用户名: 密码: 验证码:
生物炭对西唯因与阿特拉津环境行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物炭是动植物残体经缺氧热解形成的一种富含碳物质,由于在生物质资源化、减缓气候变化、提高土壤肥力等诸方面表现出的良好潜能,生物炭作为一种新型多功能材料迅速成为研究的热点。由于含有多孔及高度芳香结构,生物炭对各类污染物表现出较强的吸附能力,必将影响其环境行为、归宿及生态风险。
     本论文系统研究了不同结构生物炭对两种典型农药一阿特拉津和西维因的吸附、水解及微生物降解等环境行为的影响及其微观机制。首先,利用猪粪、玉米秸秆、水稻秸秆等三种农业废弃物,通过不同的热解温度制备了物质组成和结构不同的生物炭并对生物炭进行了除灰处理,得到性质各异生物炭十余种,对不同生物炭的有机与无机部分的含量、化学组成与结构特征;孔性质与比表面积等性质进行了表征。在此基础上,研究了不同种类生物炭对两种农药的吸附作用机理,深入探讨了生物炭有机部分、无机部分、孔结构及生物碳表面化学作用等在吸附过程中所起的作用。研究了不同种类生物炭对两种农药的水解催化作用,通过逐步分析背景溶液,生物炭悬浊液以及生物炭浸出液中农药的水解,从OH-、表面矿物以及金属离子等方面探讨生物炭促进农药水解的机理。研究了生物炭对土壤中农药降解的影响,并向生物炭与土壤混合体系中接种筛选的对农药降解特异性微生物菌群,以促进土壤中农药的生物降解,通过不同的实验设计,综合分析了生物炭对土壤中农药去除的影响及途径。通过以上研究得到以下结论:
     (1)生物炭由脂肪炭和芳香碳组成的有机部分,以及磷酸盐、碳酸盐和其他无机矿物组成的无机部分共同构成。有机碳表面含有羟基,羧基以及羰基等基团。不同原料和温度制备的生物炭物质组成和结构有较大差异。猪粪制备的生物炭含有较高的灰分,而秸秆制备的生物炭灰分较低,且温度越高灰分含量越多。而高温使生物炭孔比例增加,比表面积显著升高。
     (2)生物炭可有效地吸附西维因,吸附等温线符合Freundlich方程,且吸附表现为非线性。低浓度时,初级生物炭有机碳标化分配系数(Koc)为10265-104.48L/kg。除灰后生物炭的吸附性能显著提高,低浓度时Koc为103·64-104.74L/kg。不同来源和温度制备的生物炭组成和结构具有差异性,其对西维因的吸附能力和吸附机制不同。猪粪生物炭(PBC)中无机部分对吸附的综合作用表现为阻碍作用;而玉米秸秆生物炭(MBC)和水稻秸秆生物炭(RBC)中无机部分在低温时表现为阻碍作用,而高温时表现出促进作用。生物炭对西维因的吸附是疏水性作用、孔填充作用、无机灰分以及特殊作用力等综合作用的结果,生物炭对西维因的吸附亲和性与生物碳的极性,芳香度以及疏水基团等单一因素没有明显的相关性。
     (3)生物炭对阿特拉津的等温吸附也表现为非线性吸附,但吸附亲和能力要弱于对西维因的吸附。高浓度时初级生物炭的Koc为101.90-103.10L/kg。除灰后生物炭的吸附性能显著提高,高浓度时Koc为102.63-103.10L/kg。生物炭对阿特拉津的吸附是疏水性作用、孔填充作用、无机灰分以及特殊作用力等综合作用。与生物炭对西维因的吸附作用类似,生物炭对阿特拉津的吸附亲和与生物炭的极性没有明显的相关性。
     (4)西维因在碱性(pH=9.1)条件下水解迅速,18h就水解80%以上;而在中性条件下较稳定。不同生物炭悬浊液中西维因的水解差异很大,7d水解率为21.9%-90.6%,西维因在生物炭悬浊液中的水解与体系pH呈正相关。除了pH对于水解的催化作用外,生物炭表面矿物以及释放到溶液中的过渡金属离子都可促进水解,而吸附降低了西维因分子的可及性,减弱水解。西维因在各生物炭实验组中的水解动力学过程大部分符合拟一级过程。
     (5)阿特拉津在环境中较稳定,在碱性(pH=9.1)条件下,7d水解率仅为16.1%。阿特拉津在生物炭悬浊液中的水解程度比西维因弱,7d仅水解了2.6%-63.4%。阿特拉津的水解与生物炭的无机部分含量呈正相关。阿特拉津在生物炭悬浊液中的水解主要受生物炭表面和pH的影响,而金属离子的对水解的贡献较差。阿特拉津在各生物炭实验体系中的水解动力学过程大部分符合拟一级动力学。
     (6)在灭菌的生物炭-土壤体系中,土壤pH升高,农药的降解主要是生物炭的催化水解作用。土壤中农药的降解趋势表现为PBC>RBC>MBC,与悬浊液中农药的水解趋势类似。未灭菌体系中,化学降解与微生物降解并存,添加高含量的高温生物炭的土壤pH的升高更显著,催化了水解,降低了土著微生物的降解能力,因此,农药的降解主要为水解。而添加高含量的低温生物炭的土壤,吸附作用降低了农药的生物有效性,对土壤中农药的降解有阻碍作用。而添加有机碳含量高的MBC,对土壤pH改变较小,为微生物提供所需的营养物质,促进微生物生长,提高了降解能力。活性污泥筛选的农药降解菌群能够有效地降解西维因和阿特拉津,且西维因降解菌群的降解能力强于阿特拉津降解菌群。加入外源微生物的土壤中,西维因40d降解率为79.8%;而添加微生物的土壤-生物炭体系,降解率为64.9%-82.9%,不同的生物炭分别表现出促进和抑制作用;对于阿特拉津也有同样的规律,这是生物炭影响水解、微生物生长以及化合物生物有效性的综合结果。
Biochars are materials produced by pyrolyzing biomass under limited oxygen. Due to its promising feature in recycling biomass waste, attenuating climate change, and improving soil fertility, biochar has quickly become a research hotspot as a novel functional material with multiple applications. Due to the highly porous structure and aromaticity, biochars show great adsorptive capacity for various pollutants, and hence influencing their environmental behavior, fate, and eco-risk.
     The present thesis systematically studied the impacts and mechanisms behind on the adsorption, hydrolysis, and biodegradation of two typical pesticides, carbaryl and atrazine, by different biochars. To do so, different biochars with varied composition and structure, were derived from pig-manure, maize straw, and rice straw under different pyrolysis temperatures, and the present biochars were further deashed by acid. The structure characteristics, such as the content and constitutes of organic and inorganic moieties, specific surface area and pore structure, and chemical surface functional groups,were measured. Moreover, the adsorption of the two pesticides on the original biochars and deashed biochars were studied, and relationships