用户名: 密码: 验证码:
考虑幕墙开孔的屋盖结构风洞试验及理论分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展和科技的进步,各种造型独特、结构新颖的空间结构大量涌现。大跨屋盖结构因其具有优美的造型和良好的性能,被广泛应用于各种大型公共建筑中,由于这些建筑物大多具有质量轻、柔性大、阻力小等特点,对风荷载敏感,风荷载往往成为其结构设计的主要控制荷载。此外,由于建筑物部分门窗的开敞或突然开孔导致的内压增大对屋盖结构的安全会产生较大的影响。大量风灾调查表明,屋盖结构的风致破坏在很大程度上都是由于内外压的联合作用所引起的。然而目前人们对内压变化的产生机理及评估尚处于研究阶段,在进行结构的抗风设计时,国内外现行荷载规范仅是提出名义封闭或者开敞时的内压系数建议值,因此开展屋盖结构风致内压的研究具有极其重要的学术意义和工程应用价值,也是现代结构风工程领域研究的热点之一。
     本文通过对复杂体型的鱼形屋盖在台风风场与A类常规风场下进行了风洞对比试验研究,发现迎风屋檐的脉动风压明显大于屋面其它区域。不同湍流度下屋盖结构的风荷载存在较大的差异,屋盖在高湍流度下(台风风场)的风荷载比常规A类风场明显要大。建议在台风多发地区的建筑,特别是体型复杂的重要建筑,对结构风荷载的评估除了按照规范常规要求进行设计外,通过台风风场的风洞试验加以验证很有必要。
     基于吉林火车站的风洞试验,研究了屋盖的风荷载分布特性,发现较大的吸力均分布在迎风屋檐、屋盖角区和主站楼凸起的天窗附近。由于气流在高度较低处的湍流特性较大,更容易受周边地貌的影响,因而站台雨棚的升力系数受周边建筑的干扰效应较为明显。在屋盖的气流分离区域,因存在较大的负风压,风压的概率分布向负压段延伸,建议对于屋盖不同的紊流强度区域应取不同的峰值因子,在高紊流区域峰值因子可取3.0~4.0,在低紊流区域峰值因子可取2.5~3.0。
     对比昆明南站风洞试验结果与荷载规范规定值,发现当立面入口封闭时主站房屋面大部分区域的体型系数与荷载规范规定值大小相当,但在悬挑屋檐及屋面棱角处,体型系数明显大于规范规定值;当考虑有立面入口门洞时,屋面风载体型系数均大于规范规定的名义封闭下的体型系数。在主站房与站台雨棚边缘区域,脉动风压概率密度分布函数体现出较为明显的非高斯分布特性,在尾部负压区域更为显著。
     对有双面幕墙开孔结构的内压传递方程进行了推导,并从理论上阐述了背立面开孔时对内压附加阻尼效应的影响。分析了孔口等效阻尼比eq随幕墙开孔面积、建筑内部容积、参考风速及孔口处风压高度变化系数等参数的变化趋势。同时对开孔结构发生Helmholtz共振与立面幕墙开孔率的关系进行了探讨。
     通过刚性模型风洞试验对不同建筑内部容积、幕墙开孔面积、开孔位置及屋盖矢跨比的大跨屋盖结构的风荷载进行了系统的分析研究,并探讨了这些参数对屋盖等围护结构风荷载特性的影响。通过对内压测点的脉动风压功率谱分析,发现开孔结构内部风压谱不仅包含了大气湍流中的能量成分,同时也包含了由于孔口阻尼特性引起的特征湍流的成分。对考虑有多面幕墙开孔的内压理论估算公式进行了推导,并将试验值与理论估算值进行了对比。
     通过对屋盖结构的风致响应分析发现对于本身刚度较大的屋盖结构,风致响应的大小主要取决于屋盖的自振频率,而幕墙开孔率大小的变化对风致响应的影响并不是很明显。将传统的风振系数计算方法与采用目标概率法得到的位移风振系数进行对比发现对于脉动风影响较为显著的屋盖区域,利用传统的风振系数计算方法可能会过于低估脉动响应的影响,对结构设计是偏于不安全的。
     本文以风洞试验为主,结合理论分析详细研究了屋盖结构的风荷载特性和考虑幕墙开孔时建筑内部风效应及屋盖风致响应。研究成果可为屋盖结构的抗风设计及荷载规范相关条文的修订提供参考依据。
With the development of economy and progress of science and technology, lots ofbeautiful and innovative spatial structures have been built. Such long-span roofstructures are widely used in various large public buildings due to their exquisiteshapes and favorable performance. However, these structures, with the characteristicsof light mass, high flexibility and slight damping, are sensitive to wind loads, and thewind loads generally govern the design of these structures. In addition, suddenopening of doors and windows would result in an increase of internal pressure, whichwould be a major threaten to the roof structures. According to wind disaster surveys,the wind damages to roof structures, in a large degree, are caused by the combinedresults of internal and external pressures. At present, the mechanism of generating theinternal pressure changes is still not fully clear, and only the internal pressurecoefficients in nominal sealing or opening condition are provided in current domesticand international load codes for the wind-resistant design. Hence, further research onthe effect of wind-induced internal pressures on the wind loads on roof structures isrequired, which is also a hotspot in wind engineering.
