用户名: 密码: 验证码:
山地风场中高层建筑风致振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于山体的干扰作用,山地风场具有与平地风场截然不同的特征,如果仍采用平地风场计算方法计算山地高层建筑风致响应,势必会造成较大误差。因此必须从山地风场的基本特性入手,结合高层建筑在复杂风场中的风荷载,才能得到其振动特性。本文通过风洞试验手段,分别系统的研究了各种典型山地风场特性和高层建筑风荷载特性,由此提出了山地风场中高层建筑风致振动和等效风荷载计算方法,主要开展了以下几个方面的工作:
     ①通过刚性山体模型风洞试验,建立山地风场中平均和脉动风速加速比数学模型。研究单个山体时,各种山体坡度、高度、来流平均风速等参数影响下,山地各位置平均和脉动风速特性;讨论来流方向有多个山体时,受扰山体各位置平均和脉动风速特性随遮挡距离、遮挡山体坡度、遮挡山体高度、连续山体个数等因素变化。根据试验结果建立山地风场计算模型,可分别计算单个山体坡度、高度、遮挡山体距离、坡度、高度和数量等各种参数改变时,山体各位置、各高度的平均和脉动风速。通过算例说明,计算模型与试验数据吻合较好。
     ②通过高层建筑刚性模型风洞试验,建立山地风场中高层建筑风荷载幅值特性和频域特性数学模型。在风洞中建立了不同湍流度水平的风场,用以模拟山地风场中复杂的湍流度变化。进行各种高宽比和宽厚比矩形和圆形截面高层建筑刚性模型测压试验,通过改变来流平均风速和湍流度,讨论不同高度顺风向、横风向和扭转方向风荷载平均值和均方根值、功率谱密度和横—扭相干函数等特性。根据试验结果建立矩形和圆形截面高层建筑顺风向、横风向和扭转方向风荷载系数平均值和均方根值计算模型、功率谱模型和横—扭相干函数模型,通过算例说明计算模型与试验结果基本保持一致,能较真实反应各种复杂山地条件下的高层建筑风荷载特性。
     ③分析山体参数对高层建筑风致响应谱的影响。根据山地风场平均、脉动风速模型和高层建筑的幅值和频域风荷载模型,在频域上计算山地风场中高层建筑层风荷载功率谱;对于顺风向采用来流脉动风速相干函数,横风向采用涡旋脱落相干函数,得到广义风荷载谱;根据随机振动理论计算高层建筑风致响应谱。通过各种山体坡度、高度和遮挡山体距离的算例分析,讨论各参数对高层建筑风致响应的影响。
     ④研究山地风场中高层建筑等效风荷载,分析山体参数对等效风荷载的影响。根据山地风场中特有的平均和脉动风速特性,研究高层建筑平均风荷载、背景和共振等效风荷载特性。通过实例,比较山体位置、山体坡度等因素对高层建筑等效风荷载的影响规律。
Because of the interference of hills, characteristics of hilly terrain wind field are distinct from that of flat terrain wind field. It will cause severe errors to utilize algorithm in flat terrain wind field to calculate wind induced response of tall buildings in hilly terrain. In that condition, only combination of profile of hilly terrain wind field and wind load of tall buildings in complex wind field can get the characteristics of peak value of vibration. By means of wind tunnel tests, profiles of wind field in typical hilly terrain and wind load of tall buildings are systematically investigated. Solution of wind induced vibration and equivalent wind load is put forward. In this paper, some works are studied as follows:
     ①By means of wind tunnel tests of rigid hill models, mathematical models of speed-up ratio of mean and fluctuating wind in hilly terrain wind field are established. When single hill exists,profiles of mean and fluctuating wind speed under different slope and height of hills, mean speed of wind are investigated. When it comes to the multiple hills, profiles of mean and fluctuating wind speed under different distance, slope, height and number of occluding hills are discussed. According to the results of tests, mathematicl models of hilly terrain wind field are established. Given slope and height of single hill, distance, slope, height and number of occluding hills, mean and fluctuating wind speed at every location and elevation can be acquired. Some examples are presented to demonstrate the model and tests are consistent.
     ②Mathematical models of amplitude and frequency characteristics of wind load of tall buildings in hilly terrain wind field are established according to rigid model wind tunnel tests of tall buildings. Different levels of turbulence are produced to simulate the complex change of turbulence in hilly terrain wind field. Tests of rigid model of tall buildings, including rectangular and round section, several aspect ratio and width-thickness ratio, are achieved. Changing the mean speed of wind and turbulent intensity of inflow, characteristics of mean value, root-mean-square value and power spectrum density of wind load on along-wind, across-wind and torsion direction and coherence function between across-wind and torsion direction. Mathematical models of mean value, root-mean-square value and power spectrum density of wind load on along-wind, across-wind and torsion direction and coherence function between across-wind and torsion direction are established. Some examples are presented to demonstrate the model and tests are consistent. The models can be used to calculate wind loads of tall buildings on complex hilly terrain.
