用户名: 密码: 验证码:
丛枝菌根真菌提高黄土高原紫穗槐抗旱能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在陕西黄土高原的甘泉、绥德、米脂、榆林4县(市)选取4个样地,研究紫穗槐(Amorpha fruticosa)不同深度土层丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)侵染率、孢子密度、球囊霉素和土壤因子之间的关系,并利用盆栽试验研究了水分胁迫下接种丛枝菌根真菌对紫穗槐生长和抗旱性的影响。得出以下主要结论:
     1. AMF侵染率平均值绥德样地最大,为100%,米脂样地最小,为75.02%;孢子密度平均值米脂样地最大,为5.91个/g,榆林样地最小,为1.57个/g。4个样地孢子密度最大值均在0~(-1)0cm土层,并且随土层加深而降低。AMF侵染率与孢子密度在各样地间差异显著,同一样地侵染率与孢子密度变化规律不一致。榆林样地的有机碳、铵态氮、速效磷、脲酶和碱性磷酸酶活性平均值显著高于其他样地。除绥德、米脂样地的蔗糖酶和甘泉样地的碱性磷酸酶外,其他样地的土壤酶活性和球囊霉素含量均随土层加深而降低,且各土层之间差异显著,最大值均在0~(-1)0cm土层。
     2. AMF侵染率与土壤pH、总球囊霉素和易提取球囊霉素含量呈极显著正相关,与有机碳、硝态氮、速效磷含量呈显著正相关。孢子密度与速效磷含量、蔗糖酶和脲酶活性呈显著正相关,与铵态氮含量呈显著负相关。主成分分析表明,第1、2主成分的累积方差贡献率达到56.4%,第1主成分主要综合了球囊霉素含量、AMF侵染率和孢子密度;第2主成分综合了土壤pH和部分土壤因子信息。因此,球囊霉素含量、AMF侵染率、孢子密度、pH、部分土壤因子对决定土壤生态起主要作用。
     3.水分胁迫下(土壤相对含水量为30%),接种植株的根系活力(0.66mg g~(-1) h~(-1))显著高于对照(0.49mg g~(-1) h~(-1));随着土壤相对含水量从70%降至30%,接种和对照的植株株高、地上和地下部干重、根系活力均下降,而接种的菌根侵染率则从43.99%提高到88.47%,显著上升;接种丛枝菌根真菌显著增加了叶片脯氨酸、可溶性糖和可溶性蛋白含量,降低了叶片丙二醛含量,尤其到胁迫后期,土壤相对含水量为30%时接种植株的脯氨酸含量为135.67μg/g,为对照(58.72μg/g)的2.31倍。土壤相对含水量为50%时接种植株SOD、POD、CAT的活性分别是对照的1.47、1.48和1.37倍。植株在长时间受到水分胁迫时,接种AMF可以显著提高这三种酶的活性。
     4.水分胁迫下,接种植株的Fv/Fm显著高于对照。土壤相对含水量为30%的对照,随着水分胁迫时间的延长,Fv/Fm在中后期从0.76快速降低至0.70,而接种则始终维持在0.78左右。水分胁迫前期各水分处理ETR值差异不显著,随着水分胁迫时间的延续,ETR值呈先降低再升高的趋势,土壤相对含水量为30%时的对照在中期下降幅度最大,从9.8降至6.0,且后期不能升高到原有水平,而接种可以恢复到接近原水平。随着土壤相对含水量的增加,qL显著上升,接种高于对照。水分胁迫至中期,土壤相对含水量为30%的接种和对照qL显著下降,从0.86降至0.73。胁迫至后期,对照qL继续降低至0.60,而接种回升至0.84,接近前期水平。各处理在水分胁迫初期,NPQ随土壤相对含水量的降低而上升,水分胁迫延续至中后期,各处理NPQ均缓慢上升,对照高于接种。
We collected the roots and rhizosphere soil samples from four different sites (Ganquan, Suide, Mizhiand Yulin) on the Loess Plateau in Shaanxi. The spatial distribution of AMF colonization, spore density andglomalin in the rhizosphere of Amorpha fruticosa were investigated, and their relationships with soil factorswere analysed. Then, under pot condition, an experiment was conducted to study the effects of AMF on thegrowth and drought resistance of Amorpha fruticosa under water stress. The main conclusions included asfollows:
     1. The average AMF colonization rate from Suide was the highest of all the samples, which was up to100%, and the lowest colonization rate was75.02%from Mizhi. The spore density from Mizhi was higherthan that of other samples, and it was5.91/g. The lowest spore density was from Yulin, and it was1.57/g.The highest spore density existed in the0~(-1)0cm layer of all samples, and with the soil depth increasing, thespore density decreased. In different regions, the difference of AMF colonization rate and spore densitywere notable. The rate of AMF colonization did not significantly correlate with the spore density. SOC,ammonia-N, olsen-P, urease and alkaline phosphatase from Yulin were significantly higher than those ofother samples. Except for the sucrase from Mizhi and Suide and alkaline phosphatase from Ganquan, in0~(-1)0cm layer, the activity of most soil enzymes and glomalin reached the maximum, and declined with theincreasing soil depth, which had a significant difference among the different layers.
