用户名: 密码: 验证码:
构造节点的精细模拟及其在输电铁塔结构分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁塔是输电线路的重要组成部分,其承载能力对于输电线路的正常运行起着重要作用。为了制造和安装方便,输电铁塔多采用热轧等边角钢构件通过螺栓连接而成,不同的节点构造方式将会影响其承载能力,因此在输电铁塔结构分析时,有必要研究如何考虑构造节点的影响,更加准确地预测铁塔的失效位置及失效载荷,给出不同工况下的极限承载力,这对于提高输电铁塔的设计水平,保障输电线路安全运行具有重要的理论价值和现实意义。
     本论文对输电铁塔中典型节点的构造形式进行了分析,给出了构造节点的精细模拟方法,建立了220kV重冰塔的有限元模型,研究了该塔的非线性静力性能、承受基础变形能力以及断线冲击时的动力响应,通过对多种节点简化模型计算结果的对比,总结了构造节点对输电铁塔静动态特性的影响规律。本论文的具体研究内容如下:
     1)详细分析了输电铁塔中普遍采用的普通螺栓抗剪连接的滑移过程,提出了一种新的螺栓连接滑移模型,研究了模型各参数的影响,并给出了各参数的取值。
     2)采用弹簧模拟连接滑移及连接刚度,给出了输电铁塔中构造节点的精细模拟方法,根据是否考虑连接滑移和连接偏心以及不同的节点连接刚度,建立了四种220kV重冰塔的有限元模型。
     3)研究了连接滑移、连接偏心以及连接刚度对输电铁塔内力及变形的影响,总结了不同的节点简化方法对铁塔非线性静力性能的影响规律,通过与真型塔试验结果的对比,证明了全面考虑构造节点的影响,能够较为准确地预测铁塔的载荷-位移全过程。
     4)考虑构造节点的影响,研究了煤矿开采过程中输电铁塔内力及变形的变化过程,总结了构造节点对铁塔承受基础变形能力的影响规律,分析了杆件的破坏顺序,给出了铁塔的最大可承受基础变形量。
     5)考虑导线和地线对铁塔的支持作用,建立了输电线路的等效分析模型,对输电铁塔在断边导线和断中导线时的动力响应进行了分析,研究了不同的节点简化方法对输电铁塔动态特性的影响。
Transmission towers are vital components of overhead transmission lines, which play an important role in the operation of electrical power systems. In order to store, transport and fabricate conveniently, lattice transmission towers are commonly constructed by hot-rolled equilateral angle steel struts through bolted joint. Because the way joins are structured will effect the bearing capacity of lattice transmission tower, so it is necessary to study how to including the joint effects in the lattice tower analysis. Accurate prediction of failure sequence and ultimate load of lattice transmission tower in various working conditions is very important for the reliability and safety of transmission lines.
     In this paper an accurate modeling method for bolted joint in lattice transmission tower is presented, several numerical models of a new 220kV anti-icing tower with considering joint effects are created to study the non-linear static behavior, bearing capacity subject to ground deformation and dynamic response of lattice transmission tower, and the infulence of joint effects on the mechanical behavior of transimission towers is obtained. The contents of this paper as follow:
     1) The slip process of bearing type bolted joint in lattice transmission tower is analyzed, a new joint slippage model is presented, and the parameters are determined after discussing their effects on the slippage model.
     2) Joint slippage and joint stiffness are accurate modelled by using six nonlinear springs, four numerical models of a new 220kV anti-icing tower are built according to whether including joint slippage, joint eccentricity and various joint stiffness.
     3)The effects of joint slipage, joint eccentricity and joint stiffness on the internal force and deformation of lattice tower are studied, experimental results from full-scale prototype tests are used in the comparison and show that load-deformation process of lattice transmission tower can be predicte accurately with considering all the joint effects.