     ③Effects of hill parameters on wind induced response are analyzed. According to mean and fluctuating wind speed models and amplitude and frequency models of tall buildings, wind load spectrum of tall buildings in hilly terrain wind field is calculated. Coherence function of fluctuating wind speed is adopted on along-wind direction while coherence function of vortex-shedding is adopted on across-wind direction to get generalized wind load spectrum. Spectrum of wind induced response of tall buildings is attained according to theory of random vibration. Examples of different slope and height of single hill, distance of occluding hills are analyzed, and the effects of parameters on wind induced response of tall buildings are discussed.
     ④Equivalent wind loads of tall buildings in hilly terrain wind field are studied and effects of hill parameters on equivalent wind loads are analyzed. According to the particular profile of mean and fluctuating wind speed in hilly terrain wind field, mean, background and resonant wind loads of tall buildings are investigated. Some examples are calculated, and effects of location and slope of wind on equivalent wind load of tall buildings are compared.
引文
黄鹏,顾明. 2003.高层建筑干扰气动阻尼的试验研究[J].同济大学学报, 31(6): 652-656.
    黄鹏,顾明. 2005.高层建筑风致扭转荷载的干扰效应研究[J].建筑结构学报, 26(4): 86-91.
    金虎,楼文娟,沈国辉. X型高层建筑扭转风荷载谱计算模型研究[J].空气动力学学报, 27(2): 147-153.
    金虎. 2008. X型高层建筑三维风荷载与风致响应研究[D].杭州:浙江大学博士学位论文.
    李方慧,倪振华,谢壮宁. 2005. POD方法在重建双坡屋盖风压场中的应用[J].工程力学, 22(增刊): 177-182.
    梁枢果. 2002.矩形高层建筑横风向动力风荷载解析模型[J].空气动力学学报, 20(1): 32-39.
    梁枢果. 2003.矩形高层建筑扭转动力风荷载解析模型[J].地震工程与工程振动, 23(3): 74-80.
    潘峰,孙炳楠,楼文娟. 2007.基于Hilbert-Huang变换的大跨屋盖气动阻尼识别[J].浙江大学学报(工学版), 41(1): 65-70.
    全涌, 2002.高层建筑横风向风荷载及响应研究[D].上海:同济大学博士学位论文.
    全涌,顾明. 2004.方形断面高层建筑的气动阻尼研究[J].工程力学, 21(1): 26-30.
    全涌. 1999.高层建筑气动弹性模型风洞试验研究[D].上海:同济大学硕士学位论文.
    唐意, 2006.高层建筑弯扭耦合风致振动及静力等效风荷载研究[D].上海:同济大学博士学位论文.
    唐意,顾明,全涌. 2007.高层建筑的扭转风荷载功率谱密度[J].同济大学学报(自然科学版), 35(4): 435-439.
    陶青秋. 2002.本征正交分解(POD)方法在建筑风荷载及其动态响应中的应用研究[D].汕头:汕头大学硕士学位论文.
    汪之松. 2009.特高压输电塔线体系风振响应及风振疲劳分析[D].重庆:重庆大学博士学位论文.
    王凤元. 1998.用高频测力天平技术研究高层建筑的气动荷载与风效应[J].同济大学学报, 29(1): 122-126.
    王福军. 2004.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社.
    夏法宝. 2004.武汉国际证券大厦风洞试验研究[D].武汉:武汉大学硕士学位论文.
    肖天崟,梁波,田村幸雄. 2003.高层建筑扭转风向动力风荷载数学模型[J].华中科技大学学报(城市科学版), 20(3): 67-70.
    肖正直. 2009.特高压输电塔风振响应及等效风荷载研究[D].重庆:重庆大学博士学位论文.
    肖智勇. 2001.本征正交分解(POD)方法在高层建筑风荷载及其动态响应中的应用研究[D].汕头:汕头大学硕士学位论文.
    燕辉. 2004.复杂体型高层建筑风荷载及风振响应研究[D].杭州:浙江大学博士学位论文.
    叶丰, 2004.高层建筑顺、横风向和扭转方向风致响应及静力等效风荷载研究[D].上海:同济大学博士学位论文.
    张建国,叶丰,顾明, 2006.典型高层建筑横风向气动力谱的构成分析[J].北京工业大学学报.
    张建国. 2008.高层建筑抗风若干基础问题及数据库研究[D].上海:同济大学博士学位论文.
    张相庭. 1985.结构风压和风振计算.上海:同济大学出版社.
    张相庭. 1990.工程结构风荷载理论和抗风计算手册[M].上海:同济大学出版社.