     2. AMF colonization had a significant positive correlation with SOC, nitrate-N, olsen-P, and it had avery significant positive correlation with pH, TEG and EEG. Spore density had a significant positivecorrelation with olsen-P, sucrase, urease, and had a negative correlation with ammonia-N. TEG had a verysignificant positive correlation with EEG. Principal component analysis showed that the cumulativevariance proportion of PCA1and PCA2were up to56.4%. PCA1contained glomalin, AMF colonizationrate and spore density. PCA2contained pH and some soil factors. Therefore, the soil environment wasmainly decided by these factors.
     3. Under30%of soil relative water content, the root activity of Amorpha fruticosa inoculating AMFwhich was reached up to0.66mg g~(-1) h~(-1) was significantly higher than that without inoculating AMFwhich was0.49mg g~(-1) h~(-1). With soil relative water content decreasing, plant height, root activity, shootdry mass and root dry mass were decreased, and AMF colonization rate was significantly increased from43.99%to88.47%. Under the different soil relative water content, contents of proline, soluble sugar andsoluble protein were significantly increased by inoculating AMF, especially the content of proline thatinoculating AMF was2.31times as much as that without inoculating AMF, and the content of MDA wasdecrease with soil relative water content increased. Inoclulating AMF could promote the activities of threekinds of anti-oxidative enzymes included SOD, POD and CAT, which were1.47,1.48and1.37times that ofthose without inoculating AMF, and keep them at a high level.
     4. Under water stress, Fv/Fm of the plant inoculating AMF was significantly higher than thatwithout inoculating AMF. Under30%of soil relative water content, Fv/Fm of the plant without inoculatingquickly decreased from0.76to0.70, when the water stress reached to the middle and later period. But frombeginning to the end, Fv/Fm with inoculating AMF was at the level about0.78. At the early period of waterstress, ETR was at the same level among the different treatment. With the days lasting, ETR was higher thanthe level of early period. Under30%of soil relative water content, the plant without inoculating AMFdecreased by a largest margin which was from9.8to6.0in middle period, and it could not get recover tothe original level at the later period. But the plant inoculating AMF could get recover. qL increasedsignificantly with the increasing of soil relative water content, and the plant inoculating AMF was higherthan that without inoculating AMF. At the middle of water stress, qL decreased significantly from0.86to0.73under30%of soil relative water content. The plant without inoculating AMF continueded to drop to0.6,but the plant inoculating AMF get recover to original level about0.84. At the early period of waterstress, NPQ increased with the decreasing of soil relative water content. With the days lasting, NPQ of alltreatments increased slowly, and the plant of inoculating AMF was lower than that without inoculatingAMF.