between adsorption affinity and structural parametersof biochars were analyzed to elucidate their functions in adsorption. The hydrolysis of carbaryl and atrazine were studied in suspensions of different biochars. The mechanism of the catalytic hydrolysis were discussed by analyzing the effects of elevated solution pH, mineral surface, and dissolvedmetal ions step by step. Finally, the degradation of pesticides in soil amended withbiochars were studied under different designs. Exogenous mixed bacteriawere added to strengthen the biodegradation of the pesticides. The influence and pathways behind of biochars on pesticide removal were discussed. Through theresearchabove, some main results obtainedwere as followed:
     (1) The biochars consisted of organic moiety including aliphatic carbon and aromatic carbon and inorganic moiety containing phosphate, carbonate, and other minerals. In addition, chemical functional groups, such as hydroxyl, carboxyl and carbonyl, also bound on the surface of bio chars. Great difference existed in composition and structure of various biochars derived from different feedstocks and temperatures. Biochars derived from pig-manure contained high content of ash, however, biochars derived from straws had low ash contents, and biochars derived from maize straw contained lower ash than that those derived from rice straw. The ash contents of biochars increased with elevated pyrolyzing temperature. Porosity and specific surface area also increased with increasing temperature.
     (2) Carbaryl could be adsorbed efficiently by biochars. Adsorption isotherms were fitted by Freundlich equation with distict nonlinearity. In prisent biochars, the distribution coefficients normalized by organic carbon content (Koc) of biochars were102.65-104.48L/kg at low solute concentration. When the ash was removed, adsorption increased generally,the distribution coefficients normalized by organic carbon content (Koc) of biochars were103.64-104.74L/kg at low solute concentration Differences in composition and structure of biochars derived from different feedstocks and temperatures led to the differences in adsorption affinity and mechanism of the various biochars. Inorganic moiety of the biochars derived from pig-manure (PBC) had an apparently negative effect on adsorption. The inorganic moiety of biochars derived from maize straw (MBC) and rice straw (RBC) under low pyrolyzing temperature had negative effect on adsorption, however, that of MBC and RBC obtained under high pyrolyzing temperature had positive effect. Overall, the adsorption of carbaryl on biochar was controlled by hydrophobic effect, pore-filling effect, effects with inorganic ash and specific effect. No significant correlation could be found between adsorption affinity with any of single parameters of polarity, aromaticity, and hydrophobic functional groups.
     (3) Adsorption isotherms of atrazine on biochars were fitted in Freundlich equation and displayed nonlinear trends. The Koc of biochars werel01.90-103.10L/kg at high solute concentration. After deashing treatment, The Koc of deashed biochars were102.63-103.10L/kg at high solute concentration. Mechanism of adsorption of atrazine on biochars was also a combination of hydrophobic effect, pore-filling effect, effects with inorganic moiety and specific effects. In addition, no significant correlation between polarity of biochars and adsorption affinity could be found for atrazine either.