     Based on the investigation of wind tunnel tests for fish-shaped roof structures interrain category A specified in the Chinese load code and typhoon wind field, it wasfound that the fluctuating pressure coefficients on the eaves and cantilevered roofswere larger than those on other areas of the roof. Obvious wind load differences forthe roof structures existed under different turbulence intensity conditions, the windloads under the typhoon wind field were greater than those in terrain category A.Besides the conventional norm for the assessment of design wind loads, it wassuggested that wind tunnel test in typhoon wind field was necessary when designingstructures are located in typhoon-prone areas, especially those with complicatedshapes.
     Based on the wind tunnel test of rigid model of Jilin Railway Station, the wind loaddistribution characteristics were presented and discussed. It was found that negativepressures (suctions) occurred on the eaves, cantilevered roof and the bulge part of theroof on the main station building. The turbulence characteristics of flow in lower partwere more obvious and the flow was easily affected by the surrounding topography.Therefore, the interference effect of the surrounding buildings on the lift coefficients of the platform awning of the station was more significant. Since stronger negativewind pressures were observed in the burbling zone of the roof, and the probabilitydistribution of wind pressure stretched away in the negative pressure area, so it wassuggested that different peak factors should be taken in the different areas of the roofwith different turbulence intensity levels, such as3.0-4.0would be appropriate for theintensive turbulence intensity area while2.5-3.0for the lower one.
     On comparison of the data of the wind tunnel test for the Kunming Railway (South)Station and those specified by the local load code, it was discovered that the shapecoefficients of the most areas of the main station building matched those specified bythe code when the fa ade entrance was enclosed, while the coefficients on the eavesand the cantilevered roof were distinctly greater than the specified ones. The shapecoefficients on the roof when there were openings were larger than those specified bythe load code with enclosed condition. The probability density function of fluctuatingwind pressure in the marginal area of the main station buildings and the platformawnings of the station shows obvious characteristics of Non-Gaussian, especially inits negative tail.
     The transfer equation of the internal pressure of roof structure with wall-openingconditions was deduced, and the additive damping effect of the internal pressure bythe opening in the leeward wall was also presented and discussed. Moreover, severalrelated factors were investigated, such as the variation tendency of the orificedamping with different opening areas, internal volume of structure, wind speed andwind pressure height coefficient of the opening. The relations between the openingrate of facade wall and the Helmholtz resonance of the opening structure were alsodiscussed.
     The assessment of internal and external pressure on long-span roof structuresinvolves several factors such as internal volume, opening area of wall, openinglocations and height-to-span were investigated by the wind tunnel tests of rigidmodels. It was observed from the Power Spectral Density (PSD) of internalfluctuating wind pressure that the spectra included not only the energy component ofatmospheric turbulence, but also the turbulence caused by the opening features. Thetheoretical estimation formula of the internal pressure under multiple wall openingsconditions was deduced, and a comparison between the experimental data and thetheoretical estimated values was also made.
