用户名: 密码: 验证码:
脐带与脂肪来源干细胞生长特性及其心肌分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪间充质干细胞(Adipose derived mesenchymal stem cells, AD-MSCs)和脐带间充质干细胞(Umbilical cord mesenchymal stem cells, UC-MSCs),由于来源广泛、不受争议,而成为治疗心脏疾病、修复心肌组织等细胞治疗的首选细胞。细胞治疗所需的时间很长,一般都在一个月以上,时间是影响细胞治疗效果的一个重要因素。此外,MSCs在移植部位保持高的细胞活性和活率对细胞治疗效果提高也尤为重要。然而,由于移植区域恶劣环境(如:局部缺血、氧化应激、炎症反应等)的作用以及一次性植入大量细胞产生细胞接触抑制而导致MSCs大量的凋亡或死亡,从而降低了细胞治疗效能。因此,寻找一种更能够耐受接触抑制的MSCs,应用于细胞治疗,从而提高细胞治疗的效果是必要的。另外,AD-MSCs和UC-MSCs能够向心肌细胞分化,并表达心肌细胞的特异性蛋白。然而,现有的化学诱导以及心肌细胞培养液诱导等方法,都很难使UC-MSCs或AD-MSCs分化成具有心肌细胞功能特性(细胞收缩和钙瞬变等)的细胞。因此,有必要寻找一种适宜的生物活性因子,使其与心肌诱导剂相结合,以促进UC-MSCs和AD-MSCs向心肌的功能性分化。
     本文首先研究了AD-MSCs和UC-MSCs在一个月连续培养过程中的生长增殖特性。通过CCK-8和血细胞计数板计数,分别考察了AD-MSCs与UC-MSCs的细胞活性及细胞数随时间的变化曲线;利用死活染色以及流式细胞仪技术,检测了两种来源的MSCs在一个月连续培养过程中的死活情况和细胞活率的变化情况。结果表明,在一个月连续培养过程中,AD-MSCs始终保持很高的细胞活性、细胞活率、以及增殖能力,细胞经历了2个平台期和3个对数增殖期,具有耐接触抑制的能力。而与AD-MSCs相比,UC-MSCs则没有始终保持很高的细胞活性,随着培养时间增加,尤其到培养后期时,其细胞活性明显下降,细胞活率也大幅降低,并且与同一时间点上AD-MSCs的细胞活率相比,具有显著性差异,细胞发生了接触抑制,基本不再增殖,直至大量死亡。细胞活性和生长曲线也显示,细胞在经历一个快速增殖期后,便进入平台期,此后细胞数量以及细胞活性都没有太大的起伏,而是在一定数值附近上下浮动。
     作为移植用干细胞,只有高的细胞活性和活率是不够的,还需要其保有干细胞特性和良好的生物安全性(保持正常核型)。因此,本文进而研究了经长期连续培养前后AD-MSCs的干细胞特性,并检测了一个月连续培养后细胞的核型。采用流式细胞仪和组织化学染色分析一个月连续培养前后细胞的干细胞特性;采用G显带染色体核型分析方法,观察经一个月连续培养后AD-MSCs的核型是否有异常。实验结果证实,AD-MSCs经一个月的连续不传代培养后,仍然保持着干细胞特性,包括:表达MSCs的表面标记蛋白、具有多向分化潜能,并且与培养前相比均没有显著性差异。G显带染色体核型分析则没有发现染色体的复制、倒位、易位、缺失或融合等异常现象,证实经一个月连续培养的AD-MSCs仍然具有稳定的核型,生物安全性可靠,可以应用于细胞治疗等领域。
     此外,本研究还探索了细胞周期分布以及细胞周期蛋白表达与AD-MSCs一个月连续生长增殖特性之间的关系。分别通过流式细胞仪技术和western blotting技术,检测了不同时间点细胞周期分布以及细胞周期蛋白A和细胞周期蛋白D1的表达。结果表明,细胞周期蛋白A的增量表达,可以促进AD-MSCs从S期向G2/M期过渡,使G2/M期细胞比率增加,处于分裂状态细胞含量增加,从而调控细胞进入快速增殖状态。而细胞周期蛋白D1的增量和减量表达,则可以促使S期的细胞比例增加和减少,从而调节细胞的生长增殖,使细胞进入增殖期和平台期。所以,综合以上结果可以得出,在AD-MSCs的长期连续培养过程中,细胞周期蛋白A和细胞周期蛋白D1通过它们的增量和减量表达,来调节细胞周期分布,从而影响着细胞的生长增殖。
     为了促进UC-MSCs和AD-MSCs向心肌的分化,本文采用生物活性因子与心肌诱导剂相结合的策略,研究了1-磷酸鞘氨醇(Sphingosine-1-phosphate, SIP)对UC-MSCs和AD-MSCs向心肌分化的影响,探索了其在心肌细胞培养液(CMCM)中适宜的作用时间和作用浓度。将UC-MSCs和AD-MSCs接种到培养板,用添加S1P的心肌细胞培养液或5-氮胞苷分化培养基诱导两种来源的间充质干细胞向心肌分化。采用免疫荧光染色检测心肌特异性蛋白,即α-肌动蛋白(a-actin)、缝隙连接蛋白(Connexin-43)以及肌球蛋白重链(MYH-6)的表达,并通过共聚焦显微镜和荧光显微镜进行观察;采用MTT法分析S1P分化培养基中细胞的活性变化;通过膜片钳检测分化细胞的钙瞬变(此为心肌细胞功能性指标)。结果表明,在CMCM诱导培养过程中,随着S1P浓度及其作用时间的增加,其促心肌分化作用增强,而细胞活性下降。因此,研究确定CMCM中S1P的适宜作用时间为14天,适宜作用浓度为0.5nmol/L。SIP与CMCM联合作用,不仅可以促进UC-MSCs和AD-MSCs表达心肌特异性蛋白,而且可以促进它们分化的细胞产生钙瞬变现象,即:具有类似心肌细胞的功能性。然而,S1P联合5-氮胞苷则仅仅是增强了分化细胞心肌特异性蛋白的表达,而不能促进分化细胞形成钙瞬变现象。其中的原因,可能与心肌细胞培养液中含有的生物活性因子(如转化生长因子)有关。