     (4) Rapid hydrolysis of carbaryl occurred in alkaline (pH=9.1) background solution with over80%lost in18h, however, it was stable in neutral background solution. Hydrolysis of carbaryl in suspensions of biochars varied a lot with7d hydrolysis ratio ranging from21.9%to90.6%, and biochars influenced hydrolysis through different ways. We found a positive correlation between carbaryl hydrolysis and the pH of the suspensions. Beside pH, surface minerals, metal ions, and adsorption of biochars also influenced hydrolysis ratio, with the former two factors having catalyzing effect and the latter one showing inhibitory effect. The hydrolysis of carbaryl in majority of the tested systems were fitted in pseudo-first order kinetic equation.
     (5) Hydrolysis of atrazine only occurred in strong alkaline background solution, and only16.1%of atrazine was hydrolyzed at pH of9.1. The hydrolysis of atrazine in suspensions of biochars were generally weaker than those of carbaryl with7d hydrolysis ratio ranging from2.6%to63.4%. The hydrolysis of atrazine was positive correlated with the quantity of inorganic moiety, and surface minerals and carboxylic groups could enhance the OH" catalyzed hydrolysis of atrazine by forming H-bond with atrazine. The hydrolysis of atrazine in the suspensions of biochars were mainly influenced by mineral surface and solution pH, and the contribution of metal ions was very low. The hydrolysis of atrazine in majority of the tested systems were fitted in pseudo-first order kinetic equation.
     (6) Enhanced hydrolysis of the pesticides were the dominating process for the degradation of pesticides in sterile systems of biochar-soil mixture. The order of degradation ratio of the pesticides in biochar-soil mixing system was PBC>RBC> MBC, which was the same with the hydrolysis of pesticides in biochar suspensions. In unsterile systems, the chemical degradation and biodegradation co-existed, and the impact of biochar addition on the pesticide removal varied a lot. Generally, the addition of biochars enhanced pesticides removal, however, the enhancement extent and mechanism were different. Enhanced hydrolysis of pesticides was the main degradation in the system containing higher dose of biochars pyrolyzed at higher temperature due to the elevated pH of the system, which is favorable for hydrolysis and unfavorable for the growth of microorganisms. However, degradation of pesticides were reduced due to the lowered bioavailability by adsorption in the system containing higher dose of biochars pyrolyzed at lower temperature. However, biodegradation were increased in the system amended with MBC containing more organic carbon, which could supply more nutrition to microorganisms and did not change pH too much. Mixed floras were obtained by screening from activated sludge, and the degradation of carbaryl by the mixed flora was stronger than that of atrazine. The40d degradation ratio of carbaryl was enhanced to79.8%in the soil bioaugmented with the mixed flora; while the degradation ratio ranged in64.9%-82.9%when amended by biochars. Both enhancement and inhibitory occurred by different biochars, and similar results were acquired for atrazine. This is due to that biochars could simultaneously affect the hydrolysis, the growth of microorganisms, and the bioavailability of the pesticides.
引文
[1]Lehmann J. A handful of carbon. Nature,2007,447:143-144
    [2]Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change. Nature Commun,2010, doi:10.1038/ncomms1053
    [3]Glaser B, Parr M, Braun C, et al. Biochar is carbon negative. Nature Geosci, 2009.2(1):2-2
    [4]何绪生,耿增超,佘雕,等.生物炭生产与农用的意义及国内外动态.农业工程学报,2011,Vol.27(2):1-7
    [5]Whitman T, Nicholson C F, Torres D, et al. Climate change impact of biochar cook stoves in western kenyan farm households:system dynamics model analysis. Environ Sci Technol,2011,45 (8):3687-3694
    [6]Downie A E, Van Zwieten L, Smernik R J, et al. Terra Preta Australis Reassessing the carbon storage capacity of temperate soils. Agr Ecosvst Environ, 2011,140 (1-2):137-147
    [7]Zhang A F, Liu Y M, Pan G X, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil,2012,351 (1-2):263-275
    [8]Ogawa M, Okimori Y. Pioneering works in biochar research, Japan. Aust J Soil Res,2010,48 (6-7):489-500
    [9]Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the aualitv of a tvnical Midwestern agricultural soil. Geoderma.2010.158 (3-4):443-449
    [10]Laird D A, Brown R C, Amonette J E, et al. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuel Bioprod Bior,2009,3 (.5): 547-562
    [11]Yao Y, Gao B, Inyang M, et al. Biochar derived from anaerobically digested sugar beet tailings:characterization and phosphate removal potential. Bioresource Technol,2011,102 (10):6273-6278
    [12]Rajkovich S, Enders A, Hanley K, et al. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fert Soils, 2012,48 (3):271-284