引文
毕银丽,丁保建,全文智,李晓林.2001. VA菌根对白三叶吸收水分和养分的影响.草地学报,2:154-158
    陈辉,唐明.1997.杨树菌根研究进展.林业科学,33(2):181-188
    陈颖,贺学礼,山宝琴,赵丽莉.2009.荒漠油蒿根围AM真菌与球囊霉素的时空分布.生态学报,29(11):6010-6016
    崔大练,马玉心,石戈,范美华,杜巍,张明.2010.紫穗槐幼苗叶片对不同干旱梯度胁迫的生理生态响应.水土保持研究,17(2):178-185
    戴开军,雷国材,董彦卿.2001. VA菌根对冬小麦幼苗生长的影响.陕西农业科学,7:5-7
    杜小刚,唐明,陈辉,张海涵.2008.黄土高原不同树龄刺槐丛枝菌根与根际微生物的群落多样性.林业科学,44(4):78-82
    范苏鲁,苑兆和,冯立娟,王晓慧,丁雪梅,甄红丽.2011.水分胁迫下大丽花光合及叶绿素荧光的日变化特性.西北植物学报,31(6):1223-1228
    冯固,杨茂秋,白灯莎.1998.盐胁迫下VA菌根真菌对无芒雀麦体内矿质元素含量及组成的影响.草业科学,3:21-28
    冯欣欣,唐明,龚明贵,余红霞.2011.黄土高原狼牙刺丛枝菌根与球囊霉素的空间分布.西北农林科技大学学报·自然科学版,39(6):96-102
    高俊凤.2006.植物生理学实验指导.北京:高等教育出版社.142-228
    弓明钦,陈应龙,仲崇禄.1997.菌根研究及应用.北京:中国林业出版社.16-22
    关松荫.1986.土壤酶及其研究法.北京:农业出版社.274-313
    郭秀珍,毕国昌.1989.林木菌根及应用技术.北京:北京林业出版社.1-30
    贺学礼,赵丽莉,李英鹏.2005. NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响.生态学报,25(1):188-193
    贺学礼,张焕仕,赵丽莉.2008.不同土壤水分胁迫和AM真菌对油蒿抗旱性的影响.植物生态学报,32(5):994-1001
    胡正嘉,王平.1994. VAM菌根真菌对棉花枯萎病的影响.土壤学报,31:217-221
    黄世臣,李煕英.2007.水分胁迫条件下接种菌根菌对山杏实生苗抗旱性的影响.东北林业大学学报,35(1):31-37
    劳家柽.1988.土壤农化分析手册.北京:农业出版社.101-273
    李侠,张俊伶.2007.丛枝菌根根外菌丝对不同形态氮素的吸收能力.核农学报,21(2):195-200
    李晓林,曹一平.1992. VA菌根菌丝对土壤磷和铜吸收及其相关性.中国农业大学学报,25(5):65-72
    李晓林,冯固.2001.丛枝菌根生理生态.北京:华文出版社.153-154
    李志真,谢一青.2002. VA菌根的研究进展及其应用前景.江西农业大学学报·自然科学版,24(4):448-453
    梁秀棠.1990. VA菌根对芒果实生苗吸收营养和生长的影响.广西农学院学报,9(4):83-86
    刘柏玉,雷泽周.1992. VA菌根对蚕豆吸收钼、磷营养的研究.土壤学报,11:43-46
    刘江,黄学跃,李天飞.1999. VA菌根真菌在不同磷肥水平下对烟叶产量的影响.云南大学学报,21(3):239-242
    刘进法,夏仁学,王明元,王鹏.2007.丛枝菌根促进植物根系吸收难溶态磷的研究进展.亚热带植物科学,36(4):62-66
    刘润进,陈应龙.2007.菌根学.北京:科学出版社.1-447
    刘润进,李敏,刘杏忠,张福锁,李晓林.1999.丛枝菌根真菌和氮磷钾复合肥对砖瓦场破坏地土壤肥力的影响.干旱地区农业研究,17(3):45-50
    刘润进,李晓林.2000.丛枝菌根及应用.北京:科学出版社.1-24
    刘润进,郝文英.1994. VA菌根真菌对植物水分代谢的影响.土壤学报,31:46-53
    钱之玉.2003.药理学实验与指导.北京:中国医药科技出版社.114-126
    石兆勇,高双成,王发园.2008.荒漠生态系统中丛枝菌根真菌多样性.干旱区研究,25(6):783-789
    石兆勇,张立运,冯固,Peter C,田长彦,李晓林.2006.柽柳灌丛下与灌丛外短命植物AM真菌多样性.科学通报,51:108-115
    申鸿.2004.丛枝菌根(AM)对重金属污染耐受性机理研究.[博士学位论文].重庆:西南农业大学
    宋春勇,冯固,李晓林.2001.接种不同的VA菌根真菌对红三叶草利用不同磷源的影响.生态学报,21(9):1506-1511
    苏友波,林春,张福锁,李晓林.2003.不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响.土壤,35(4):334-343
    隋宝强,徐淑君,岳丽娜,曾明.2007.低磷与接种菌根对柑橘根形成及果实品质的影响.南方农业,1(4):2-3
    孙景宽,张文辉,陆兆华,刘新成.2009.干旱胁迫下沙枣和孩儿拳头叶绿素荧光特性研究.植物研究,29(2):216-223
    孙群,胡景江.2005.植物生理学研究技术.陕西:西北农林科技大学出版社.171-176
    唐明,陈辉,商鸿生.1999.丛枝菌根真菌(AMF)对沙棘抗旱性的影响.林业科学,35(03):50-54
    王倡宪,秦岭,冯固,李晓林.2003.三种丛枝菌根真菌对黄瓜幼苗生长的影响.农业环境科学学报,22(3):301-303
    王洪中,张忠武,贾秋鸿,张玲琪,李治滢,杨丽媛.2001.玉米育苗接种VA菌根真菌的田间侵染力和接种效应.西南农业学报,14(3):25-28
    王琰,陈建文,狄晓燕.2011.水分胁迫下不同油松种源SOD、POD、MDA及可溶性蛋白比较研究.生态环境学报,20(10):1449-1453
    王元贞,张木清.1995.水分胁迫下菌根菌接种对甘蔗叶活性氧代谢的影响.生态农业研究,3(2):10-15
    吴强盛,夏仁学.2004.水分胁迫下丛枝菌根真菌对枳实生苗生长和渗透调节物质含量的影响.植物生理与分子生物学学报,30(5):583-588
    吴强盛,邹英宁,夏仁学.2007.水分胁迫下丛枝菌根真菌对红橘叶片活性氧代谢的影响.应用生态学报,18(4):825-830
    熊丙全.2005.丛枝菌根真菌对葡萄苗木生长及其抗旱效应影响的研究.[硕士学位论文].重庆:西南农业大学
    徐辉,唐明,高瑞霞,陈桂梅.土壤因子对府谷清水川流域砒砂岩区刺槐和沙棘AMF的影响.西北植物学报,28(12):2500-2505
    许大全,张玉忠,张荣铣.1992.植物光合作用的光抑制.植物生理学通讯,28(4):237-243
    薛炳烨,罗新书.1991. VAM真菌对再植桃实生苗矿质元素吸收的影响.落叶果树,3:1-5