     The analysis of wind-induced responses of long-span roofs indicated that thenatural frequencies of the roof structures play a significant role on the wind-induced responses, but little influence by the opening ratio. The comparison between the gustresponse coefficients calculated from traditional method and displacement gust factorcalculated by objective-probability method indicated that the traditional methodwould underestimate the response caused by fluctuating pressure where influencedmore by fluctuating wind, and it is not safe enough for the structural design.In this study, the combination of wind tunnel tests and theoretical analysis wereadopted to investigate the wind effects and wind-induced internal pressures of roofstructures with wall-openings. The outputs of this study are expected to providevaluable information and reference for the wind-resistant design of roof structures andthe revision of wind load codes in the future.
引文
[1] Kareem A, Kijewski T.7thUS National Conference on Wind Engineering:Asummary of Papers. Journal of Wind Engineering and Industrial Aerodynamics,1996,62:81-129
    [2]秦年秀,姜彤.2003年重大自然灾害回顾.自然灾害学报,2005,14(1):38-44
    [3]孙炳楠,傅国宏,陈鸣等.9417号台风对温州民房破坏的调查.第七届全国结构风效应会议论文集,1996,81-129
    [4]申建红,李春祥.土木工程结构风场实测及新技术研究的进展.振动与冲击,2008,27(10):115-120
    [5]戴益民.低矮房屋风载特性的实测及风洞试验研究:[湖南大学博士学位论文].长沙:湖南大学,2010
    [6]埃米尔·西缪,罗伯特·H·斯坎伦.风对结构的作用——风工程导论.刘尚培,项海帆,谢霏明译.上海:同济大学出版社,1992
    [7]中华人民共和国国家标准GB50009-2012.建筑结构荷载规范.北京:中国建筑工业出版社,2012
    [8]张相庭.结构风工程——理论·规范·实践.北京:中国建筑工业出版社,2006
    [9]黄本才,汪丛军.结构抗风分析原理及应用(第二版).上海:同济大学出版社,2008
    [10] Recommendations for Loads on Buildings. Architecture Institute of Japan(AIJ),2004
    [11] Davenport A D. The spectrum of horizontal gustiness near the ground in highwinds. J. Royal Meteorol. Soc.1961,87:194-211
    [12]周岱,舒新玲,周笠人.大跨度空间结构风振响应及其计算与试验方法.振动与冲击,2002,21(4):7-12
    [13]黄翔.悬臂弧形挑篷风荷载和等效静风荷载研究:[同济大学博士学位论文].上海:同济大学,2005
    [14]陈伏彬.大跨结构风效应的现场实测和风洞试验及理论研究分析研究:[湖南大学博士学位论文].长沙:湖南大学,2011
    [15] Apperley L W, Pitsis N G. Model full scale pressure measurements ongrandstand. Journal of Wind Engineering and Industrial Aerodynamics,1986,23:99-111
    [16] Pitsis N G, Apperley L W. Further full scale and model pressure measurementson a cantilever grandstand. Journal of Wind Engineering and IndustrialAerodynamics,1991,38:439-448
    [17] Yoshida M, Kondo K, Suzuki M. Fluctuating wind pressure measured withtubing system. Journal of Wind Engineering and Industrial Aerodynamics,1992,41-44:987-998
    [18]陈伏彬,李秋胜,李正农等.广州国际会展中心钢屋盖现场实测研究.第十三届全国风工程学术会议论文集.大连:中国土木工程学会,2007,404-409
    [19] Chen F B, Li Q S, Wu J R, et al. Wind effects on a long-span beam string roofstructure:Wind tunnel test,field measurement and numerical analysis. Journal ofConstructional Steel Research,2011,67:1591-1604
    [20]周印.高层建筑静力等效风荷载和响应的理论与实验研究:[同济大学博士学位论文].上海:同济大学,1998
    [21] Yasui H, Marukawa H, Katagiri J, et al. Study of wind-induced response oflong-span structure. Journal of Wind Engineering and Industrial Aerodynamics,1999,83:277-288
    [22] Uematsu Y, Yamada M, Inoue A, et al. Wind loads and wind-induced dynamicbehavior of a single-layer latticed dome. Journal of Wind Engineering andIndustrial Aerodynamics,1997,66:227-248