    [13]Brockhoff S R, Christians N E, Killorn R J, et al. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron J, 2010,102 (6):1627-1631
    [14]Yip K, Tian F J, Hayashi J, et al. Effect of alkali and alkaline earth metallic species on biochar reactivity and svngas compositions during steam gasification. Energ Fuel,2010,24:173-181
    [15]Brewer C E, Schmidt-Rohr K, Satrio J A, et al. Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy,'2009,28 (3):386-396
    [16]Uchimiya M, Wartelle L H, Klasson K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agr Food Chem,2011,59 (6):2501-2510
    [17]Brown R A, Kercher A K, Nguyen T H, et al. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem, 2006,37 (3):321-333
    [18]Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota-a review. Soil Biol Biochem,2011,43(9):1812-1836
    [19]Mukherjee A, Zimmerman A R, Harris W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma,2011,163 (3-4): 247-255
    [20]李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展.环境化学.2011,30(8):1411-1421
    [21]黄剑,张庆忠,杜章留,等.施用生物炭对农田生态系统影响的研究进展.中国农业气象,2012,33(2):232-239
    [22]Vaccari F P, Baronti S, Lugato E, et al. Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron,2011,34(4):231-238
    [23]杨放,李心清,王兵,等.生物炭在农业增产和污染治理中的应用.地球与环境,2012,40(1):100-107
    [24]Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol,2008,42(14):5137-5143
    [25]Chen B L, Yuan M X. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soil Sediment,2011,11 (1):62-71
    [26]Sun H, Zhou Z. Impacts of charcoal characteristics on sorption of polycyclic aromatic hydrocarbons. Chemosphere,2008,71 (11):2113-2120
    [27]Nguyen T H, Cho H-H, Poster D L, et al. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environ Sc Technol,2007,41 (4):1212-1217
    [28]Zhang W, Wang L, Sun H. Modifications of black carbons and their influence on pyrene sorption. Chemosphere,2011,85(8):1306-1311
    [29]周尊隆,卢媛,孙红文.菲在不同性质黑炭上的吸附动力学和等温线研究.农业环境科学学报,2010,29(3):476-480[30] Zhou Z, Sun H, Zhang W. Desorption of polycyclic aromatic hydrocarbons from aged and unaged charcoals with and without modification of humic acids. Environ Pollut,2010,158 (5):1916-1921
    [31]Pehkonen S, You J, Akkanen J, et al. Influence of black carbon and chemical planarity on bioavailability of sediment-associated contaminants. Environ Toxicol Chem,2010,29(9):1976-1983
    [32]Rhodes A H, Carlin A, Semple K T. Impact of black carbon in the extraction and mineralization of phenanthrene in Soil. Environ Sci Technol,2008,42 (3): 740-745
    [33]Yao Y, Gao B, Chen H, et al. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J Hazard Mater,2012,209:408-413
    [34]Kasozi G N, Zimmerman A R, Nkedi-Kizza P, et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol,2010,44 (16):6189-6195
    [35]Ji L L, Wan Y Q, Zheng S R, et al. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes:implication for the relative importance of black carbon to soil sorption. Environ Sci Technol,2011,45 (13):5580-5586
    [36]Teixido M, Pignatello J J, Beltran J L, et al. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ Sci Technol.2011.45 (23):10020-10027
    [37]Cao X D, Ma L N, Liang Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol, 2011,45 (11):4884-4889
    [38]Sun K, Keiluweit M, Kleber M, et al. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technol,2011,102 (21):9897-9903
    [39]Sun K, Gao B, Ro K S, et al. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. Environ Pollut,2012,163: 167-173
    [401 Yu X Y Pan L G, Ying GG, et al. Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J Environ Sci-China, 2010,22(4):615-620
    [41]Zheng W,Guo M X, Chow T, et al. Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater,2010,181(1-3):121-126
    [42]Uchimiya M, Wartelle L H, Boddu V M. Sorption of triazine and organophosphorus pesticides on soil and biochar. J Agr Food Chem,2012,60 (12):2989-2997
    [43]Graber E R, Tsechansky L, Gerstl Z, et al. High surface area biochar negatively impacts herbicide efficacy. Plant Soil,2012,353(1-2):95-106
    [44]Qiu Y, Xiao X, Cheng H, et al. Influence of environmental factors on pesticide adsorption by black carbon:pH and model dissolved organic matter. Environ Sci Technol,2009,43 (13):4973-4978
    [45]Yang X B, Ying G G, Peng P A, et al. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agr Food Chem,2010,58 (13):7915-7921
    [46]Sopena F, Semple K, Sohi S, et al. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere,2012,88(1):77-83
    [47]Xu T, Lou L P, Luo L, et al. Effect of bamboo biochar on pentachlorophenol leachabilitv and bioavailabilitv in aericultural soil. Sci Total Environ.2012. 414:727-731
    [48]Jones D L, Edwards-Jones G, Murphy D V. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol Biochem,2011,43 (4): 804-813
    [49]余向阳,张志勇,张新明,等.黑碳对土壤中毒死蜱降解的影响.农业环境科学学报,2007.153(5):1681-1684
    [50]余向阳.黑碳对农药在士壤中的吸附/解吸行为及其生物有效性的影响:[博士学位论文].陕西杨凌:.西北农林科技大学,2007.