    袁维风,徐德聪.2011.丛枝菌根在植被恢复中的应用研究进展.广东农业科学,7:161-163
    曾秀华.2010.不同磷含量下接种AMF对狗牙根的生长和抗旱性的影响.[硕士学位论文].海口:海南大学
    张功,旺庆,峥嵘,王瑞君.2001.不同VA菌根真菌对马铃薯生长的影响.华北农学报,16(4):115-118
    张海涵,唐明,陈辉.2009.黄土高原典型林木根际土壤微生物群落结构与功能特征及其环境指示意义.环境科学,30(8):2432-2437
    张好强,唐明,张海涵.2009.土壤因子对柠条和沙棘根际AM真菌多样性及侵染状况的影响.土壤学报,46(4):721-724
    张文敏,张美庆,孟娜,孙小凤.1996. VA菌根用于矿山复垦的基础研究.矿冶,5(3):17-21
    张志良,瞿伟菁.2002.植物生理学实验指导.北京:高等教育出版社.128-133
    赵平娟,安峰,唐明.2007.丛枝菌根真菌对连翘幼苗抗旱性的影响.西北植物学报,2(27):396-399
    Affokpon A, Coyne D L, Lawouin L, Tossou C, Agbede R D, Coosemans J.2011. Effectiveness of nativeWest African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes.Biol Fertil Soils,47:207-217
    Alguacil M, Caravacal F, Diza-vivancos P, Hernandez J A, Roldanl A.2006. Effect of arbuscularmycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities inJuniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant and Soil,279:209-218
    Aliabadi F, Hussein L, Mohammad H, Shiranirad A H, Valadabadi A R, Daneshian J.2008. Effects ofarbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency,relative water content and praline accumulation rate of Coriander (Coriandrum sativum L.). Journal ofMedicinal Plants Research,2(6):125-131
    Arines J, Qwintela M, Vialaririo A, Palma J M.1994. Protein patterns and superoxide dismutase inVesicular-arbuscular mycorrhizal Pisum sativum L. plant. Plant and Soil,166:37-45
    Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M.2009. Changes in soilaggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungalspecies Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry,41(7):1491-1496
    Bennbrahim K F, Ismaili M.2002. Interactions in the symbiosis of Acacia saligna with Glomus mosseaeand rhizobiumin a fumigated and unfumigated soil. Arid Land Research and Management,16:365-376
    Bever J D, Smith S E, Smith F A.2002. Host-specificity of AM fungal population growth rates cangenerate feedback on Plant growth. Plant and soil,244(l-2):281-290
    Bolandnaza S, Aliasgarzad N, Neishabur M R, Chaparzaeh N.2007. Mycorrhizal colonization improvesonion (Allium cepa L.) yield and water use efficiency under water deficit condition. ScientiaHorticulturae,114:11-15
    Bonfante P, Perotto S.1995. Tansley review No.82strategies of arbuscular mycorrhizal fungi wheninfecting host plants. New Phytologist,130(l):3-21
    Boyle M.1989. The influence of organic matter on soil aggregation and water infiltration. Journal ofProduction Agricuture,2:290-299
    Chai H M, Zhang W W, Cai H J.2009. Study on the soil moisture stress level in regulated deficit irrigationexperiment. Agricultural Science&Technology,10(2):154-156
    Chalk P M, Souza R D F, Urquiaga S, Alves B J R, Boddey R M.2006. The role of arbuscular mycorrhizain legume symbiotic performance. Soil Biology and Biochemistry,38(9):2944-2951
    Clegg S, Gobran G R.1997. Rhizospheric P and K in forest soil manipulated with ammonium sulfate andwater. Canadian Journal of Soil Science,77(4):515-523