Due to their multipotential, available in large numbers and easily accessible, human adipose-derived mesenchymal stem cells (AD-MSCs) and human umbilical cord mesenchymal stem cells (UC-MSCs) have become an attractive stem cell source for cell therapy and tissue regeneration. More than one month is needed for cell therapy, and time plays an important role in cell therapy. Further more, cell viability of MSCs in transplanted area is another key factor for improving cell therapy. However, bad transplanted environment (such as ischemia, oxidative stress, inflammatory reaction) and contact inhibition, which cause abundant death or apoptosis of MSCs, are unfavorable for application of cell therapy. Therefore, it is needed to find a suitable source of MSCs possessing more tolerance to the contact inhibition for improving the cell therapy. In addition, UC-MSCs and AD-MSCs have the potential to differentiate into cardiomyocytes and can express cardiomyocytes specific proteins, making them promising therapeutic candidates for treating damaged cardiac tissues. However, the differentiated cells induced from UC-MSCs or AD-MSCs by5-azacytidine or cardiomyocytes culture medium can hardly display functional characteristics similar to cardiomyocytes. Therefore, it is important to find a bioactive factor combining with cardiac differentiation medium for UC-MSCs or AD-MSCs to improve their functional cardiomyogenic differentiation.
     In this study, the growth and cell viability of AD-MSCs and UC-MSCs were investigated by CCK-8kits and hemocytometer everyday in30days of culture. Live/Dead staining and flow cytometry (FCM) were used to evaluate the cell viability of AD-MSCs and UC-MSCs during one month of culture. The results showed that AD-MSCs could be cultured up to the30th day in one passage while maintaining high level cell viability, and were seemed to be more tolerance to the contact inhibition. In addition, the cells displayed two plateau phases and three logarithmic phases during one month of culture. While UC-MSCs were not tolerance,to the contact inhibition, they couldn't maintain high level cell viability in whole culture. Their cell viability significantly declined in later period of one month of culture. And the grow curves of UC-MSCs showed that they only displayed one logarithmic phase then went into the plateau phase. The cell numbers and cell viability of UC-MSCs kept mostly unchanged in the late of one month of culture.