    [51]朱兆良,孙波,杨林章,等1.我国农业面源污染的控制政策和措施.科技导报,2005,23(4):47-51
    [52]周瑜.水—土环境中农药迁移富集规律研究:[博士学位论文].北京:中国地质大学,2009
    [53]刘宪华.受典型氨基甲酸酯农药污染土壤的生物修复及相关研究:[博士学位论文].天津:南开大学,2003
    [54]刘娜.地下水中阿特拉津污染的原位生物修复研究:[博士学位论文].吉林长春:吉林大学,2006
    [55]Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry.:Wiley-Interscience,2002
    [56]刘维屏.农药环境化学.北京:化学工业出版社,2006
    [57]叶常明,雷志芳,王杏君,等.除草剂阿特拉津的多介质环境行为.环境科学,2001,(2):69-73
    [58]Wei J, Furrer G, Kaufmann S, et al. Influence of clay minerals on the hydrolysis of carbamate pesticides. Environ Sci Technol,2001,35 (11):2226-2232
    [59]崔中利,崔利霞,黄彦,等.农药污染微生物降解研究及应用进展.南京农业大学学报,2012.35(5):93-102
    [60]Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol,2011,102(3): 3488-3497
    [61]Reza M T, Lynam J Ci, Vasquez V R, et al. Pelletization of biochar from hydrothermally carbonized wood. Environ Prog Sustain Energy,2012,31 (2):225-234
    [62]Graoer E, IsecnansKy L, Knanukov J, et ai. Sorption, volatilization, ana erricacy of the fumigant 1.3-dichloronronene in a biochar-amended soil. Soil Sci Soc Am J. 2011,75 (4):1365-1373
    [63]Bornemann L C, Kookana R S, Welp G. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere.2007.67(5):1033-1042
    [64]Uchimiya M, Bannon D I, Wartelle L H, et al. Lead retention by broiler litter biochars in small arms range soil:impact of pyrolysis temperature. J Agr Food Chem,2012,60(20):5035-5044
    [65]Warren G P, Robinson J S, Someus E. Dissolution of phosphorus from animal bone char in 12 soils. Nutr Cycl Agroecosys,2009,84(2):167-178
    [66]Sanchez M E, Lindao E, Margaieff D, et ai.Biofuels and biocnar proauction from pyrolysis of sewage sludge. J Residuals Sci Tech,2009,6(1):35-41
    [67]Ro K S, Cantrell K B, Hunt P G. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Ind Eng Chem Res,2010,49(20):10125-10131
    [68]Revell K T, Maguire R O, Agblevor F A. Influence of poultry litter biochar on soil properties and plant growth. Soil Sci,2012,177(6):402-408
    [69]Hass A, Gonzalez J M, Lima I M, et al. Chicken manure biochar as liming and nutrient source for acid annalachian soil. J Environ Oual.2012.41 (4): 1096-1106
    [70]Cao X Y, Ro K S, Chappell M, et al. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state C-13 nuclear magnetic resonance (NMR) Spectroscopy. Energ Fuel, 2011,25:388-397
    [71]Keiluweit M, Nico P S, Johnson M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol,2010,44 (4):1247-1253
    [72]Braida W J, Pignatello J J, Lu Y F,et al. sorption hysteresis of benzene in charcoal particles. Environ Sci Technol,2003,37 (2):409-417
    [731 Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its 5222-5228 potential use in remediation. Bioresource Technol,2010,101 (14):
    [74]Chun Y, Sheng G Y, Chiou C T, et al. Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol,2004,38(17):4649-4655
    [75]Yang Y, Sheng G. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol,2003,37 (16): 3635-3639
    [76]Enders A, Hanley K, Whitman T, et al. Characterization of biochars to evaluate 644-653 recalcitrance and agronomic performance. Bioresource Technol,2012,114:
    [77]Dong S J, Yan J T, Xu N, et al. Molecular dynamics simulation on surface modification of carbon black with polwinvl alcohol. Surf Sci,2011,605 (9-10):868-874
    [78]Raveendran K, Ganesh A, Khilar K C. Influence of mineral matter on biomass pyrolysis characteristics. Fuel,1995,74(12):1812-1822 1985,5:12-23
    [79]Kismmoto S, Sugiura G. Charcoal as a soil conditioner. lnt Achieve Future,
    [80]Lu J H, Li J F, Li Y M, et al. Use of rice straw biochar simultaneously as the sustained release carrier of herbicides and soil amendment for their reduced leaching. J Agr Food Chem,2012,60 (26):6463-6470
    [81]Chow J C, Watson J G, Chen L W A, et al. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols.Environ Sci Technol,2004,38 (16):4414-4422
    [82]Guo M X, Shen Y F. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Abstr Am Chem Soc,2011,242
    [83]Bruun E W, Hauggaard-Nielsen H, Ibrahim N, et al. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenerg,2011,35(3):1182-1189
    [84]Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technol, 2012,107:419-428