     4) The changing process of inner forces and deformation of lattice transmission tower are analysed with considering joint effects, the the infulunce of bolted joint on the lattice transmission tower subject to ground deforamtion are disscussed and the maximum magnitude of ground deforamtion and the failure sequence of members are presented.
     5) The equivalent model of transmission lines are presented with considering conductor and ground wire suporting effects, and the dynamic response of the lattice tower subject to break of middle and side conductor are analyzed and the infulunce of joint effects on dynamic response are presented.
引文
[1]吴吟.中国电力工业的发展战略[N].中国电力报,2003.03
    [2]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术,2008,34(2):215-219
    [3]杨靖波,李正,杨风利.2008年电网冰灾覆冰及倒塔特征分析[J].电网与水力发电进展,2008,24(4):4-8
    [4]Li Hongnan, Bai Haifeng. High-voltage transmission tower-line system subjected to disaster loads[J]. Progress in Natural Science,2006,16(9):899-911
    [5]DL/T5154,架空送电线路杆塔结构设计技术规定[S].北京:中华人民共和国国家经济贸易委员会,2002
    [6]AISC. load and resistance factor design specification for structural steel buildings[S]. Chicago:AISC INC,1999
    [7]BS5950. Structural use of steel work in building-Part 1:Code of practice for design-Rolled and welded sections[S]. London:BSI,2000
    [8]Chen W. F., Toma S. Advanced analysis of steel frames theory, software, and application[M]. United States:CRC press INC,1996
    [9]Chen W.F., Kim S.E. LRFD steel design using advanced analysis[M], United States:CRC press INC,1997
    [10]EPRI. Structural development studies at the EPRI transmission line mechanical research facility[R]. Tennessee:Electric Power Research Institute,1986
    [11]张殿生.电力工程高压送电线路设计手册(第二版)[M].北京:中国电力出版社,2003
    [12]王肇民,U. Peil.塔桅结构[M].上海:同济大学出版社,1989
    [13]赵滇生.输电塔架结构的理论分析与受力性能研究[D].杭州:浙江大学,2003
    [14]周新华.高压输电铁塔强度分析[D].保定:华北电力大学,2002
    [15]Roy S., Fang Shu-Jin, Rossow E.C. Secondary stresses on transmission tower structures[J]. Journal of Energy Engineering,1984,110(2):157-172
    [16]Knight G.M.S., Santhakumar A.R. Joint effects on behavior of transmission towers[J]. ASCE Journal Structure Division,1993,119(3):689-712
    [17]Faisal Abdullah AI-Mashary. Nonlinear analysis of transmission towers[J]. Engineering Sciences,1999,11(1):19-32
    [18]孙燕.500kV输电铁塔结构的几何非线性数值模型[D].保定:华北电力大学,2007
    [19]Kitipornchai S. Chan S.L. Nonlinear finite element analysis of angle and tee beam-column[J]. ASCE Journal of Structure Engineering,1987,113(4):721-739
    [20]Albermani F., Kitipornchai S. Nonlinear analysis of thin-walled structures using least element per member[J]. ASCE Journal of Structure Engineering,1990, 116(2):215-234
    [21]Kitiporchai S., Zhu K., Xiang Y. and Albermani F.G. Single-quation yield surfaces for monosymmetric and asymmetric sections[J]. Engineering Structures, 1991,13:366-370
    [22]Albermani F. G., Kitiporchai S. Elasto-plastic large deformation analysis of thin-walled structures[J]. Engineering Structure,1990,12(1):28-36