     As a cell source of transplanting for clinical implication, the cells are required to not only maintain high cell viability, but also maintain their stem cell characteristics and normal chromosome type. The stem cell characteristics of AD-MSCs at the beginning and the end of culture were detected by flow cytometry (FCM) and histochemical staining. In addition, G banding karyotype analysis was used to evaluate biosecurity of AD-MSCs after one month of culture. The results showed that AD-MSCs could maintain their stem cell characteristics up to the end of one month of culture, including the capacity of mutilineage differentiation and the expression of hADSCs relative surface marker proteins. The results of G banding karyotype analysis showed that AD-MSCs after one month of culure still possessed a normal female chromosome type with no chromosome abnormalities being observed. This study demonstrates that AD-MSCs can be used as seed cells for application of cell therapy.
     In adition, to investigate the control factors of hADSCs growth during one month of culture, we detected the cell cycle distribution profiles by FCM using propidium iodide (PI) staining of DNA content, and the expression of cell cycle regulators including cyclin D1and cyclin A by western blotting. The results showed that increasing expression of cyclin A at protein level resulted in an increase in the percentage of AD-MSCs in the S and G2/M phases, promoting cells to go into logarithmic phases. Meanwhile, increasing or decreasing expression of cyclin D1at protein level caused a rise or decline in the proportion of AD-MSCs in the S phase, regulating cells to move into rapid proliferation or plateau phases. In conclusion, cyclin A and cyclin D1affect the distribution of cell cycle and regulate the growth of AD-MSCs.
     In this study, we have investigated the effects of sphingosine-1-phosphate (SIP) on cardiomyogenic differentiations of UC-MSCs and AD-MSCs in cardiomyocyte culture medium (CMCM) and5-azacytidine in vitro. Cardiomyogenic differentiations were identified through immunofluorescence staining, and the results were observed with fluorescence microscopy and confocal microscopy. The effects of respective combinations of SlP-5-azacytidine and S1P-CMCM on cell viability were evaluated by methyl thiazolyl tetrazolium (MTT) assays. Functional characteristics similar to cardiomyocytes were evaluated through detecting calcium transient. The results showed that the differentiations towards cardiomyocytes of UC-MSCs or AD-MSCs in CMCM were enhanced with SIP concentration increasing, but cell activities declined. Therefore, our data showed that the suitable differentiation time was around14days, and the optimal concentration of SIP was0.5μmol/L in CMCM differential medium. Moreover, S1P working together with CMCM can not only enhance the differentiations of UC-MSCs or AD-MSCs into cardiaomyocytes, but also promote their differentiations towards functional cardiomyocytes, generating the calcium transients from the induced cardiomyocytes. Wherase SIP with5-azacytidine only enhanced the expressions of the three cardiac specific proteins but could not give rise to the specific electrophysiological properties (the calcium transient) in the committed UC-MSCs or AD-MSCs. This difference could be due to some cellular stimulus (e.g. transforming growth factor-beta, TGF-β) existing in CMCM but not in5-azacytidine induction medium.
引文
[I]Gnecchi M, Danieli P, Cervio E. Mesenchymal stem cell therapy for heart disease [J]. Vascular Pharmacology,2012,57(1):48-55.
    [2]Friedens A J, Petrakov K V, Kuroleso A I, et al. Heterotopic transplants of bone marrow-analysis of precursor cells for osteogenic and hematopoietic tissues [J]. Transplantation,1968,6(2):230-47.
    [3]Ashton B A, Allen T D, Howlett C R, et al. Formation of bone and cartilage by marrow stromal cells in diffusion-chambers invivo [J]. Clinical Orthopaedics and Related Research,1980, (151):294-307.
    [4]Ciciarello M, Zini R, Rossi L, et al. Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages [J]. Stem cells and development,2013,22(7):1097-1111.
    [5]Sohn H S, Heo J S, Kim H S, et al. Duration of in vitro storage affects the key stem cell features of human bone marrow-derived mesenchymal stromal cells for clinical transplantation [J]. Cytotherapy, 2013,15(4):460-466.
    [6]Chong P P, Selvaratnam L, Abbas A A, et al. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells [J]. Journal of Orthopaedic Research,2012,30(4):634-642.
    [7]Yoo K H, Jang I K, Lee M W, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues [J]. Cellular Immunology,2009,259(2):150-156.
    [8]Hwang J H, Shim S S, Seok O S, et al. Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow [J]. Journal of Korean Medical Science, 2009,24(4):547-554.
    [9]Rebelatto C K, Aguiar A M, Moretao M P, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue [J]. Experimental Biology and Medicine,2008,233(7):901-913.