    [23] Uematsu Y, Kuribara O, Yamada M, et al. Wind-induced dynamic behavior andits load estimation of a single-layer latticed dome with o long span. Journal ofWind Engineering and Industrial Aerodynamics,2001,89:1671-1687
    [24] Suzuki M, Sanada S, hayami Y, et al. Prediction of wind-induced response of asemi-rigid hanging roof. Journal of Wind Engineering and IndustrialAerodynamics,1997,72:357-366
    [25] Letchford C W, Satkar P P. Mean and fluctuating wind loads on rough andsmooth parabolic domes. Journal of Wind Engineering and IndustrialAerodynamics,2000,88:101-117
    [26] Lam K M, Zhao J G. Occurrence of peak lifting actions on a large horizontalcantilevered roof. Journal of Wind Engineering and Industrial Aerodynamics,2002,90:897-940
    [27] Zhao J G, Lam K M. Characteristics of wind pressures on large cantileveredroofs: effect of roof inclination. Journal of Wind Engineering and IndustrialAerodynamics,2002,90:1867-1880
    [28] Biagini P, Borri C, Facchini L. Wind response of large roofs of stadions andarena. Journal of Wind Engineering and Industrial Aerodynamics,2007,95:871-887
    [29]顾明,朱川海.大型体育场主看台挑篷的风压及其干扰影响.建筑结构学报,2002,23(4),20-26
    [30]周晅毅,顾明.大跨度屋盖表面风压系数的试验研究.同济大学学报,2002,20(12),1423-1428
    [31]傅继阳,谢壮宁,倪振华.大跨悬挑平屋盖结构风荷载特性的试验研究.土木工程学报,2003,36(10),7-14
    [32]沈国辉,孙炳楠,楼文娟.复杂体型大跨屋盖结构的风荷载分布.土木工程学报,2005,38(10),39-43
    [33]李庆祥,孙炳楠,沈国辉等.湖州大剧院屋盖及幕墙的风荷载分布特性.哈尔滨工业大学学报,2006,38(9),1531-1536
    [34]李秋胜,陈伏彬,傅继阳等.大跨屋盖结构风荷载特性的试验研究.湖南大学学报(自然科学版),2009,36(8),12-17
    [35]方江生,丁洁民,李志敏.北京奥运乒乓球馆维护结构风荷载的试验研究.空气动力学报,2009,27(1),52-56
    [36]杨伟.基于RANS的结构风荷载和响应的数值模拟研究:[同济大学博士学位论文].上海:同济大学,2004
    [37]舒新玲,周岱.风荷载测试与模拟技术的回顾与展望.振动与冲击,2002,21(3):6-10
    [38]陈勇.体育场风压风流场数值模拟及模态分析法研究大悬挑屋盖风振动力响应:[同济大学硕士士学位论文].上海:同济大学,2002
    [39]顾明,杨伟,傅钦华等.上海铁路南站屋盖结构平均风荷载的数值模拟.同济大学学报,2004,32(2):353-358
    [40]顾明,黄鹏,杨伟等.上海铁路南站平均风荷载的风洞试验和数值模拟.建筑结构学报,2004,25(5):59-65
    [41]汪从军,黄本才,张昕等.越南国家体育场屋盖平均风压及风环境影响的数值模拟.空间结构,2004,10(2):43-49
    [42]刘继生,陈水福.井冈山机场航站楼屋盖表面风压的数值模拟及试验研究.工程力学,2005,22(4):96-100
    [43] Nahmkeon H, Kim S R, Won C S, et al. Wind load simulation for high-speedtrain stations. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:2042-2053
    [44]卢春玲,李秋胜,黄生洪等.大跨度屋盖风荷载的大涡模拟研究.湖南大学学报(自然科学版),2010,37(10),7-12
    [45]卢春玲,李秋胜,黄生洪等.大跨度复杂屋盖结构风荷载的大涡模拟.土木工程学报,2011,44(1):1-10
    [46]卢春玲.复杂超高层及大跨度屋盖建筑结构风效应的数值风洞研究:[湖南大学博士学位论文].长沙:湖南大学,2012
    [47] Uematsu Y, Watanabe K, Sasaki A, et al. Wind-induced dynamic response andresultant load estimation of a circular flat roof. Journal of Wind Engineering andIndustrial Aerodynamics,1999,83:251-261
    [48] Lazzari M, Anna V, Saetta, Renato V, et al. Non-linear dynamic analysis ofcable-suspended structures subjected to wind actions. Computers and Structures.2001,79:953-969
    [49]沈世钊,徐崇宝,赵臣.悬索结构设计.北京:中国建筑工业出版社,1997
    [50]杨庆山,沈世钊.悬索结构随机振动风振反应分析.建筑结构学报,1998,19(4):29-39
    [51]王衍,孙炳楠,楼文娟等.台州体育中心屋盖的风振系数计算.工业建筑,2005,35(4):82-84
    [52]李庆祥,楼文娟,杨仕超等.大跨单层球面网壳的风振系数及其参数分析.建筑结构学报,2006,27(8):65-72
    [53]潘峰.大跨度屋盖结构随机风致振动响应精细化研究:[浙江大学博士学位论文].杭州:浙江大学,2008
    [54] Nakamura O, Tamura Y, Miyashita K, et al. A case study of wind pressure andwind-induced vibration of a large span open-type roof. Journal of WindEngineering and Industrial Aerodynamics,1994,52:237-248
