicine, 1999, 10(9): 533-540
    [37] 蒋毅,尹光福,周大利等.羟基磷灰石/聚乳酸复合人工骨修复材料的研究进展[J].国外医学:生物医学工程分册,2004,27(4):238-241
    [38] Fan H S, Cai B, Wen X T, et al. Electrospirming biodegradable nanofibre scaffold of the composite PLA/HA and the cell adhesion and proliferation[J]. Transactions-7th World Biomaterials Congress, Transactions-7th World Biomaterials Congress, 2004, 31
    [39] Liao S S, Cui F Z, Zhang W, et al. Hierarchically Biomimetie Bone Scaffold Materials: Nano-HA/Collagen/PLA Composite[J]. Journal of Biomedical Materials Research-Part B Applied Biomaterials, 2004, 69(2):, May 15, 2004, p 158-165
    [40] Bendetowiez A V, Wise R J, Gilbert G E, et al. Collagen-bound von Willebrand factor has reduced affinity for factor Ⅷ[J]. Journal of Biological Chemistry, 1999, 274(18): 12300-12307
    [41] Macdonald J R, Baehinger H P. HSP47 Binds Cooperatively to Triple Helical Type Ⅰ Collagen but Has Little Effect on the Thermal Stability or Rate of Refolding[J]. Journal of Biological Chemistry, 2001, 276(27): 25399-25403
    [42] Kumar R, Cheang P, Khor K A. Radio frequency (RF) suspension plasma sprayed ultra-fine hydroxyapatite(HA)/zireonia composite powders[J]. Biomaterials, 2003, 24(15): 2611-2621
    [43] Miao X, Ruys A J, Milthorpe B K. Hydroxyapatite-316L fibre composites prepared by vibration assisted slip casting[J]. Journal of Materials Science, 2001, 36(13): 3323-3332
    [44] Knepper M, Moricea S, Milthorpe B K. Stability of hydroxyapatite while processing short-fibre reinforced hydroxyapatite ceramics[J]. Biomaterials, 1997, 18(23): 1523-1529
    [45] Niu Z W, Zhang J H, Ren S F, et al. Effect of whisker content on mechanical properties and mierostrueture of hydroxyapatite-SiCW composite bioeeramics[J]. Materials Science Forum, 2004, 471: 206-210
    [46] Dorner-Reisel A, Berroth K, Neubauer R, et al. Unreinforeed and carbon fibre reinforced hydroxyapatite: Resistance against microabrasion[J]. Journal of the European Ceramic Society, 2004, 24(7): 2131-2139
    [47] Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering[J]. Materials Science Forum, 1999, 308: 83-88
    [48] Liew K M, He X Q, Kitipornehai S, et al. Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(3): 257-273
    [49] 王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理,2000,29(4):206-211
    [50] 邹俭鹏,阮建明,周忠诚.功能梯度材料设计与制各及性能评价[J].粉末冶金材料科学与工程,2005,10(2):78-87
    [51] Groves J F, Wadley H N G. Functionally graded materials synthesis via low vacuum directed vapor deposition[J]. Composites Part B: Engineering, 1997, 28(1): 57-69
    [52] Wadley H N G, Hsiung L M, Lankey R L. Artificially layered nanocomposites fabricated by jet vapor deposition[J]. Composites Engineering, 1995, 5(7): 935-950
    [53] Kawase M, Tago T, Kurosawa M, et al. Chemical vapor infiltration and deposition to produce a silicon carbide-carbon functionally gradient material[J]. Chemical Engineering Science, 1999, 54(15): 3327-3334
    [54] Ge C C, Wu A H, Ling Y H, et al. New progress of ceramic-based functionally graded plasma-facing materials in China[J]. Key Engineering Materials, 2002, 224: 459-464
    [55] Wu A H, Cao W B, Ge C C, et al. Fabrication and characteristics of plasma facing SiC/C functionally graded composite material[J]. Materials Chemistry and Physics, 2005, 91(2): 545-550
    [56] Uemura S, Sohda Y, Kude, Y, et al. Preparation and evaluation of SiC/C functionally gradient materials by chemical vapor deposition[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1990, 37(2): 275-282
    [57] Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials[J]. Materials Science and Engineering A, 2003, 362(1): 81