    Daft M J, Hacskaylo E.1976. Arbuscular mycorrhizas in the anthracitic and bituminous coal wastes ofPennsylvania. Journal of Applied Ecology,13:523-534
    Davies Jr F T, Olalde-Portugal V, Aguilera-Gomez L, Alvarado M J, Ferrera-Cerrato R C, Boutton T W.2002. Alleviation of drought stress of Chile ancho peper (Capsicum annuum L. cv. San Luis) witharbuscular mycorrhiza indigenous to Mexico. Scientia Horticulturae,92(3-4):347-359
    Driver J D, Holben W E, Rillig M C.2005. Characterization of glomalin as a hyphal wall component ofarbuscular mycorrhizal fungi. Soil Biology and Biochemistry,37(1):101-106
    Duan X, Neuman D S, Reiber J M.1996. Mycorrhizal in influence on hydraulic and hormonal factorsimplicated in the control of stomatal conductance during drought. Experimental Botany,47(3):1541-1550
    Elsen A, Gervacio D, Swennen R, Waele D D.2008. AMF-induced biocontrol against plant parasiticnematodes in Musa sp.: a systemic effect. Mycorrhiza,18:251-256
    Fedelibus M W, Martin C A, Stutz J C.2001. Geographic isolates of Glomus increase root growth andwhole-plant transpiration of Citrus seedlings grown with high phosphorus. Mycorrhiza,10:231-236
    Feng G, Zhang F S, Li X L, Tian C Y, Tang C, Rengel Z.2002. Improved tolerance of maize plants to saltstress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots.Mycorrhiza,12:185-190
    Fontenla S, Godoy R, Rosso P, Havrylenko M.1998. Root associations in Austrocedrus forests andseasonal dynamics of arbuscular mycorrhizas. Mycorrhiza,8(1):29-33
    Francis R, Read D J.1984. Direct transfer of carbon between plants connected by vesicular arbuscularmycorrhizal mycelium. Nature,307:53-56
    Garmendia I, Goicoechea N, Aguirreolea J.2004. Antioxidant metabolism in asymptomatic leaves ofVerticillium-infected pepper associated with an arbuscular mycorrhizal fungus. Journal ofPhytopathology,152(11-12):593-599
    George E, Haussler K, Vetterlein D, Gorgus E H.1992. Water and nutrient translocation by hyphae ofGlmous mosseae. Canadian Journal of Botany,70:2130-2137
    Gianinazzi-Pearson V, Gollotte A, Dumas-Gaudot E, Franken P, Gianinazzi S.1995. Gene expression andmolecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi.Advances in Molecular Genetics of Plant-Microbe Interactions,21:179-186
    Goicoechea N, Antolin M C, Sanchez-Diaz M.1997. Influence of arbuscular mycorrhizae and rhizobiumon nutrient content and water relation in drought stressed Alfalfa. Plant and Soil,192(2):261-268
    Grelet G A, Johnson D, Paterson E, Anderson I C, Alexander I J.2009. Reciprocal carbon and nitrogentransfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorataectomycorrhizas. New Phytologist,182(2):359-366
    Griffioen W A J.1994. Characterization of a heavy metal-tolerant endomycorrhizal fungus from thesurroundings of a zinc refinery. Mycorrhiza,4(5):197-200
    Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci E G, Cicek N.2007. Salicylic acid induced changes on somephysiological parameters symptomatic for oxidative stress and mineral nutrition in maize(Zea mays L.)grown under salinity. PlantPhysiology,164:728-736
    Hammer E C, Nasr H, Pallon J, Olsson P A, Wallander H.2011. Elemental composition of arbuscularmycorrhizal fungi at high salinity. Mycorrhiza,21(2):117-129
    Harthet Y D C, Herick B A D, Wilson G W T, Gibson D J.1993. Mycorrhizal influence on infra andinterspecific neighbor interactions among co-occurring prairie grasses. Journal of Ecology,81:787-795
    He Z Q, He C X, Zhang Z B, Zou Z B, Wang H S.2007. Changes of antioxidative enzymes and cellmembrance osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids andSurfaces: Biointerfaces,59:128-133
    Hirrel M C, Gerdemann J W.1980. Improved growth of onion and bell pepper in saline soils by twovesicular-arbuscular mycorrhizal fungi. Soil,44(3):654-655
    Ianson D C, Allen M F.1986. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizalfungal spores from arid sites. Mycologia,78(2):164-168
    Jonathan T V, Michael H W, Patrick G, Anna L, Wouter K, Tatsiana C, Andrew J S, Charles G, Dieter S,Harro J B, Alisdair R F, Harry J K.2010. SICCD7controls strigolactone biosynthesis, shoot branchingand mycorrhiza-induced apocarotenoid formation in tomato. The Plant Journal,61:300-311
    Joner E J, Jakobsen I.1995Growth and extracellular phosphatase activity of arbuscular mycorrhizalhyphae as influenced by soil organic matter. Soil Biology and Biochemistry,27(9):1153-1159
    Journet E P, Van Tuinen D, Gouzy J.2002. Exploring root symbiotic programs in the model legumeMedicago truncatula using EST analysis. Nucleic Acids Res,30:5579-5592
    Koide R T, Dickie I A.2002. Effects of mycorrhizal fungi on Plant populations. Plant and soil,244:307-317
    Li H, Li X L, Dou Z X, Zhang J L, Wang C.2012. Earthworm (Aporrectodeatrapezoides)–mycorrhiza(Glomus intraradices) interaction and nitrogen and phosphorus uptake by maize. Biology and Fertilityof Soils,48:75-85
    Li H, Ye Z H, Chan W F, Chen X W, Wu F Y, Wu S C, Wong M H.2011. Can arbuscular mycorrhizal fungiimprove grain field, As uptake and tolerance of rice grown under aerobic conditions?. EnvironmentalPollution,159(10):2537-2545
    Liu A, Hamer C, Hamilton R I, Ma B L.2000. Acquisition of Cu, Mn, and Fe by mycorrhizal maize (Zeamays L.) growth in soil at different P and micronutrient levels. Mycorrhiza,9:331-336
    Liu R J, Li M, Meng X X.2000. Effects of AM fungi on endogeous hormones in crops and cotton plants.Mycosystema,19(1):91-96
    Lobna Z, Gharbi F, Rezgui F, Rejeb S, Nahdi H, Rejeb M N.2009. Application of chlorophy fluorescencefor the diagnosis of salt stress in tomato “Solanum lycopersicum”. Scientia Horticulturae,120(3):367-372.
    Matsubara Y, Tamura H, Harada T.1995. Growth enhancement and verticillium wilt control byarbuscular-arbuscular mycorrhiza fungus inculation in eggplant. Journal of the Japanese Society forHorticultural Science,64(3):555-561