    [23]Albermani F. G., Kitiporchai S., Chan R.W.K. Failure analysis of transmission towers[J]. Engineering Failure Analysis,2009,6(16):1922-1928
    [24]Albermani F., Mahendran M., Kitipornchai S. Upgrading of transmission towers using a diaphragm bracing system[J]. Engineering Structures,2004,26:735-744
    [25]AlBermani F. G., Kitiporchai S. Numerical simulation of structural behavior of transmission towers[J]. Thin-Walled Structure,2003,41(2-3):167-77
    [26]Lee P. S., McClure G. A general three-dimensional L-section beam finite element for elastoplastic large deformation analysis[J]. Computers & Structures 2006,84:215-229
    [27]Lee P. S., McClure G. Elastoplastic large deformation analysis of a lattice tower structure and comparison with full-scale tests[J]. International Journal of Constructional Steel Research,2007,63(5):709-717
    [28]董石麟,钱若军.空间网格结构分析理论与计算方法[M].北京:中国建筑出版社,2000
    [29]王肇民,马人乐等.塔式结构[M].北京:科学出版社,2004
    [30]Trahair N. S., Usami T., Galambos T. V. Eccentrically loaded single angle columns[R]. Washington:Washington University,1969
    [31]Kennedy J. B., Madugula M. K. S. Buckling of angles:State of the art[J]. Journal of the Structural Division,1982,108(ST9):1967-1980
    [32]Madugula M. K. S., Kennedy J. B. Single and compound angle members: Structural analysis and design[M]. Applied science publishers,1985
    [33]Guo Chunmei. Elastoplastic buckling of single angle columns[J]. ASCE journal of Structural Engineering,1984,110(6):1391-1395
    [34]Shan longgang, Peyrot A. H. Plate element modeling of steel angle members[J]. Journal of Structural Engineering,1988,114(4):821-840
    [35]Roberts T. M., Azizian Z. G. Instability of thin-walled bars[J]. ASCE Journal of Engineering Mechanics,1983,109(3):781-794
    [36]Popovic D., Hancock G. J., Rasmussen K. J. R. Compression tests on cold-formed angles loaded parallel with a leg[J]. Journal of Structural Engineering,2001,127(6):600-607
    [37]Earls C. J. On the notion effective length for single angle geometric axis flexure[J]. Journal of Constructional steel research,2002,58:1195-1210
    [38]Sakala S. S. S. Neural network modeling of the load-earring capacity of eccentrically-loaded single-angle struts[J]. Journal of Constructional steel research,2004,60:965-987
    [39]沈祖炎,胡学仁.单角钢压杆的稳定计算[J].同济大学学报(自然科学版),1982,(3):56-71
    [40]李开禧,萧允徽.逆算单元长度法计算单轴失稳时钢压杆的临界力[J].重庆建筑工程学院学报,1982,(4):26-45
    [41]李开禧,萧允徽,饶晓峰等.钢压杆的柱子曲线[J].重庆建筑工程学院学报,1985,(1):24-33
    [42]GB50017-2003,钢结构设计规范[S].北京:中国计划出版社,2003
    [43]康强文,童树根.单肢连接的单角钢压杆承载力分析[J].钢结构,2006,21(2):7-11
    [44]邓洪洲,龙海波,董建尧.单面螺栓连接单角钢压杆的承载力试验[J].建筑科学与工程学报,2009,26(4):80-86
    [45]Temple M. C., Sakla S. S. Single-angle compression members welded by one leg to gusset plate:experimental study[J]. Canada Journal of Civil Engineering, 1998,25(3):569-584
    [46]史世伦,李正良,张东英,李茂华.单边连接的等边单角钢压杆承载力试验研究[J].电网技术,2010,34(3):205-209
    [47]郝际平,曹现雷等.单边连接高强单角钢压杆试验研究和仿真分析[J].西安建筑科技大学学报,2009,41(6):741-747
    [48]樊春雷,郝际平,王先铁等.高强角钢(Q460)单边连接时宽厚比限值试验研究[J].钢结构,2010,25(5):48-52
    [49]胡大柱,李宏男.格构式输电铁塔组成杆件对极限承载力影响的研究[J].世界地震工程,2004,20(3):50-55