    [58] Wu A H, Cao W B, Ge C C, et al. Characterization of plasma facing SiC/C functionally graded material[J]. Materials Science Forum, 2003, 423-425: 167-170
    [59] Kim J I, Kim W J, Choi D J, et al. C/SiC multilayer coating for the oxidation resistance of C-C composite by low pressure chemical vapor deposition[J]. International Journal of Modern Physics B, 2003, 17(8-9): 1223-1228
    [60] Sasaki M, Hirai T. Fabrication and properties of functionally gradient materials[J]. Journal of the Ceramic Society of Japan, 1991, 99(10): 970-980
    [61] Sasaki M, Hirai T. Fabrication and properties of functionally gradient materials[J]. Journal of the Ceramic Society of Japan, 1991, 99(11): 1002-1013
    [62] Jung Y G, Park S W, Choi S C. Effect of CH4 and H2 on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM[J]. Materials Letters, 1997, 30(5): 339-345
    [63] Wan Y P, Sampath S, Prasad V, et al. An advanced model for plasma spraying of functionally graded materials[J]. Journal of Materials Processing Technology, 2003, 137(1): 110-116
    [64] Ge C C, Zhou Z J, Li J T, et al. Fabrication of W/Cu and Mo/Cu FGM as plasma-facing materials[J]. Journal of University of Science and Technology Beijing, 2000, 7(2): 122-125
    [65] Sampath S, Smith W C, Jewett T J, et al. Synthesis and characterization of grading profiles in plasma sprayed NiCrAlY-zirconia FGMs[J]. Materials Science Forum, 1999, 308: 383-388
    [66] 陈方明,朱诚意.表面处理技术在梯度功能材料制备中的应用[J].武汉科技大学学报:自然科学版,2001,24(1):24-26
    [67] Ge C C, Zhou Z J, Ling Y H. New progress of metal-based functionally graded plasma-facing materials in China[J]. Materials Science Forum, 2003, 423: 11-16
    [68] 廖恒成,张春燕.等离子喷涂与先进材料研制[J].材料研究学报,1999,13(2):119-124
    [69] 王鲁,王富耻,吕广庶等.ZrO2-ZiCrAl系功能梯度热障涂层界面残余热应力研究[J].北京理工大学学报,1998,18(5):630-633
    [70] Khor K A, Gu Y W, Dong Z L. Plasma spraying of functionally graded yttria stabilized zireonia/NiCoCrAlY coating system using composite powders[J]. Journal of Thermal Spray Technology, 2000, 9(2): 245-249
    [71] Fu Z Y, Liu J P, Zhang J Y, et al. Fabrication of(TiB2-Fe)/Fe Functional Gradient Material by SHS/QP[J]. Key Engineering Materials, 2003, 249: 105-108
    [72] Zhang L Z, Shi S L, Huang H J. Investigation of Al_2O_3 coating with FGMs structure by SHS[J]. Materials Science Forum, 2003, 423: 577-578
    [73] 李益民,王德满.自蔓延高温反应合成Ti/Al_2O_3梯度功能材料[J].中南工业大学学报,1996,27(5):551-555
    [74] Dumont A L, Bonnet J P, Chartier T, et al. MoSi2/Al2O3 FGM: Elaboration by tape casting and SHS[J]. Journal of the European Ceramic Society, 2001, 21(13): 2353-2360
    [75] Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials[J]. Materials Science and Engineering A, 2003, 362(1), 81-87
    [76] Xu Q, Zhang X H, Han J C, et al. Thermal shock resistance and ablation behaviour of titanium diboride-copper-nickle FGM via SHS[J]. Materials Science Forum, 2003, 423: 85-90
    [77] Reclaru L, Lerf R, Eschler P. Y, et al. Corrosion behavior of a welded stainless-steel orthopedic implant, Biomaterials[J]. 2001, 22(3): 269-279
    [78] 杨杰,沈惠申.热/机械载荷下功能梯度材料矩形厚板的弯曲行为[J].固体力学学报,2003,24(1):119-124
    [79] Sanchez-Herencia A J, Moreno R, Jurado J R. Electrical transport properties in zirconia/alumina functionally graded materials[J]. Journal of the European Ceramic Society, 2000, 20(10): 611-1620
    [80] Camargo Jr S S, Gomes J R, Carrapichano J M, et al. Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals[J]. Thin Solid Films, 2005, 482(1-2): 221-225