    Mosse B, Hayman D S.1971. Plant growth responses to vesicular-arbuscular mycorrhiza in unsterilizedfield soils. New Phytol,70:29-34
    Mseschner H, Dell B.1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil,159(1):89-102
    Mukerji K G, Chamalo B P, Singh J.2000. Mycorrhizal biology. New York: Kluwer Academic/PlenumPublishers
    Newman E I, Heap A J, Lawley R A.1981. Abundance of mycorrhizas and root surface icroorganisms ofPlantago lanceolata in relation to soil and vegetaton: a multi-variate approach. New Phytologist,89:95-108
    Ouziad F, Wilde P, Schmelzer E, Hidebrandt U, Bothe H.2006. Analysis of expression of aquaporins andNa+/H+transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress.Environmental and Experimental Botany,57(1-2):177-186
    Palma J M, Longa M A, del Rio L A, Arines J.1993. Superoxide dismutase in vesicular-arbuscularmycorrhizal red clover plants. Plant Physiology,87:77-83
    Phillips J M, Hayman D S.1970. Improved procedures for clearing roots and staining parasitic andvesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the BritishMycological Society,55(1):158-161
    Plenchette C, Duponnois R.2005. Growth response of the saltbush Atriplex nummularia L. to inoculationwith the arbuscular mycorrhizal fungus Glomus intraradices. Arid Environment,61:535-540
    Reinbott T M, Blevins D G.1999. Phosphorus nutritional effects on root hydraulic conductance, xylemwater flow and flux of magnesium and calcium in squash plants. Plant Cell Environ,209:263-273
    Rillig M C.2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of SoilScience,84:355-363
    Rillig M C, Allen M F.1999. What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystemresponses to elevated atmospheric CO2. Mycorrhiza,9:1-8
    Rogers J B, Christie P, Laidlaw A S.1994. Some evidence for host specificity in arbuscular mycorrhizas.Pedosphere,2(4):377-381
    Ruiz-Lozano J M, Azon R.1996. Mycorrhizal colonization and drought stress as facts affecting nitratereductase activity in lettuce plants. Agriculture Ecosystems&Environment,60(23):175-181
    Ruiz-Lozano J M, Comezm M, Azcon R.1995. Influence of different Glomus species on the time-course ofphysiological plant responses of lettuce to progressive drought stress periods. Plant Science,110:34-37
    Sally E.2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses.Plant Physiology,133:16-20
    Sawada H, Shim I S, Usui K.2006. Induction of benzoic acid2-hydroxylase and salicylic acidbiosynthesis-modulation by salt stress in rice seedlings. Plant Science,171:263-270
    Schüβler A, Walker C.2010. The Glomeromycota. A species list with new families and new genera.Edinburgh&Kew, UK: The Royal Botanic Garden; Munich, Germany:Botanische StaatssammlungMunich; Oregon, USA: Oregon State University. URL: http://www.amf-phylogeny.com
    Schüepp H, Dehn B, Sticher H.1987. Interaktionen Zwischen VA-Mykorrhizen undSchwermetallbelastungen. Angew Bot.,61:85-95