    周印, 1998.高层建筑静力等效风荷载和响应的理论与实验研究[D].上海:同济大学博士学位论文.
    邹良浩,梁枢果,顾明. 2003.高层建筑气动阻尼评估的随机减量技术[J].华中科技大学学报(城市科学版), 20(1): 30-33.
    Baker C J. 1985. The determination of topographical exposure factors for railway embankments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 21, 89-99.
    Cao S, Tetsuro Tamura. 2006. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill[J]. Journal of Wind Engineering and Industrial Aerodynamics, 94, 1-19.
    Carassale L, Piccardo G, Solari G. 2001. Double model transformation and wind engineering applications[J]. Journal of Engineering Mechanics, 127(5): 432-439.
    Carassale L, Piccardo G, Solari G. 2002. Wind modes for structural dynamics: A continuous approach[J]. Probabilistic Engineering Mechanics, 17: 157-166.
    Chen X, Kareem A. 2005a. Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimension models[J]. Journal of Structural Engineering, 131(7): 1071-1082.
    Chen X, Kareem A. 2005b. Dynamic wind effects on buildings with 3D coupled modes: application of high frequency force balance measurements[J]. Journal of Engineering Mechanics, 131(11): 1115-1125.
    Chen X, Kareem A. 2005c. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures[J]. Journal of Engineering Mechanics. 131(4): 325-339.
    Davenport A G. 1961. The spectrum o f horizontal gustiness near the ground in high wind[J]. Journal of the Royal Meteorological Society, 87:194-211.
    Davenport A G. 1967. Gust loading factors[J]. Journal of the structural division, ASCE 93(ST3), 11-34.
    Davenport A G. 1968. The dependence of wind load upon meteorological parameters. Proceedings of the international research seminar on wind effects on building and structures[C], University of Toronto Press, Toronto.
    Davenport A G. 1993. The generalization and simplification of wind loads and implications for computational methods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 46-47, 409-417.
    Davenport A G. 1995. How can we simplify and generalize wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 54-55, 657-669.
    Erick H. 2000. Wind turbines-fundamentals, technologies, application and economics[M]. Springer,New York.
    Federal Aviation Administration. 1988. Siting Guidelines for Low Level Wind Shear Alert System (LLWAS) Remote Facilities[M]. FAA Publication 6560. 21.
    Finnigan J J. 1988. Air flow over complex terrain. In: Steffen, W.L., Denmead, O.T. (Eds.), Flow and Transport in the Natural Enivronment: Advances and Applications[M]. Springer, Berlin, 183-299.
    Gong W, Ibbetson A. 1989. A wind tunnel study of turbulent flow over model hills[J]. Boundary- Layer Meteorol. 49 113-148.
    Harris R I. 1971. The nature of wind. In the modern design of wind sensitive structures[M]. Construction Industry Research and Information Association, London, U.K.
    Holmes J D. 1996. Along-wind response of lattice towers - II. Aerodynamic damping and deflections[J]. Engineering Structures. 18(7):483-488.
    Hunt J C R, Leibovich S, Richards K J. 1988. Turbulent shear flow over low hills. Journal of the Royal Meteorological Society, 114, 1435-1470.
    Jackson P S. 1979. The influence of local terrain features on the site selection for wind energy generating systems. Boundary Layer Wind Tunnel Laboratory Internal Report[R]. University of Western Ontario, BLWT-1-1979.
    Jackson P S. Hunt J C R. 1975. Turbulent wind flow over a low hill[J]. Journal of the Royal Meteorological Society, 101, 929-955.
    Kaimal J C. 1972. Spectral characteristics of surface-layer turbulence[J]. Journal of the Royal Meteorological Society, 98: 563-589.
    Kaimal J, Finnigan J. 1994. Atmospheric Boundary Layer Flows-Their Structure and Measurement[M]. Oxford University Press, Oxford.
    Kan C L, Chopra A K. 1977a. Elastic earthquake analysis of a class of torsionally coupled buildings[J]. Journal of the Structural Division, 103:821-837.
    Kan C L, Chopra A K. 1977b. Elastic earthquake analysis of a class of torsionally coupled multistorey buildings[J]. Earthquake Engineering and Structural Dynamics, 5:395-412.
    Kareem A, Gurley K. 1996. Damping in structures: Its evaluation and treatment of uncertainty[J]. Journal of Wind Engineering and Industrial Aerodynamics, 59: 131-157.
    Kareem A. 1978. Wind excited motion of buildings[D]. Colorado State University at Fort Collin, Colorado.
    Kareem A. 1986. Synthesis of fluctuating along-wind loads on buildings[J]. Journal of Engineering Mechanics, 112(1):121-125.
    Kareem A. 1992. Dynamic response of high-rise buildings to stochastic wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 41-44:1101-1112.