    [81] Huang J, Lu Y B, Shen C W. Thermal elastic-plastic limit analysis and optimal design for composite cylinders of ceramic/metal functionally graded materials[J]. Materials Science Forum, 2003, 424: 681-686
    [82] Grujicic M, Zhang Y. Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method[J]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, A251(1): 64-76
    [83] 邹俭鹏,阮建明,黄伯云等.HA(ZrO_2)/316L纤维对称生物梯度功能材料[J].材料研究学报,2005,19(3):261-268
    [84] 邹俭鹏,阮建明,黄伯云等.HA/316L纤维非对称生物梯度功能材料制备与显微组织[J].无机材料学报,2005,20(5):1181-1188
    [85] Sanchez-Herencia A J, Moreno R, Jurado J R. Electrical transport properties in zirconia/alumina functionally graded materials[J]. Journal of the European Ceramic Society, 2000, 20(10): 1611-1620
    [86] Jung Y G, Choi S C. Fabrication of 3Y-TZP/SUS304 functionally graded materials by slip casting; application of porous alumina molds[J]. Materials Letters, 1998, 37(6): 312-319
    [87] Kawase M, Tago T, Kurosawa M. Chemical vapor infiltration and deposition to produce a silicon carbide-carbon functionally gradient material. Chemical Engineering Science[J], 1999, 54(15-16): 3327-3334
    [88] Neubrand A, Becket H, Tschudi T. Spatially resolved thermal diffusivity measurements on functionally graded materials[J]. Journal of Materials Science, 2003, 38(20): 4193-4201
    [89] Sadowski T, Neubrand A. Estimation of the crack length after thermal shock in FGM strip[J]. International Journal of Fracture, 2004, 127(1): L135-L140
    [90] Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials[J]. Materials Science & Engineering A, 2003, A362(1): 81-105
    [91] Chung T J, Neubrand A, Rodel J. Effect of residual stress on the fracture toughness of Al2O3/Al gradient materials[J]. Key Engineering Materials, 2001, 206(Ⅱ): 965-968
    [92] Cirakoglu M, Bhaduri S, Bhaduri S B. Evaluation of interlayer properties of functionally graded materials[J]. Ceramic Engineering and Science Proceedings, 2001, 22(4): 615-620
    [93] Cirakoglu M, Bhaduri S, Bhaduri S B. Combustion synthesis processing of functionally graded materials in the Ti-B binary system[J]. Journal of Alloys and Compounds, 2002, 347(1): 259-265
    [94] Chen Y H, Ma J. Electrophoretic Deposition and Characterization of a FGM Piezoelectric Monomorph Actuator[J]. Materials Science Forum, 2003, 437: 487-490
    [95] Wang H Z, Yao S W, Matsumura S. Electrochemical preparation and characterization of Ni/SiC gradient deposit[J]. Journal of Materials Processing Technology, 2004, 145(3): 299-302
    [96] Li C L, Zhao H X, Matsumura M. Corrosion properties of materials coated with Cr/sub 2/O/sub 3//NiCr and with Cr/sub 2/O/sub 3/+NiCr functionally gradient materials[J]. Materials and Corrosion, 2000, 51(7): 502-510
    [97] 邹俭鹏,阮建明,周忠诚.功能梯度骨质生物材料研究进展[J].材料导报,2005,19(3):13-16
    [98] Neubrand A, Roedel J. Gradient materials: An overview of a novel concept[J]. Materials Research and Advanced Techniques, 1997, 88(5): 358-371
    [99] Morant C, Lopez M F, Gutierrez A, et al. AFM and SEM characterization of non-toxic vanadium-free Ti alloys used as biomaterials[J]. Applied Surface Science, 2003, 220(1): 79-87
    [100] 杨云志,田杰谟.粉末冶金技术在生物梯度材料制备中的应用[J].粉末冶金技术.1998,16(4):290-297
    [101] Khor K A, Wang Y, Cheang P. Thermal spraying of functionally graded coatings for biomedical applications[J]. Surface Engineering, 1998, 14(2): 159-164
    [102] Jeon J H, Fang H T, Lai Z H, et al. Development of functionally graded anti-oxidation coatings for carbon/carbon composites[J]. Key Engineering Materials, 2005, 280: 1851-1856