    [10]Bianco P, Robey P G, Simmons P J. Mesenchymal stem cells:Revisiting history, concepts, and assays [J]. Cell Stem Cell,2008,2(4):313-319.
    [11]Javazon E H, Beggs K J, Flake A W. Mesenchymal stem cells:Paradoxes of passaging [J]. Experimental Hematology,2004,32(5):414-425.
    [12]Ohishi M, Schipani E. Bone marrow mesenchymal stem cells [J]. Journal of Cellular Biochemistry, 2010,109(2):277-282.
    [13]Mosna F, Sensebe L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: A user's guide [J]. Stem Cells and Development,2010,19(10):1449-1470.
    [14]Moroni L, Fornasari P M. Human mesenchymal stem cells:A bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tissues [J]. Journal of Cellular Physiology,2013,228(4):680-687.
    [15]Nery A A, Nascimento I C, Glaser T, et al. Human mesenchymal stem cells:From immunophenotyping by flow cytometry to clinical applications [J]. Cytometry Part A,2013, 83A(1):48-61.
    [16]Krampera M, Pasini A, Pizzolo G, et al. Regenerative and immunomodulatory potential of mesenchymal stem cells [J]. Current Opinion in Pharmacology,2006,6(4):435-441.
    [17]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement [J]. Cytotherapy,2006, 8(4):315-317.
    [18]Gronthos S, Franklin D M, Leddy H A, et al. Surface protein characterization of human adipose tissue-derived stromal cells [J]. Journal of Cellular Physiology,2001,189(1):54-63.
    [19]Varma M J O, Breuls R G M, Schouten T E, et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells [J]. Stem Cells and Development,2007, 16(1):91-104.
    [20]Kolf C M, Cho E, Tuan R S. Mesenchymal stromal cells-biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation [J]. Arthritis Research & Therapy,2007,9(1).
    [21]Mitchell J B, Mclntosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers [J]. Stem Cells,2006, 24(2):376-385.
    [22]Katz A J, Tholpady A, Tholpady S S, et al. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hadas) cells [J]. Stem Cells,2005,23(3):412-423.
    [23]Baddoo M, Hill K, Wilkinson R, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection [J]. Journal of Cellular Biochemistry,2003, 89(6):1235-1249.
    [24]Zuk P A, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells [J]. Molecular Biology of the Cell,2002,13(12):4279-4295.
    [25]Varma M J O, Breuls R G M, Schouten T E, et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells [J]. Stem Cells and Development,2007, 16(1):91-104.
    [26]Peister A, Mellad J A, Larson B L, et al. Adult stem cells from bone marrow (mscs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential [J]. Blood,2004,103(5):1662-1668.
    [27]Suga H, Shigeura T, Matsumoto D, et al. Rapid expansion of human adipose-derived stromal cells preserving multipotency [J]. Cytotherapy,2007,9(8):738-745.
    [28]Lian Q, Lye E, Yeo K S, et al. Derivation of clinically compliant mscs from cd105+, cd24-differentiated human escs [J]. Stem Cells,2007,25(2):425-436.
    [29]Vassaux G, Negrel R, Ailhaud G, et al. Proliferation and differentiation of rat adipose precursor cells in chemically-defined medium-differential action of anti-adipogenic agents [J]. Journal of Cellular Physiology,1994,161(2):249-256.
    [30]Tuan R S, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering [J]. Arthritis Research & Therapy,2003,5(1):32-45.
    [31]Oishi K, Noguchi H, Yukawa H, et al. Differential ability of somatic stem cells [J]. Cell Transplantation,2009,18(5-6):581-589.
    [32]Kuo T K, Ho J H, Lee O K. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: Emerging applications [J]. Cell Transplantation,2009,18(9):1013-1028.
    [33]Ding D C, Shyu W C, Lin S Z. Mesenchymal stem cells [J]. Cell Transplantation,2011,20(1):5-14.
    [34]Haghani K, Bakhtiyari S, Nouri A M. In vitro study of the differentiation of bone marrow stromal cells into cardiomyocyte-like cells [J]. Molecular and Cellular Biochemistry,2012, 361(1-2):315-320.
    [35]Harris L J, Abdollahi H, Zhang P, et al. Differentiation of adult stem cells into smooth muscle for vascular tissue engineering [J]. Journal of Surgical Research,2011,168(2):306-314.