    [85]Kloss S, Zehetner F, Dellantonio A, et al. Characterization of slow pyrolysis biochars:effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual,2012,41 (4):990-1000
    [86]Chefetz B, Xing B S. Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds:a review. Environ Sci Technol,2009,43 (6):1680-1688
    [87]Kim K H, Eom I Y, Lee S M, et al. Investigation of physicochemical properties of biooils produced from yellow poplar wood (Liriodendron tulipifera) at various temperatures and residence times. J Anal Appl Pyrol,2011,92(1):2-9
    [88]Bird M I, Ascough P L, Young I M, et al. X-ray microtomographic imaging of charcoal. J Archaeol Sci,2008,35 (10):2698-2706
    [89]Lou L, Luo L, Wang L, et al. The influence of acid demineralization on surface characteristics of black carbon and its sorption for pentachlorophenol. J Colloid Interf Sci,2011,361 (1):226-231
    [90]Brewer C E, Unger R, Schmidt-Rohr K, et al. Criteria to select biochars for field studies based on biochar chemical properties. BioEnergy Res,2011,4(4): 312-323
    [91]Xiao B, Sun X, Sun R. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stabil,2001,74(2):307-319
    [92]Wu W, Yang M, Feng Q, et al. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenerg,2012,47:268-276
    [93]Zheng W, Guo M X, Rajagopalan N, et al. Application of green waste biochar for removal of pesticide residues. Abstrac Am Chem Soc,2009,237
    [94]Hsu N H, Wang S L, Lin Y C, et al. Reduction of Cr(VI) by crop-residue-derived black carbon. Environ Sci Technol,2009,43(23):8801-8806
    [95]Beesley L, Moreno-Jimenez E, Gomez-Eyles J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut,2011,159 (12):3269-3282
    [96]Montgomery J H. Agrochemicals Desk Reference. Florida USA:The Chemical Rubber Company Press,1997
    [97]Kleineidam S, Schuth C, Grathwohl P. Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants. Environ Sci
    Technol,2002,36(21):4689-4697
    [98]刁晓华.农药西维因在土壤及炭质吸附剂上的吸附机理研究:[硕士学位论文].北京:北京交通大学,2009
    [99]Zhu D, Pignatello J J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ Sci Technol,2005,39 (7):2033-2041
    [100]Wang X, Cook R, Tao S, et al. Sorption of organic contaminants by biopolymers:role of polarity, structure and domain spatial arrangement. Chemosphere,2007,66 (8):1476-1484
    [101]Kang S, Xing B. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environ Sci Technol,2005,39(1):134-140
    [102]Yang Y, Shu L, Wang X, et al. Impact of de-ashing humic acid and humin on organic matter structural properties and sorption mechanisms of phenanthrene. Environ Sci Technol,2011,45(9):3996-4002
    [103]Zhu D, Kwon S, Pignatello J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions. Environ Sci Technol,2005,39(11):3990-3998
    [104]De Oliveira M F, Johnston C T, Premachandra G, et al. Spectroscopic study of carbaryl sorption on smectite from aqueous suspension. Environ Sci Technol, 2005,39 (23):9123-9129
    [105]Salloum M J, Chefetz B, Hatcher P G. Phenanthrene sorption by aliphatic-rich natural organic matter. Environ Sci Technol,2002,36 (9):1953-1958
    [106]Perminova I V, Grechishcheva N Y, Petrosyan V S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons:relevance of molecular descriptors. Environ Sci Technol,1999, 33 (21):3781-3787
    [107]Sheng G, Johnston C T, Teppen B J, et al. Potential contributions of smectite clays and organic matter to pesticide retention in soils. J Agr Food Chem,2001, 49(6):2899-2907
    [108]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析.地理学报,2000,55(5):533-544
    [109]Liu P, Zhu D, Zhang H, et al. Sorption of polar and nonpolar aromatic compounds to four surface soils of eastern China. Environ Pollut,2008,156 (3):1053-1060
    [110]Keiluweit M, Kleber M. Molecular-level Interactions in soils and sediments: the role of aromatic pi-systems. Environ Sci Technol,2009,43 (10): 3421-3429
    [111]万年升,顾继东,段舜山.阿特拉津生态毒性与生物降解的研究.环境科学学报,2006,26(4):552-560
    [112]弓爱君,叶常明.除草剂阿特拉津(Atrazine)的环境行为综述.环境科学进展,1997,5(2):37-47
    [113]Martin S M, Kookana R S, Van Zwieten L, et al. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil. J Hazard Mater,2012, 231-232:70-78
    [114]Singh N, Kookana R S. Organo-mineral interactions mask the true sorption potential of biochars in soils. J Environ Sci Heal B,2009,44 (3):214-219