    [103] Salinas-Rodriguez A, Rodriguez-Galicia J L. Deformation behavior of low-carbon Co-Cr-Mo alloys for low-friction implant applications[J]. Journal of Biomedical Materials Research, 1996, 31(3): 409-419
    [104] 常程康,丁传贤.无机材料学报,1998,13(1):71-77
    [105] Watari F, Yokoyama A, Saso F, et al. Fabrication and properties of functionally graded dental implant[J]. Composites Part B: Engineering, 1997, 28(1):5
    [106] Chu C, Zhu J, Yin Z, et al. Structure optimization and properties of hydroxyapatite-Ti symmetrical functionally graded biomaterial[J]. Materials Science and Engineering A, 2001, A316: 205
    [107] 宁聪琴,周玉,孟庆昌.50Ti/HA生物材料的组织结构与体外生物活性[J].无机材料学报,2001,16(2):263
    [108] Watari F, Yokoyama A, Matsuno H, et al. Biocompatibility of titanium/hydroxyapatite and titanium/cobalt functionally graded implants[J]. Materials Science Forum, 1999, 309: 356
    [109] 付涛,李浩,徐可为.羟基磷灰石梯度涂层的制备及其结构特征[J].硅酸盐学报,1999,27(5):622
    [110] Yokoyama A, Watari F, Miyao R, et al. Mechanical properties and biocompatibility of titanium-hydroxyapatite implant material prepared by spark plasma sintering method[J]. Key Engineering Materials, 2001, 193: 445
    [111] Watari F, Yokoyama A, Omori M, et al. Biocompatibility graded of materials and development to functionally implant for bio-medical application[J]. Composites Science and Technology, 2004, 64(6): 893-908
    [112] Watari F, Yokoyama A, Matsuno H, et al. Biocompatibility of titanium/hydroxyapatite and titanium/cobalt functionally graded implants[J]. Materials Science Forum, 1999, 308: 356-361
    [113] Miao X. Observation of microcracks formed in HA/316L composites[J]. Materials Letters, 2003, 57(12): 1848
    [114] Sridhar T M, Kamachi M U, Subbaiyan M. Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel[J]. Corrosion Science, 2002, 45(2): 237
    [115] Wei M, Ruys, A J, Swain M V, et al. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals[J]. Journal of Materials Science: Materials in Medicine, 1999, 10(7): 401
    [116] Liu D M, Yang Q, Troczynski T. Sol-gel hydroxyapatite coatings on stainless steel substrates[J]. Biomaterials, 2002, 23(3): 691
    [117] Chang G L, Yang C Y. Strain distribution of long bone with HA-coated IM implant[J]. Biomedical Engineering Applications Basis Communications, 1994, 6(2): 174
    [118] Liu Y L, Layrolle P, Van Blitterswijk C, et al. Incorporation of proteins into biomimetic hydroxyapatite coatings[J]. Key Engineering Materials, 2001, 192: 71
    [119] Li S P, Chen X M, Han Q R, et al. Preparation of Ti6Al4V/BG/HA graded coating by electrophoresis deposition in absolute alcohol medium[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2001, 11(5): 696
    [120] Khor K A, Wang Y, Cheang P. Thermal spraying of functionally graded coatings for biomedical applications[J]. Surface Engineering, 1998, 14(2): 159-164
    [121] Moya J S. Layered ceramics[J]. Advanced Materials, 1995, 7(2): 185-189
    [122] Hedia H S, Mahmoud N A. Design optimization of functionally graded dental implant[J]. Bio-Medical Materials and Engineering, 2004, 14(2): 133-143
    [123] 储成林,尹钟大.HA-Ti生物功能梯度材料微观组织及热应力缓和特性[J].无机材料学报,1999,14(5):775-782
    [124] Chu C L, Lin P H, Dong Y S, et al. Microstructure of titanium component in hydroxyapatite-Ti asymmetrical functionally graded biomaterial[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2004, 14(1): 25-28
    [125] Manjubala I, Kumar T S S. Effect of TiO2-Ag2O additives on the formation of calcium phosphate based functionally graded bioceramics[J]. Biomaterials, 2000, 21 (19): 1995-2002
    [126] Silva V V, Dominguews R Z. Hydroxyapatite-Zirconia composites prepared by precipitation method[J]. Materials in medicine, 1997, 8: 907-910