    [36]Mehlhorn A T, Niemeyer P, Kaiser S, et al. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue [J]. Tissue Engineering,2006,12(10):2853-2862.
    [37]Awad H A, Wickham M Q, Leddy H A, et al. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds [J]. Biomaterials,2004,25(16):3211-3222.
    [38]Chiou M, Xu Y, Longaker M T. Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells [J]. Biochemical and Biophysical Research Communications, 2006,343(2):644-652.
    [39]Knippenberg M, Helder M N, Doulabi B Z, et al. Osteogenesis versus chondrogenesis by bmp-2 and bmp-7 in adipose stem cells [J]. Biochemical and Biophysical Research Communications,2006, 342(3):902-908.
    [40]Wei Y, Hu Y, Lv R, et al. Regulation of adipose-derived adult stem cells differentiating into chondrocytes with the use of rhbmp-2 [J]. Cytotherapy,2006,8(6):570-579.
    [41]Pittenger M F, Mackay A M, Beck S C, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science,1999,284(5411):143-147.
    [42]Halvorsen Y D C, Franklin D, Bond A L, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells [J]. Tissue Engineering,2001, 7(6):729-741.
    [43]Elabd C, Chiellini C, Massoudi A, et al. Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells [J]. Biochemical and Biophysical Research Communications,2007,361(2):342-348.
    [44]Ito T, Sawada R, Fujiwara Y, et al. Fgf-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of tgf-beta signaling [J]. Cytotechnology, 2008,56(1):1-7.
    [45]Boland G M, Perkins G, Hall D J, et al. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells [J]. Journal of Cellular Biochemistry,2004, 93(6):1210-1230.
    [46]Kuriharcuch W, Green H. Adipose conversion of 3t3 cells depends on a serum factor [J]. Proceedings of the National Academy of Sciences of the United States of America,1978, 75(12):6107-6109.
    [47]Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose-tissue development [J]. Annual Review of Nutrition,1992,12:207-233.
    [48]Bernlohr D A, Doering T L, Kelly T J, et al. Tissue specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes [J]. Biochemical and Biophysical Research Communications,1985, 132(2):850-855.
    [49]Jing K, Heo J Y, Song K S, et al. Expression regulation and function of pref-1 during adipogenesis of human mesenchymal stem cells (mscs) [J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2009,1791(8):816-826.
    [50]Mizuno H, Zuk P A, Zhu M, et al. Myogenic differentiation by human processed lipoaspirate cells [J]. Plastic and Reconstructive Surgery,2002,109(1):199-209.
    [51]Pinheiro C H, Queiroz J C, Guimaraes-Ferreira L, et al. Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle [J]. Stem Cell Reviews and Reports, 2012,8(2):363-374.
    [52]Metzele R, Alt C, Bai X, et al. Human adipose tissue-derived stem cells exhibit proliferation potential and spontaneous rhythmic contraction after fusion with neonatal rat cardiomyocytes [J]. Faseb Journal,2011,25(3):830-839.
    [53]Choi Y S, Dusting G J, Stubbs S, et al. Differentiation of human adipose-derived stem cells into beating cardiomyocytes [J]. Journal of Cellular and Molecular Medicine,2010,14(4):878-889.
    [54]Krampera M, Marconi S, Pasini A, et al. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus [J]. Bone,2007, 40(2):382-390.
    [55]Fujimura J, Ogawa R, Mizuno H, et al. Neural differentiation of adipose-derived stem cells isolated from gfp transgenic mice [J]. Biochemical and Biophysical Research Communications,2005, 333(1):116-121.
    [56]Liqing Y, Jia G, Jiqing C, et al. Directed differentiation of motor neuron cell-like cells from human adipose-derived stem cells in vitro [J]. Neuroreport,2011,22(8):370-373.
    [57]Hu N, Wu H, Xue C, et al. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts [J]. Biomaterials,2013,34(1):100-111.
    [58]Rodriguez A M, Pisani D, Dechesne C A, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse [J]. Journal of Experimental Medicine,2005,201(9):1397-1405.
    [59]Vellasamy S, Sandrasaigaran P, Vidyadaran S, et al. Mesenchymal stem cells of human placenta and umbilical cord suppress t-cell proliferation at g(0) phase of cell cycle [J]. Cell Biology International, 2013,37(3):250-256.