    [55] Nakayama M, Sasaki Y, Masuda K, et al. An efficient method for selection ofvibration modes cantributory to wind response on dome-like roofs. Journal ofWind Engineering and Industrial Aerodynamics,1998,73:31-44
    [56]陆锋.大跨度平屋面结构的风振响应和风振系数研究:[浙江大学博士学位论文].杭州:浙江大学,2001
    [57]何艳丽.空间网格结构频域风振响应分析模态补偿法.工程力学,2002,19(4):1-6
    [58]王国砚,黄本才,林颖儒等.基于CQC方法的大跨屋盖结构随机风振响应计算.第六届全国风工程及工业空气动力学学术会议论文集,2002,113-119
    [59]黄明开,倪振华,谢壮宁.大跨圆拱屋盖结构的风致响应分析.振动工程学报,2004,17(3):275-279
    [60]陈贤川,赵阳,董石麟.大跨空间网格结构风振响应主要贡献模态的识别及选取.建筑结构学报,2006,27(1):9-15
    [61]顾明,周晅毅,黄鹏.大跨屋盖结构风致抖振响应研究.土木工程学报,2006,39(11):37-42
    [62]周晅毅,顾明.上海铁路南站屋盖结构风致抖振响应参数分析.同济大学学报(自然科学版),2006,34(5):574-579
    [63] Holmes J D. Effects of frequency response on peak pressure measurement.Journal of Wind Engineering and Industrial Aerodynamics,1984,17:1-9
    [64] Holmes J D, Lewis R E. Optimization of dynamic-pressure-measurementsystems. Ⅰ. single point measurements. Journal of Wind Engineering andIndustrial Aerodynamics,1987,25:249-273
    [65] Holmes J D, Lewis R E. Optimization of dynamic-pressure-measurementsystems. Ⅱ. parallel tube-manifold systems. Journal of Wind Engineering andIndustrial Aerodynamics,1987,25:275-290
    [66] Holmes J D. Distribution of peak wind load on a low-rise building. Journal ofWind Engineering and Industrial Aerodynamics,1988,29:59-67
    [67] Holmes J D. Analysis and synthesis of pressure fluctuations on bluff bodiesusing eigen-vectors. Journal of Wind Engineering and Industrial Aerodynamics,1990,33:219-230
    [68] Holmes J D. Equivalent static load distributions for resonant dynamic responseof bridges. Proceedings of the10thInternational Conference on WindEngineering,1999,907-911
    [69] Holmes J D. Effective static load distributions in wind engineering. Journal ofWind Engineering and Industrial Aerodynamics,2002,90:91-109
    [70]周晅毅.大跨度屋盖结构的风荷载及风致响应研究:[同济大学博士学位论文].上海:同济大学,2004
    [71]陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究及应用:[浙江大学博士学位论文].杭州:浙江大学,2005
    [72]陈波.大跨屋盖结构等效静风荷载精细化理论研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2006
    [73] Stathopoulos T, Surry D, Davenport A D. Internal pressure characteristics oflow-rise buildings due to wind actions. Proceedings of the5thInternationalConference on Wind Engineering.1979,451-463
    [74] Holmes J D. Mean and fluctuating internal pressures induced by wind.Proceedings of the5thInternational Conference on Wind Engineering.1979,435-450
    [75] Liu H, Saathoff P J. Building internal pressure: sudden change. Journal ofEngineering Mechnics,1981,107(2):309-321
    [76] Liu H, Saathoff P J. Internal pressure and building safty. Journal of StructuralEngineering,1982,108:2223-2234
    [77] Vickery B J. Gust-factors for internal-pressures in low-rise buildings. Journal ofWind Engineering and Industrial Aerodynamics,1986,23:259-271
    [78] Liu H, Rhee K H. Helmholtz oscillation in building models. Journal of WindEngineering and Industrial Aerodynamics,1986,24:95-115
    [79] Stathopoulos T, Luchian H D. Transient wind induced internal pressures. Journalof Engineering Mechnics,1989,115(7):1501-1514