    [127] Swain M V.陶瓷的结构与性能[M].北京:科学出版社,1998,10-93
    [128] 王零森.二氧化锆陶瓷(一)[J].陶瓷工程,1997,31(1):41-44
    [129] 王大志,侯碧辉,陈树榆等.纳米氧化锆的物相与尺寸效应[J].分析测试学报,1997,157(9):1-4
    [130] 胡恒亮等编著.X射线衍射技术[M].北京:纺织工业出版社,1988,202-211
    [131] 钱逸泰.结晶化学[M].北京:中国科学技术大学出版社,1988,140
    [132] 唐爱东,黄可龙.Mn_3O_4的溶剂热法制备及晶粒生长动力学研究,无机化学学报,2005,21(6):929-933
    [133] Li H B, Liang K M, Gu S R, et al. Oriented nano-syructured ZrO_2 thin films on fused quartz substrate by sol-gel process [J]. J Mater. Sci. Lett., 2001, 20: 1301-1303
    [134] 戴遐明,艾德生,李庆丰.纳米ZrO_2粉体的热处理研究[J].中国粉体技术,2001,7(5):10-14
    [135] Garvie R C. Stabilization of the tetragonal structure in zirconia microcrystals [J]. J Phy Chem, 1978, 82(2): 218-221
    [136] 宋希文,安胜利,赵文广.氧化铝超细粉末的烧结特性[J].兵器材料科学与工程,2001,24(2):20-22
    [137] 周达飞主编.材料概论[M].北京:化学工业出版社,2001
    [138] 储成林.羟基磷灰石,钛生物功能梯度材料的制备和组织与性能:[D].哈尔滨:哈尔滨工业大学,2000
    [139] 王从曾主编.材料性能学[M].北京:北京工业大学出版社,2001
    [140] Kingery W D,Bowen H K,Uhlmann D R.清华大学无机非金属材料教研组译.陶瓷导论[M].北京:中国建筑工业出版社,1982
    [141] Cottrell A H, Strong solids[J]. Proc Roy Soc., 1964, A282: 2-9
    [142] Zhang X, Gubbels G H A, Terpstra R, et al. Toughening of calcium hydroxyapatite with silver particles[J]. Journal of Materials Science, 1997, 32: 235-243
    [143] Zou J P, Ruan J M, Huang B Y, et al. Physico-chemical properties and microstructure of hydroxyapatite-316L stinless steel biomatedals[J]. Journal of Central South University of Technology, 2004, 11(2): 113-118
    [144] Knepper M, Milthorpe B K. Interdiffusion in short-fibre reinforced hydroxyapatite ceramics[J]. Journal of materials Science: Materials in Medicine, 1998, 9: 589-596
    [145] 曹文斌,葛昌纯,汪朝霞等.一维热应力缓和型功能梯度材料的计算机辅助设计系统[J].北京科技大学学报,1998,20(1):57-60
    [146] Chu C L, Zhu J C, Yin Z D, et al. Structure optimization and properties of hydroxyapatite-Ti symmetrical functionally graded biomaterial[J]. Materials Science and Engineering A, 2001, 316: 205
    [147] Miao X, Ruys A J, Milthorpe B K. Hydroxyapatite-316L fibre composites prepared by vibration assisted slip casting[J]. Journal of Materials Science, 2001, 36: 3323-3332
    [148] Thelen S, Barthelat F, Brinson L C. Mechanics considerations for microporous titanium as an orthopedic implant material[J]. Journal of Biomedical Materials Research-Part A, 2004, 69(4): 601-610
    [149] 马伟民,佘正国.Si3N4/SiCp复相陶瓷材料的研究进展[J].江苏理工大学学报,1999,20(4):68-71
    [150] Miao X. Observation of microcracks formed in HA/316L composites[J]. Materials Letters, 2003, 57:1848
    [151] 刘继进,阮建明,邹俭鹏.HA-ZrO_2复合材料的致密化和力学性能,中国有色金属学报[J].2005,15(6):952-957
    [152] 黄培云主编.粉末冶金原理[M].北京:冶金工业出版社,1997
    [153] Samoilov V M, Ostronov B G. Effect of Grain Size on the Modulus of Elasticity and Strength of Synthetic Graphites[J]. Inorganic Materials, 2004, 40(4): 359-363
    [154] Stampfl J, Kolednik O. The separation of the fracture energy in metallic materialsInternational Journal of Fracture[J]. 2000, 101(4): 321-345
    [155] Becker J, Cannon R M, Ritchie R O. Statistical fracture modeling: Crack path and fracture criteria with application to homogeneous and functionally graded materials[J]. Engineering Fracture Mechanics, 2002, 69(14): 1521-1555
    [156] 杨云志,陈治清,冉均国等.梯度材料设计的现状与展望[J].兵器材料科学与工程,1998,21(6):49-53
    [157] 储成林,尹钟大,朱景川等.HA-Ti生物功能梯度材料微观组织及热应力缓和特性[J].无机材料学报,1999,14(5):775-782
    [158] 林慧国,傅代直.钢的奥氏体转变曲线——原理、测试与应用[M].北京:机械工业出版社,1987,148-157
    [159] Miller W S, Humphreys F J. Strengtening mechanisms in particulate metal matrix composites[J]. Seripta Metallurgiea et Materialia, 1991, 25(1): 33-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700