    [115]Ahangar A G, Smernik R J, Kookana R S, et al. Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene. Chemosphere,2008,72(6):886-890
    [116]Wang X, Guo X, Yang Y, et al. Sorption mechanisms of phenanthrene, lindane, and atrarine with various humic acid fractions from a single soil samnle. Environ Sci Technol,2011,45(6):2124-2130
    [171]Welhouse G J, Bleam W F. Atrazine hydrogen-bonding potentials. Environ Sci Technol,1993,27 (3):494-500
    [118]Lima D L, Schneider R J, Scherer H W, et al. Sorption- desorption behavior of atrazine on soils subiected to different organic long-term amendments. J Agr Food Chem,2010,58 (5):3101-3106
    [1191 James D Sullivan J, Felbeck JR G T. A study of the interaction of s-triazine herbicides with humic acids from three different soils. Soil Sci,1968,106 (1):42-52
    [120]Xing B, Pignatello J J, Gigliotti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ Sci Technol, 1996,30 (8):2432-2440
    [121]Kulikova N A, Perminova I V. Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environ Sci Technol,2002,36 (17):3720-3724
    [122]Gunasekara A S. Environmental Fate of Carbaryl. in. Sacramento, CA: Environmental Monitoring Branch, DPR,,2007.
    [123]Daul L J A. Sorption and hydrolysis of carbaryl in clay-water suspensions: [Ph.D. Dissertation]. Michigan, U.S.:Michigan State University.,2004
    [124]Liu W, Gan J, Papiernik S K, et al. Sorption and catalytic hydrolysis of diethatyl-ethyl on homoionic clays. J Agr Food Chem,2000,48 (5): 1935-1940
    [125]Wauchope R, Haque R. Effects of pH, light and temperature on carbaryl in aqueous media. B Environ Contam Tox,1973,9(5):257-260
    [126]Sun H-w, Yan Q-s. Influence of pyrene combination state in soils on its treatment efficiency by Fenton oxidation. J Environ Manage,2008,88 (3): 556-563
    [127]Schwarzenbach R P, Gschwend P M, Imboden D M. Chemical transformations I:hydrolysis and reactions involving other nucleophilic species. Environmental Organic Chemistry, Willy:2005,489-554
    [128]Badawi A M, Ahmed S M. Hydrolysis of pesticides in wastewater catalyzed by Cu (II) complexes of silyl based cationic micelles. J Disper Sci Technol,2010, 31 (4):577-582
    [129]Sogorb M A, Carrera V, Benabent M, et al. Rabbit serum albumin hydrolyzes the carbamate carbaryl. Chem Res Toxicol,2002,15 (4):520-526
    [130]Boesten J, Aden K, Beigel C. et al. Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration. Report of the FOCUS Work Group on Degradation Kinetics, EC Doc Ref Sanco/10058/2005, version,2005,1
    [131]Pramauro E, Bianco Prevot A, Vincenti M, et al. Photocatalytic degradation of carbaryl in aqueous solutions containing TiO2 suspensions. Environ Sci Technol 1997,31 (11):3126-3131
    [132]Hernandez-Soriano M C, Mingorance M D, Pena A. Dissipation of insecticides in a Mediterranean soil in the presence of wastewater and surfactant solutions. A kinetic model approach. Water Res,2009,43 (9):2481-2492
    [133]Kovaios I D, Paraskeva C A, Koutsoukos P G, et al. Adsorption of atrazine on soils:Model study. J Colloid Interf Sci,2006,299 (1):88-94
    [134]王立仁,赵明宇.阿特拉津在农田灌溉水及土壤中的残留分析方法及影响的研究.农业环境保护,2000,19(2):111-113
    [135]Zhan Z, Milliner M, Lercher J A. Catalytic hydrolysis of s-triazine compounds over Al2O3. Catal Today,1996,27(1)":167-173
    [136]Gamble D S, Khan S U. Atrazine in mineral soil:chemical species and catalysed hydrolysis. CanJ Chem,1992,70(6):1597-1603
    [137]Gamble D S, Khan S U. Atrazine hydrolysis in aqueous suspensions of humic acid at 25.0℃. Can J Chem,1988,66 (10):2605-2617
    [138]Gamble D S, Khan S U, Tee O S. Atrazine hydrolysis. part I:proton catalysis at 25℃. Pestic Sci,1983,14 (5):537-545
    [139]Lei Z-f, Ye C-m, Wang X-j. Hydrolysis kinetics of atrazine and influence factors. J Environ Sci,2001,13 (1):99-103
    [140]Gamble D S, Khan S U. Atrazine hydrolysis in soils:catalysis by the acidic functional groups of fulvic acid. Can J Soil Sci,1985,65(3):435-443
    [141]Wang Z-D, S Gamble D, H Langford C. Interaction of atrazine with Laurentian fulvic acid:binding and hydrolysis. Anal Chim Acta,1990,232:181-188
    [142]Barriuso E, Houot S. Rapid meneralization of the s-triazine ring of atrazine in soils in relation to soil management. Soil Biol Biochem,1996,28 (10): 1341-1348