    [50]李宏男,胡大柱,路颖超.输电铁塔交叉斜材非线性极限承载力研究[J].特种结构,2004,21(3):22-24
    [51]默增禄,赵庆斌,陈海波.铁塔典型构造杆件承载力试验研究[J].电力建设,2004,25(4):23-26
    [52]Raghunathan M. D., Natarajan P. R., Muralidharan K. Prototype test on X-bracing panels using cold-formed lipped angles[J]. Thin-Walled Structures, 1996,25(1):31-46
    [53]舒兴平.高等钢结构分析与设计[M].北京:科学出版社,2006
    [54]Eurocode 3. Design of steel structures part 1 general rules and rules for buildings. Brussels,1992
    [55]Clarke M. J., Bridge R. Q., Hancock G. J., Trahair N.J. Advanced analysis of steel building frames[J]. Journal of Constructional steel research,1992, 23(1-3):1-30
    [56]Philip A., Mahen M. Distributed plasticity analysis of steel frame structures comprising non-compact sections[J]. Engineering Structures,2000, (22):901-919
    [57]Jiang Xiao-Mo., Chen Hong., Liew J.Y. Spread-of-plasticity analysis of three-dimensional steel Frames[J]. Journal of Constructional Steel Research, 2002,58:193-212
    [58]Attala M. N., Deierlein G. G., McGuire W. Spread of plasticity: quasi-plastic-hinge approach[J]. ASCE Journal of Structural Engineering,1994, 120(8),2451-2473
    [59]Ueda Y., Yao T. The plastic node method:a new method of plastic analysis[J]. Computer method in Appllied Mechanics Engngineering,1982,34:1089-1104
    [60]Liew, J. Y. R., Chen W. F. Refining the plastic hinge concept for advanced analysis/design of steel frames[J]. Journal of Singapore Structural Steel Society, Steel Structure,1991,2(1):13-30
    [61]Liew J. Y. R., White D. W., Chen, W. F. Second-order refined plastic hinge analysis for frame design:Part I[J]. ASCE journal of Structural Engineering, 1993,119(11),3196-3216
    [62]Kim, S.E., Chen W.F. A sensitivity study on number of elements in refined plastic-hinge analysis[J]. Computers & Structures,1998,66(5),665-673
    [63]Kim, S. E., Park M. H., Choi S. H. Improved refined plastic-hinge analysis accounting for strain reversal[J]. Engineering Structures,2000,22(1):15-25
    [64]Peterson W.O. Design of EHV steel tower transmission lines[J]. ASCE Journal of the Structural Division,1962,88(PO1):39-65
    [65]Marjerrison M.M. Electric transmission tower design[J]. ASCE Journal of the Structural Division,1968,94(PO1):1-23
    [66]Kitipornchai S., Albermani F. G. A., Peyrot A. H. Effect of bolt slippage on ultimate behavior of lattice structures[J]. ASCE Journal of Structural Engineering, 1994,120(8):2281-2287
    [67]Ungkurapinan N., Chandrakeerthy S. R. D. S., Rajapakse R. K. N. D., Yue S. B. Joint slip in steel electric transmission towers[J]. Engineering Structures,2003, 25:779-787
    [68]Ungkurapinan N. A study of joint slip in galvanized bolted angle connections[D]. Canada:University of Manitoba,2000
    [69]徐建设,陈以一,韩琳,邓长根.普通螺栓和承压型高强螺栓抗剪连接滑移过程[J].同济大学学报,2003,31(5):510-514
    [70]Donovan K. Structural analysis of transmission towers with connection slip modeling. Canada:University of Manitoba,2000
    [71]Ahmed K. I. E., Rajapakse R. K. N. D., Gadala M. S. Influence of bolted-joint slippage on the response of transmission towers subjected to frost-heave[J]. Advances in Structural Engineering,2009,12(1):1-17