    [60]Hashemi S M, Hassan Z M, Pourfathollah A A, et al. Comparative immunomodulatory properties of adipose-derived mesenchymal stem cells conditioned media from balb/c, c57b1/6, and dba mouse strains [J]. Journal of Cellular Biochemistry,2013,114(4):955-965.
    [61]Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells [J]. Trends in Molecular Medicine,2012,18(2):128-134.
    [62]Morandi F, Raffaghello L, Bianchi G, et al. Immunogenicity of human mesenchymal stem cells in hla-class i-restricted t-cell responses against viral or tumor-associated antigens [J]. Stem Cells,2008, 26(5):1275-1287.
    [63]Sensebe L, Krampera M, Schrezenmeier H, et al. Mesenchymal stem cells for clinical application [J]. Vox Sanguinis,2010,98(2):93-107.
    [64]DelaRosa O, Lombardo E. Modulation of adult mesenchymal stem cells activity by toll-like receptors: Implications on therapeutic potential [J]. Mediators of Inflammation,2010.
    [65]Nauta A J, Kruisselbrink A B, Lurvink E, et al. Mesenchymal stem cells inhibit generation and function of both cd34(+)-derived and monocyte-derived dendritic cells [J]. Journal of Immunology, 2006,177(4):2080-2087.
    [66]Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate b-cell functions [J]. Blood,2006,107(1):367-372.
    [67]Sotiropoulou P A, Perez S A, Gritzapis A D, et al. Interactions between human mesenchymal stem cells and natural killer cells [J]. Stem Cells,2006,24(1):74-85.
    [68]Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-g5 secretion by human mesenchymal stem cells is required to suppress t lymphocyte and natural killer function and to induce cd4(+)cd25(high)foxp3(+) regulatory t cells [J]. Stem Cells,2008,26(1):212-222.
    [69]Meirelles L d S, Fontes A M, Covas D T, et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells [J]. Cytokine & Growth Factor Reviews,2009,20(5-6):419-427.
    [70]Frid M G, Brunetti J A, Burke DL, et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage [J]. American Journal of Pathology,2006,168(2):659-669.
    [71]Secco M, Zucconi E, Vieira N M, et al. Multipotent stem cells from umbilical cord:Cord is richer than blood! [J]. Stem Cells,2008,26(1):146-150.
    [72]Bieback K, Kern S, Kluter H, et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood [J]. Stem Cells,2004,22(4):625-634.
    [73]Estes B T, Wu A W, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6 [J]. Arthritis and Rheumatism, 2006,54(4):1222-1232.
    [74]De Ugarte D A, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow [J]. Cells Tissues Organs,2003,174(3):101-109.
    [75]Zuk P A, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:Implications for cell-based therapies [J]. Tissue Engineering,2001,7(2):211-228.
    [76]Huang J Ⅰ, Kazmi N, Durbhakula M M, et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue:A patient-matched comparison [J]. Journal of Orthopaedic Research,2005,23(6):1383-1389.
    [77]Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues-superiority of synovium as a cell source [J]. Arthritis and Rheumatism,2005, 52(8):2521-2529.
    [78]Awad H A, Halvorsen Y D C, Gimble J M, et al. Effects of transforming growth factor beta 1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells [J]. Tissue Engineering,2003,9(6):1301-1312.
    [79]Sekiya I, Colter D C, Prockop D J. Bmp-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells [J]. Biochemical and Biophysical Research Communications,2001, 284(2):411-418.
    [80]Indrawattana N, Chen G P, Tadokoro M, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell [J]. Biochemical and Biophysical Research Communications,2004,320(3):914-919.
    [81]Sekiya Ⅰ, Vuoristo J T, Larson B L, et al. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis [J]. Proceedings of the National Academy of Sciences of the United States of America,2002, 99(7):4397-4402.
    [82]Hui J H P, Li L, Teo Y H, et al. Comparative study of the ability of mesenchymal stem cells derived from bone marrow, periosteum, and adipose tissue in treatment of partial growth arrest in rabbit [J]. Tissue Engineering,2005,11(5-6):904-912.
    [83]Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood [J]. Experimental Hematology,2005, 33(11):1402-1416.
    [84]Michos O, Panman L, Vintersten K, et al. Gremlin-mediated bmp antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis [J]. Development,2004,131(14):3401-3410.
    [85]Luo Q, Kang Q, Si W K, et al. Connective tissue growth factor (ctgf) is regulated by wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells [J]. Journal of Biological Chemistry,2004,279(53):55958-55968.