    [80] Fahrtash M, Liu H. Internal pressure of low-rise building-field measurements.Journal of Wind Engineering and Industrial Aerodynamics,1990,36:1191-1200
    [81] Woods A R, Blackmore P A. The effect of dominant opening and porosity oninternal pressures. Journal of Wind Engineering and Industrial Aerodynamics,1995,57:167-177
    [82] Beste F, Cermak J E. Correlation of internal and area-averaged external windpressure on low-rise buildings. Journal of Wind Engineering and IndustrialAerodynamics,1997,69-71:557-566
    [83] Ginger J D. Internal pressure and cladding net wind loads on full-scale low-risebuilding. Journal of Structural Engineering,2000,126(4):538-543
    [84] Standards Australia/Standards New Zealand. Australian/New Zealand StandardStructural design actions, Part2:2002-AS/NZS1170,2:2002. Standards AustraliaInternational Ltd., Sydney, AS and Standards New Zealand, Wellington, NZ.
    [85] Sharma R N, Richards P J. Net pressures on the roof of a low-rise building withwall openings. Journal of Wind Engineering and Industrial Aerodynamics,2005,93:267-291
    [86]余世策.开孔结构风致内压及其与柔性屋盖的耦合作用:[浙江大学博士学位论文].杭州:浙江大学,2006
    [87] Code of Practice on Wind Effects in Hong Kong. Building Department,12/F-18/F Pioneer Centre,750Nathan Road, Mongkok, Kowloon, Hong Kong,2004
    [88] American Society of Civil Engineers. Minimum Design loads for building andother Structures ASCE Standard. ASCE/SEI7-10. Structural EngineeringInstitute, ASCE,1801Alexander Bell Drive, Reston, VA, USA,2010
    [89] National Reserch Council of Canada(NRCC). User’s Guide-NBC1995Structural Commentaries(part4), Canada,1995
    [90] Karman T Von. Progress in the statistical theory of turbulence. Proceedings ofthe National Academy of Sciences,1948,34:530-539
    [91] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics ofsurface-layer turbulence. Quarterly Journal of the Royal MeteorologicalSociety,1972,98:563-589
    [92] Davenport A D. The spectrum of horizontal gustiness near the ground in highwinds. Quarterly Journal of the Royal Meteorological Society,1961,87:194-211
    [93]刘尚培,项海帆,谢霁明译.风对结构的作用—风工程导论.同济大学出版社,1992
    [94]戴诗亮.随机振动实验技术.清华大学出版社,1984
    [95] Letchford C W, Sandri P, Levitan M L, et al. Frequency response requirementsfor fluctuating wind pressure measurements. Journal of Wind Engineering andIndustrial Aerodynamics,1992,40:263-276
    [96] Holmes J D. Non-Gaussian characteristics of wind pressure fluctuations. Journalof Wind Engineering and Industrial Aerodynamics,1981,7:103-108
    [97] Li Q S, Calderone I, Melbourne W H. Probabilistic characteristics of pressurefluctuations in separated and reattaching flows for various free-steam turbulence.Journal of Wind Engineering and Industrial Aerodynamics,1999,82:125-145
    [98]沈国辉.大跨度屋盖结构的抗风研究—屋盖结构的表面风压风致响应和等效风荷载研究:[浙江大学博士学位论文].杭州:浙江大学,2004
    [99]孙瑛.大跨屋盖结构风荷载特性研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2007楼文娟,杨毅,庞振钱.刚性模型风洞试验确定大跨屋盖结构风振系数的多阶模态力法.空气动力学报,2005,23(2),183-187
    [100]楼文娟,杨毅,庞振钱.刚性模型风洞试验确定大跨屋盖结构风振系数的多阶模态力法.空气动力学报,2005,23(2),183-187
    [101]中华人民共和国国家标准GB50009-2001(2006版).建筑结构荷载规范.北京:中国建筑工业出版社,2006
    [102]Lin J X, Surry D, Tieleman H W. The distribution of pressure near roof cornersof flat roof low buildings. Journal of Wind Engineering and IndustrialAerodynamics,1995,56:235-265