    [72]Rathbun J. C. Elastic properties of riveted connections[J]. Transactions of American Society of Civil Engineers,1936,101(1):524-563
    [73]Frye M. J., Morris G.A. Analysis of flexibly connected steel frames[J]. Canadian Journal of Civil Engineering,1974,2:280-291
    [74]Jones S.W., Kirby P.A., Nethercot D. A. Columns with secmi-rigid joint s[J]. ASCE Journal of structural division,1982,108(ST2):361-372
    [75]Lui E. M., Chen W. F. Analysis and behavior of flexibly-jointed frames[J]. Engineering Structures,1986,8:107-118
    [76]Chan S. L., Chui P. P. T. Non-linear static and cyclic analysis of semi-rigid steel frames[M]. Elsevier Science,2000
    [77]Chen W. F., Lui E. M. Effects of joint flexibility on the behaviour of steel frames[J]. Computers & Structures,1987,26(5):719-732
    [78]Albermani F. G. A., Kitipornchai S. Elastoplastic nonlinear analysis of flexibly jointed space frames[J]. ASCE Journal of Structural Engineering,1992, 118(1):108-127
    [79]Chen W. F., Chan S. L. Second-order inelastic analysis of steel frames using element with midspan and end springs [J]. Journal of Structural Engineering, 1995,121(3):530-41
    [80]Chan S. L., Cho S. H. Second-order P-Δ-δ analysis and design of angle trusses allowing for imperfections and semi-rigid connections[J]. Advanced Steel Construction,2005,1(1):169-83
    [81]史世伦.特高压输电铁塔结构稳定性理论与试验研究[D].重庆:重庆大学[D],2010
    [82]Chan S. L., Cho S. H. Second-order analysis and design of angle trusses Part I: Elastic analysis and design[J]. Engineering Structures,2008,30(3):616-625
    [83]Chan S. L., Cho S. H. Second-order analysis and design of angle trusses Part Ⅱ: Plastic analysis and design[J]. Engineering Structures,2008,30(3):626-631
    [84]Fong Man, Cho Suk-Han, Chan Siu-Lai. Design of angle trusses by codes and second-order analysis with experimental verification[J]. Journal of Constructional Steel Research,2009, (65):2140-2147
    [85]Kemp R., Roberto H. Behavior of cross-bracing in latticed towers[J], ASCE Journal of Structural Engineering,1998,4:360-367
    [86]Behncke R. H. An experimental and theoretical investigation of structural behavior of cross-bracing in transmission line steel towers[D]. South Africa:University of the Witwatersrand,1986
    [87]http://www.usfos.no/
    [88]Zhang Xiaohong. Dynamic post-elastic response of transmission towers[D]. Canada:McGill Universiy,2010
    [89]王勖成.有限单元法[M].北京:清华大学出版社,2003
    [90]Bathe K. J. Finite element procedures[M]. Prentice Hall Inc,2006
    [91]Ho D. and Xie J. R. Interaction equations for biaxially loaded angle section[J]. Thin-walled structures,1990,10:1-12
    [92]Chen W. F. Theory of beam-columns, vol.2, space behaviour and design [M]. New York:McGraw-Hill,1977
    [93]Riks E. An incremental approach to the solution of snapping and buckling problems[J]. The International Journal of Solids and Structures,1979, 15(7):529-550
    [94]Wempner G. A. Discrete approxinations related to nonlinear theories of solids[J]. The International Journal of Solids and Structures,1971,11(7):1580-1599