    [86]Yosimichi G, Kubota S, Hattori T, et al. Ctgf/hcs24 interacts with the cytoskeletal protein actin in chondrocytes [J]. Biochemical and Biophysical Research Communications,2002,299(5):755-761.
    [87]Nakanishi C, Nagaya N, Ohnishi S, et al. Gene and protein expression analysis of mesenchymal stem cells derived from rat adipose tissue and bone marrow [J]. Circulation Journal,2011, 75(9):2260-2268.
    [88]Lee R H, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue [J]. Cellular Physiology and Biochemistry,2004, 14(4-6):311-324.
    [89]Safwani W K Z W, Makpol S, Sathapan S, et al. The changes of sternness biomarkers expression in human adipose-derived stem cells during long-term manipulation [J]. Biotechnology and Applied Biochemistry,2011,58(4):261-270.
    [90]Choi M R, Kim H Y, Park J Y, et al. Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis [J]. Neuroscience Letters,2010,472(2):94-98.
    [91]Bonab M M, Alimoghaddam K, Talebian F, et al. Aging of mesenchymal stem cell in vitro [J]. Bmc Cell Biology,2006,7.
    [92]Kim J, Kang J, Park J, et al. Biological characterization of long-term cultured human mesenchymal stem cells [J]. Archives of Pharmacal Research,2009,32(1):117-126.
    [93]Cerrada I, Ruiz-Sauri A, Carrero R, et al. Hypoxia-inducible factor 1 alpha contributes to cardiac healing in mesenchymal stem cells-mediated cardiac repair [J]. Stem Cells and Development,2013, 22(3):501-511.
    [94]Choudhery M S, Khan M, Mahmood R, et al. Mesenchymal stem cells conditioned with glucose depletion augments their ability to repair-infarcted myocardium [J]. Journal of Cellular and Molecular Medicine,2012,16(10):2518-2529.
    [95]Arslan F, Lai R C, Smeets M B, et al. Mesenchymal stem cell-derived exosomes increase atp levels, decrease oxidative stress and activate pi3k/akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury [J]. Stem cell research,2013, 10(3):301-312.
    [96]Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells [J]. Experimental Cell Research,2003,288(1):51-59.
    [97]Shumakov V I, Onishchenko N A, Rasulov M F, et al. Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts [J]. Bulletin of Experimental Biology and Medicine,2003,136(2):192-195.
    [98]Morigi M, Imberti B, Zoja C, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure [J]. Journal of the American Society of Nephrology,2004,15(7):1794-1804.
    [99]Lu L X, Zhang X F, Wang Y Y, et al. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo [J]. Acs Applied Materials & Interfaces,2013,5(2):319-330.
    [100]Behnia H, Khojasteh A, Kiani M T, et al. Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells:A histologic study in rabbit calvaria [J]. Oral Surgery Oral Medicine Oral Pathology Oral Radiology,2013, 115(2):E7-E15.
    [101]Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat [J]. Experimental Neurology,2006,199(l):56-66.
    [102]Bajada S, Mazakova Ⅰ, Richardson J B, et al. Updates on stem cells and their applications in regenerative medicine [J]. Journal of Tissue Engineering and Regenerative Medicine,2008, 2(4):169-183.
    [103]Abdallah B M, Kassem M. Human mesenchymal stem cells:From basic biology to clinical applications [J]. Gene Therapy,2008,15(2):109-116.
    [104]Chamberlain G, Fox J, Ashton B, et al. Concise review:Mesenchymal stem cells:Their phenotype, differentiation capacity, immunological features, and potential for homing [J]. Stem Cells,2007, 25(11):2739-2749.
    [105]Shi R Z, Li Q P. Improving outcome of transplanted mesenchymal stem cells for ischemic heart disease [J]. Biochemical and Biophysical Research Communications,2008,376(2):247-250.
    [106]Chang J W, Tsai H L, Chen C W, et al. Conditioned mesenchymal stem cells attenuate progression of chronic kidney disease through inhibition of epithelial-to-mesenchymal transition and immune modulation [J]. Journal of Cellular and Molecular Medicine,2012,16(12):2935-2949.
    [107]Chen K, Man C, Zhang B, et al. Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint [J]. International Journal of Oral and Maxillofacial Surgery,2013, 42(2):240-248.