    [103]Kawai H, Nishimura G. Characteristics of fluctuating suction and conicalcortices on a flat roof in oblique flow. Journal of Wind Engineering andIndustrial Aerodynamics,1996,60:211-225
    [104]Wua F, Sarkarb P P, Mehtac K C. Influence of incident wind turbulence onpressure fluctuations near flat-roof corners. Journal of Wind Engineering andIndustrial Aerodynamics,2001,89:403-420
    [105]Richards P J, Hoxey R P. Quasi-steady theory and point pressures on a cubicbuilding. Journal of Wind Engineering and Industrial Aerodynamics,2004,92:1173-1190
    [106]Holmes J D, Cochran L S. Probability distrbutions of extreme pressurecoefficients. Journal of Wind Engineering and Industrial Aerodynamics,2003,82:893-901
    [107]Shiau B S, Chen Y B, Chun W N. Wind tunnel test on the surface pressure andpressure spectra of a square prismatic building in the turbulent boundary layer.The5thInternational Colloquium on Bluff Body Aerodynamics and Applications.2004,465-468
    [108]Zhou N, Smith D A, Kishor C Mehta. Stochastic models for wind, wind-inducedpressure, and structural response of a purlin measured in full scale. The11thInternational Conference on Wind Engineering,2003,821-828
    [109]Ko N H, You K P, Kim Y M. The effect of non-Gaussian local wind pressures ona side face of a square building. Journal of Wind Engineering and IndustrialAerodynamics,2005,93:383-397
    [110]Kumar K S, Stathopoulos T. Fatigue analysis of roof cladding under simulatedwind loading. Journal of Wind Engineering and Industrial Aerodynamics,1998,77-78:171-183
    [111]Jeong S H. Simulation of large wind pressures by gusts on a bluff struture. Windand Structures,2004,7(5):333-344
    [112]邱天爽,张旭秀等.统计信号处理—非高斯信号处理及其应用.电子工业出版社,2004
    [113]Gioffre M, Gusella V, Grigoriu M. Non-Gaussian wind pressure on prismaticbuildings. Ⅰ: Stochastic field. Journal of Structural Engineering,2001,127(9):981-989
    [114]张朝晖.大跨度环形悬挑屋盖结构表面风荷载特性研究:[重庆大学硕士学位论文].重庆:重庆大学,2011
    [115]吴望一.流体力学(上册).北京大学出版社,1982
    [116]Vickery B J, Bloxham C. Internal pressure dynamics with a dominant opening.Journal of Wind Engineering and Industrial Aerodynamics,1992,41:193-204
    [117]Sharma R N, Richards P J. Computational modeling in the prediction of buildinginternal pressure gain functions. Journal of Wind Engineering and IndustrialAerodynamics,1997a,67-68:815-825
    [118]Sharma R N, Richards P J. Computational modeling in the transient response ofbuilding internal pressure to a sudden opening. Journal of Wind Engineering andIndustrial Aerodynamics,1997b,72:149-161
    [119]Sharma R N, Richards P J. The effect of roof flexibility on internal pressurefluctuations. Journal of Wind Engineering and Industrial Aerodynamics,1997c,72:175-186
    [120]Guha T K, Sharma R N, Richards P J. Analytical and CFD modeling of transientintenal pressure response following a sudden opening in building/cylindricalcavities. The11thAmericas conference on Wind Engineering, San Juan, PuertoRico,2009
    [121]徐海巍,余世策,楼文娟.开孔结构内压传递方程的适用性研究.浙江大学学报(工学版),2012,46(5),811-817
    [122]Chaplin G C, Randall J R, Baker C J. The turbulent ventilation of a singleopening enclosure. Journal of Wind Engineering and Industrial Aerodynamics,2000,85:145-161