    Kasperski M, Niemann H J. 1992. The L.R.C. method– a general method of estimating unfavorable wind load distributions for linear and non-linear structures[J]. Journal of Wind Engineering and Industrial Aerodynamics. 41-44:1753-1763.
    Kikuchi H, Tamura Y, Ueda H, etc. 1997. Dynamic wind pressures acting on a tall building model– proper orthogonal decomposition[J]. Journal of Wind Engineering and Industrial Aerodynamics, 69-71: 631-646.
    Kim H G, Lee C M, Lim H C, etc. 1997. An experimental and numerical study on the flow over two-dimensional hills[J]. Journal of Wind Engineering and Industrial Aerodynamics, 66, 17-33.
    Kim H G, Patel V C, Lee C M. 2000. Numerical simulation of wind flow over hilly terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 87, 45-60.
    Lam Put R. 1971. Dynamic response of a tall building to random wind loads[C]. International Conference on Wind Effects on Buildings and Structures, Tokyo, Japan.
    Liang S G, Liu S, Li Q S, etc. 2002. Mathematical model of acrosswind dynamic loads on rectangular tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 90, 1757-1770.
    Lin N, Letchford C, Tamura Y, etc. 2005. Characteristics of wind forces acting on tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 93, 217-242.
    Lubitza W D, Bruce R. White. 2007. Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills[J]. Journal of Wind Engineering and Industrial Aerodynamics, 95, 639-661.
    Marukawa H, Kato N, Fujii K etc. 1996. Experimental evaluation of aerodynamic damping of tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 59: 177-190.
    Mason P, Sykes R. 1979. Flow over an isolated hill of moderate slope. Journal of the Royal Meteorological Society, 105, 383-395.
    Miller C A, Davenport A G. 1998. Guidelines for the calculation of wind speed-ups in complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 74-76, 189-197.
    Nakamura Y, Hirata K. 1989. Critical geometry of oscillating bluff bodies. Journal of Fluid Mechanics, 208: 375-393.
    Panofsky H A. 1974. Two point velocity statistics over Lake Ontario[J]. Boundary-Layer Meteorology, 7:247-256.
    Simiu E, Scanlan R H. 1986. Wind Effects on Structures (2nd)[M]. JohnWiley&Sons, New York. Simiu E. 1973. Gust factors and alongwind pressures correlations[J]. Journal of the structural division, 99(ST4), 773-783.
    Simiu E. 1980. Revised procedure for estimating along-wind response[J]. Journal of the structural division, 106(ST1), 1-9.
    Solari G, Piccardo G. 2001. Probabilistic 3-D Turbulence Modeling for Gust Buffeting[J]. Probabilistic Engineer Mechanics, 16: 73-86.
    Solari G. 1982. Alongwind response estimation: closed form solution[J]. Journal of the Structural Division, 108(ST1): 225-243.
    Solari G. 1985. Mathmatical model to Predict 3-D Wind Loading on Buildings[J]. Journal ofEngineering Mechanics, 111(2):254-276.
    Solari G. 1990. A Generalized Definition of Gust Factor[J]. Journal of Wind Engineering and Industrial Aerodynamics, 36, 539-548.
    Solari G. 1993a. Gust Buffeting I: Peak Wind Velocity and Equivalent Pressure[J]. Journal of Structural Engineering, 119(2): 365-382.
    Solari G. 1993b. Gust Buffeting II: Dynamic Alongwind Response[J]. Journal of Structural Engineering, 119(2): 383-398.
    Solari G. 1993c. Towards a Global Model for Calculating 3-D Equivalent Static Wind Forces on Structures[C]. Proceedings of Seventh United States National Wind Engineering Conference.
    Solari G. 1998. On the Formulation of ASCE7-95 gust effect factor[J]. Journal of Wind Engineering and Industrial Aerodynamics, 77-78: 673-684.
    Taylor P A, Lee R J. 1984. Simple guidelines for estimating wind speed variations due to small scale topographic features[J]. Climatological Bulletin, 18 (2), 3-22.
    Taylor P A. 1998. Turbulent boundary-layer flow over low and moderate slope hills[J]. Journal of Wind Engineering and Industrial Aerodynamics, 74–76, 25–47.
    Vellozi J, Cohen E. 1968. Gust response factors[J]. Journal of Engineering Mechanics Division, 94(ST6): 1259-1313.
    Vickery B J. 1970. On the reliability of gust loading factors[C]. Proceeding of a Technical Meeting Concerning Wind Loads on Buildings and Structures. Building Science Series 30, National Bureau of Standards, Washington, D. C.
    Von Karman T. 1948. Progress in the statistical theory of turbulence[M]. Proc. Nat. Acad. Sci. Washington D.C. 530-539.
    Weng W, Taylor P A, Walmsley J L. 2000. Guidelines for airflow over complex terrain: model developments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 86, 169-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700