    [143]Burrows H, Canle L M, Santaballa J, et al. Reaction pathways and mechanisms of photodegradation of pesticides. J photochem photobiol B:Biol,2002,67 (2):71-108
    [144]Dungan R S, Gan J, Yates S R. Effect of temperature, organic amendment rate and moisture content on the degradation of 1.3-dichloropropene in soil. Pest Manag Sci,2001,57(12):1107-1113
    [145]Keum Y-S, Li Q X. Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere,2004,54 (3):255-263
    [146]Aislabie J, Lloyd-Jones G. A review of bacterial-degradation of pesticides. Soil Res,1995,33 (6):925-942
    [147]Bollag J, Liu S, Cheng H. Biological transformation processes of pesticides. Pesticides in the soil environment:processes, impacts, and modeling, Madison:Soil Science Society of America, Inc.,1990,169-211
    [148]MacRae I C. Microbial metabolism of pesticides and structurally related compounds. in:Reviews of Environmental Contamination and Toxicology.NewYork:Springer,1989.1-87
    [149]Singh D K. Biodegradation and bioremediation of pesticide in soil:concept, method and recent developments. Indian J microbiol,2008,48(1):35-4U
    [150]You M, Liu X. Biodegradation and bioremediation of pesticide pollution Chin J Ecol,2004,23 (1):73-77
    [1511 Sutherland T D, Home I, Lacey M J, et al. Enrichment of an endosulfan-degrading mixed bacterial culture. Appl Environ Microb,2000,66 (7):2822-2828
    [152]Baczynski T P, Pleissner D. Bioremediation of chlorinated pesticide-contaminated soil using anaerobic sludges and surfactant addition. J Environ Sci Heal B,2009,45 (1):82-88
    [153]Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem,2009,41 (6): 1301-1310
    [154]Schmidt H-P. Biochar as carrier for plant nutrients and microorganisms-techniques of agro-activation, in:EGU General Assembly Conference Abstracts.:,2012.241
    [155]Yu X-Y, Mu C-L, Gu C, et al. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiopid in agricultural soils. Chemosphere. 2011,85 (8):1284-1289
    [156]Sopena F, Semple K, Sohi S, et al. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere,2012,88 (1):77-83
    [157]Jovanovich S B. Screening of Microorganisms for Bioremediation. United State Patents,5756304.1998-05-26.
    [158]Willumsen P A, Karlson U. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation,1996,7 (5):415-423
    [159]Lapinski J, Tunnacliffe A. Reduction of suspended biomass in municipal wastewater using bdelloid rotifers. Water Res,2003,37(9):2027-2034
    [160]刘爱菊.阿特拉津高效降解细菌的筛选及降解特性研究:[博士学位论文].山东泰安:山东农业大学.2003
    [1611 Tyagi M, da Fonseca M M R, de Carvalho C C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation,2011,22 (2):231-241
    [162]Rodriguez-Cruz S, Andrades M S, Sanchez-Camazano M, et al. Relationship between the adsorption capacity of pesticides by wood residues and the properties of woods and pesticides. Environ Sci Technol,2007,41(10):3613-3619
    [163]Loganathan V A, Feng Y, Sheng G D, et al. Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils. Soil Sci Soc Am J,2009,73 (3):967-974
    [164]Kookana R S. The role of biochar in modifving the environmental fate. bioavailabilirv. and efficacv of nesticides in soils:a review. Soil Res.2010.48 (7):627-637
    [165]Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem,2009,41 (6): 1301-1310
    [166]Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota-a review. Soil Biology and Biochemistrv.2011.43 (9):1812-1836
    [167]Kim I S, Park J-S, Kim K-W. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl Geochem,2001,16 (11):1419-1428
    [168]Braida W J, Pignatello J J, Lu Y, et al. Sorption hysteresis of benzene in charcoal particles. Environ Sci Technol,2003,37(2):409-417
    [169]Rao D, Webb J S, Kjelleberg S. Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microb,2005,71 (4):1729-1736
    [170]Zheng W, Guo M, Chow T, et al. Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater,2010,181(1):121-126
    [171]Radosevich M, Traina S J, Tuovinen O H. Atrazine mineralization in laboratory-aged soil microcosms inoculated with s-triazine-degrading bacteria. J Environ Qual,1997,26 (1):206-214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700