    [95]George Winter. Tests on bolted connections in light gage steel[J]. Journal of the Structural Division,1956,82(ST2):920
    [96]George R. Sinclair. The ultimate load carrying capacity of single angle, single bolted connections[D]. Canada:University of Winsdor,1968
    [97]John B., George R. Ultimate capacity of single bolted angle connections[J]. Journal of the Structural Division,1969,95(ST8):1645-1660
    [98]Ramberg W., Osgood W. R. Description of stress-strain curves by three parameters[R]. Washington,1943
    [99]GB9787-88.热轧等边角钢尺寸、外形、重量及允许偏差[S].北京:中国标准出版社,1988
    [100]中国电力科学研究院.水城变~六盘水威宁变220kV线路工程ZB13-30重冰塔试验报告[R].北京:中国电力科学研究院,2009
    [101]史振华.采空区输电线路直线自立塔基础沉降及处理方案[J].山西电力技术,1997,17(3):18-20
    [102]张建强,杨昆.煤矿采空区地段高压输电线路铁塔地基处理的研究[J].电网技术,2006,32(2):31-35
    [103]付明翔,韩为民,默增禄.煤矿采空区500kV输电线路设计的探讨[J].电力建设,2004,25(6):30-32
    [104]杨风利,杨靖波,韩军科,张子富.煤矿采空区基础变形特高压输电塔的承载力计算[J].中国电机工程学报,2009,29(1):100-106
    [105]袁广林,陈建稳,杨庚宇等.动态地表变形对输电铁塔内力和变形的影响[J].河海大学学报,2010,38(3):284-289
    [106]刘涛.采动区自立式输电铁塔破坏机理和抗变形能力研究[D].徐州:中国矿业大学,2008
    [107]李淮海,王璋奇,李恒遥等.适应基础均匀沉降的高度可调铁塔结构设计及试验研究[J].电网技术,2007,31(19):83-86
    [108]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991
    [109]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版社,1999
    [110]梁政平,李黎,王乘等.大跨越输电塔在线路断线作用下的动力响应[J].华中科技大学学报,2009,26(1):42-46
    [111]谢强,丁兆东,赵桂峰等.不同横隔面配置方式的输电塔抗风动力响应分析[J].高电压技术,2009,35(3):683-688
    [112]Fleming J. F., Athins R. S., Mozer J. D. A program for longitudinal load analysis of electric transmission lines[J]. Computers & Stuctures,1978, 9(3):237-253
    [113]Siddiqui F. M. A., Fleming J. F. Broken wire analysis of transmission line systems[J]. Computers & Structures,1984,18(6):1077-1085
    [114]Peyrot A. H., Kluge R. O., Lee J. W. Longitudinal loads from broken conductors and broken insulators and their effect on transmission lines[J]. IEEE Transactions or Power Apparatus and Systems,1980,99(1):222-234
    [115]夏正春,李黎,梁政平等.输电塔在线路断线作用下的动力响应[J].振动与冲击,2007,26(11):45-49
    [116]汪大海,李杰.强风下高压输电塔线系统非线性随机动力响应[J].振动与冲击,2010,29(6):62-65
    [117]柳国环,李宏男.高压输电塔-线体系风致动力响应分析与优化控制[J].中国电机工程学报,2008,28(19):131-137
    [118]杨风利,杨靖波,付东杰等.塔线系统脱冰跳跃动力响应分析[J].振动工程学报,2010,23(1):86-93
    [119]沈国辉,袁光辉,孙炳楠等.覆冰脱落对输电塔线体系的动力冲击作用研究[J].工程力学,2010,27(5):210-217
    [120]侯镭,王黎明,朱普轩.特高压线路覆冰脱落跳跃的动力计算[J].中国电机工程学报,2008,28(6):1-6
    [121]Jamaleddin A., McClure G., Rousselet J., Beauchemin R. Simulation of ice-shedding on electrical transmission lines using ADINA[J]. Computer & Structures,1993,47(4/5):523-536
    [122]Kalman T., Farzaneh M., McClure G. Numerical analysis of the dynamic effects of shock-load-induced ice shedding on overhead ground wires[J]. Computer & Structures,2007,85:375-384
    [123]McClure G., Lapointe M. Modeling the structural dynamic response of overhead transmission lines[J]. Computer & Structures,2003,81(8-11):825-834
    [124]孟遂民,孔伟.架空输电线路设计[M].北京:中国电力出版社,2007
    [1]主要完成人.塌陷区输电线路状态在线监测系统.安徽省科技厅,2010.
    [2]负责人,节点力学特性及其对输电铁塔极限承载力的影响,中央高校基础科研基金,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700