    Shenoy V V,2005. Enhancing plant phosphorus use efficiency for sustainable cropping. BiotechnologyAdvances,23:501-513
    Shumway D L, Koide R T.1995. Size and reproductive inequality in mycorrhizal and nonmycorrhizalpopulations of Abutilob theophrost. Journal of Ecology,83:613-620
    Smith S E, Gianinazzi-Pearson V, Koide R, Caimey J W G.1994. Nutrient transport in mycorrhizas:structrure, physiology and consequences for efficiency of the symbiosis. Plant and soil,159:103-113
    Smith S E, Long C M, Smith F A.1989. Infection of roots with adimorphic hypodermis: possible effects onsolute uptake. Agric Ecosyst Environ,29:403-407
    Subramanian K S, Charest C.1998. Arbuscular mycorrhizae and nitrogen assimilation in maize afterdrought and recovery. Physiol Plant,102:285-296
    Subramanian K S, Santhanakrishnan P, Balasubramanian P.2006. Response of field grown tomato plants toarbuscular mycorrhizal fungal colonization under varying intensities of drought stress. ScientiaHorticulturae,107:245-253
    Sylvia D M.1989. Nursery inoculation of Sea Oats with Vesicular-Arbuscular mycorrhizal fungi andoutplanting performance on Florida Beaches. Journal of Coastal Research,5(4):747-754
    Tisdall J M.1991. Fungal hyphae and structural stability of soil. Journal of Soil Research,29:729-743
    Tobar R, Azcon R, Barea J M.1994. Improved nitrogen uptake and transport from15N-labelled nitrate byexternal hyphae of arbuscular mycorrhiza under water-stressed conditions. The New Phytologist,126(1):119-122
    Uehlein N, Fileschi K, Eckert M, Bilenert G P, Bertl A, Kaldenhoff R.2007. Arbuscular mycorrhizalsymbiosis and plant aquaporin expression. Phytochem,68:122-129
    Weissenhorn I, Glashoff A, Leyval C, Berthelin J.1994. Differential tolerance to Cd and Zn of arbuscularmycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant andSoil,167(2):189-196
    Wilson J W T, Hartnett D C.1998. Interspecific variation in plant responses to mycorrhizal colonization intall grass prairie. America Journal of Botany,85:1732-1738
    Wu F S, Dong M X, Liu Y J, Ma X J, An L Z, Young J P W, Feng H Y.2011. Effects of long-termfertilization on AM fungal community structure and Glomalin-related soil protein in the Loess Plateauof China. Plant and Soil,342:233-247
    Zhang H Q, Tang M, Chen H, Tian Z Q, Xue Y Q, Feng Y.2010. Communities of arbuscular mycorrhizalfungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides inZhifanggou watershed. Plant and Soil,326:415-424
    Zhang Y F, Wang P, Yang Y F, Bi Q, Tian S Y, Shi X W.2011. Arbuscular mycorrhizal fungi improvereestablishment of Leymus chinensis in bare saline-alkaline soil: Implication on vegetation restorationof extremely degraded land. Journal of Arid Environments,75(9):773-778
    Ziedan E H, Sahab A F, Mostafa M H, Elewa I S.2011. Application of mycorrhizae for controlling rootdisease of sesame. Journal of Plant Protection Research,51(4):355-361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700