    [123]Vickery B J. Internal pressures and interactions with the building envelope.Journal of Wind Engineering and Industrial Aerodynamics,1994,53:125-144
    [124]Sharma R N, Richards P J. The influence of Helmholtz resonance on intrenalpressure in low-rise building. Journal of Wind Engineering and IndustrialAerodynamics,2003a,91:807-828
    [125]Deodatis G. Simulation of ergodic multivariate stochastic processes. Journal ofEngineering Mechanics.1996,122(8):778-787
    [126]王之宏.风荷载的模拟研究.建筑结构学报,1994,15(1),44-52
    [127]曹映泓,项海帆,周颖.大跨度桥梁随机风场的模拟.土木工程学报,1998,31(3),72-78
    [128]王修琼,张相庭.混合回归模型及其在高层建筑风响应时域分析中的应用.振动与冲击,2000,19(1),5-8
    [129]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制.空间结构,2001,7(3),3-11
    [130]舒新玲,周岱.风速时程AR模型及其快速实现.空间结构,2003,9(4),27-32
    [131]刘锡良,周颖.风荷载的几种模拟方法.工业建筑,2005,35(5),81-84
    [132]何文飞.高耸格构式塔架风振响应研究:[湖南大学硕士学位论文].长沙:湖南大学,2009
    [133]董军,邓洪州,刘学利.高层建筑脉动风荷载时程模拟的AR模型方法.南京建筑工程学报,2000,53(2),20-25
    [134]李勇,徐震. MATLAB辅助现代工程数学信号处理.西安电子科技大学出版社,2002
    [135]MATLAB. Optimization ToolBox User’s Guide. The MathWorks Inc.,1994
    [136]飞思科技产品研发中心. MATLAB6.5辅助优化计算与设计.电子工业出版社,2003
    [137]Ginger J D, letchford C W. Net pressures on a low-rise full-scale building.Journal of Wind Engineering and Industrial Aerodynamics,1999,83:239-250
    [138]Sterling M, Baker C J, Quinn A D, et al. Pressure and velocity fluctuatons in theatmospheric boundary layer. Wind and Structures,2005,8(1):13-34
    [139]Yeatts B B, Mehta K C. Field experiments for building aerodynamics. Journal ofWind Engineering and Industrial Aerodynamics,1993,50:213-224
    [140]Holmes J D, Ginger J D. Internal pressures-The dominant windward openingcase-A review. Journal of Wind Engineering and Industrial Aerodynamics,2012,100:70-76
    [141]王济. MATLAB在振动信号处理中的应用.中国水利水电出版社&知道产权出版社,2006
    [142]Stathopoulos T, Kozutsky R. Wind induced internal pressures in buildings.Journal of Structural Engineering,1986,112(9):2012-2026
    [143]Ginger J D, Reardon G F. Whitbread B J. Wind Load Effects and EquivalentPressures on Low-Rise House Roofs. Engineering Structures,2000,22(6):638-646
    [144]Holmes J D. Effective static load distributions in wind engineering. Journal ofWind Engineering and Industrial Aerodynamics,2002,90(2):91-109
    [145]Newmark N M. A method of conputation for structural gynamics. Journal ofEngineering Mechanics Division,1959,85:67-94
    [146]Fung T C. Unconditionally stable higher-order Newmark methods by sub-stepping procedure. Computer Methods in Applied Mechanics Engineering,1997,147:61-84
    [147]Bathe K J, Wilson E L. Stability and accuracy analysis of direct integrationmethods. Earthquake Engineering and Structural Dynamics.1973,1:283-291
    [148]王莺歌.塔式太阳能定日镜结构风荷载特性及风振响应研究:[湖南大学博士学位论文].长沙:湖南大学,2010
    [149]中华人民共和国国家标准JGJ7-2010.空间网格结构技术规程.北京:中国建筑工业出版社,2010
    [150]SAP2000. Advanced C9.1.6. Computers and Structures.北京金土木软件技术有限公司
    [151]SAP2000中文版使用指南.北京金土木软件技术有限公司.北京:人民交通出版社,2006
    [152]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997
    [153]武岳,郭海山,陈新礼等.大跨度点支式幕墙支承结构风振性能分析.建筑结构学报,2002,23(5),49-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700