    [108]Wagner W, Horn P, Castoldi M, et al. Replicative senescence of mesenchymal stem cells:A continuous and organized process [J]. Plos One,2008,3(5).
    [109]Miura M, Miura Y, Padilla-Nash H M, et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation [J]. Stem Cells,2006, 24(4):1095-1103.
    [110]Di Bonzo L V, Ferrero I, Cravanzola C, et al. Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine:Engraftment and hepatocyte differentiation versus profibrogenic potential [J]. Gut,2008,57(2):223-231.
    [111]Bacou F, el Andalousi R B, Daussin P A, et al. Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle [J]. Cell Transplantation, 2004,13(2):103-111.
    [112]Zhao L R, Duan W M, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats [J]. Experimental Neurology,2002,174(1):11-20.
    [113]Xu H, Zhu G, Tian Y. Protective effects of trimetazidine on bone marrow mesenchymal stem cells viability in an ex vivo model of hypoxia and in vivo model of locally myocardial ischemia [J]. Journal of Huazhong University of Science and Technology-Medical Sciences,2012,32(1):36-41.
    [114]李勇.骨髓间充质干细胞优化移植治疗缺血性疾病的基础研究[D].南京:南京医科大学,2011.
    [115]Hou M, Yang K M, Zhang H, et al. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats [J]. International Journal of Cardiology,2007, 115(2):220-228.
    [116]Zhu Y X, Liu T Q, Song K D, et al. Adipose-derived stem cell:A better stem cell than bmsc [J]. Cell Biochemistry and Function,2008,26(6):664-675.
    [117]Sekiya I, Larson B L, Smith J R, et al. Expansion of human adult stem cells from bone marrow stroma:Conditions that maximize the yields of early progenitors and evaluate their quality [J]. Stem Cells,2002,20(6):530-541.
    [118]Qiao C, Xu W R, Zhu W, et al. Human mesenchymal stem cells isolated from the umbilical cord [J]. Cell Biology International,2008,32(1):8-15.
    [119]Ning H X, Liu G, Lin G T, et al. Identification of an aberrant cell line among human adipose tissue-derived stem cell isolates [J]. Differentiation,2009,77(2):172-180.
    [120]Park H, Cho J A, Lim E H, et al. Cell cycle regulators are critical for maintaining the differentiation potential and immaturity in adipogenesis of adipose-derived stem cells [J]. Differentiation,2011, 82(3):136-143.
    [121]Lew D J, Kornbluth S. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control [J]. Current Opinion in Cell Biology,1996,8(6):795-804.
    [122]Morgan D O. Principles of cdk regulation [J]. Nature,1995,374(6518):131-134.
    [123]Hengst L, Reed S I. Inhibitors the cip/kip family [J]. Cyclin Dependent Kinase (Cdk) Inhibitors,1998, 227:25-41.
    [124]Pan Z Q, Reardon J T, Li L, et al. Inhibition of nucleotide excision-repair by the cyclin-dependent kinase inhibitor p21 [J]. Journal of Biological Chemistry,1995,270(37):22008-22016.
    [125]Harper J W, Elledge S J, Keyomarsi K, et al. Inhibition of cyclin-dependent kinases by p21 [J]. Molecular Biology of the Cell,1995,6(4)::387-400.
    [126]Arellano M, Moreno S. Regulation of cdk/cyclin complexes during the cell cycle [J]. International Journal of Biochemistry & Cell Biology,1997,29(4):559-573.
    [127]King R W, Jackson P K, Kirschner M W. Mitosis in transition [J]. Cell,1994,79(4):563-571.
    [128]Walker D H, Maller J L. Role for cyclin-a in the dependence of mitosis on completion of DNA-replication [J]. Nature,1991,354(6351):314-317.
    [129]Girard F, Strausfeld U, Fernandez A, et al. Cyclin-a is required for the onset of DNA-replication in mammalian fibroblasts [J]. Cell,1991,67(6):1169-1179.
    [130]Vermeulen K, Van Bockstaele D R, Berneman Z N. The cell cycle:A review of regulation, deregulation and therapeutic targets in cancer [J]. Cell Proliferation,2003,36(3):131-149.
    [131]Molinari M. Cell cycle checkpoints and their inactivation in human cancer [J]. Cell Proliferation, 2000,33(5):261-274.
    [132]Lo B, Kriegstein A, Grady D. Clinical trials in stem cell transplantation:Guidelines for scientific and ethical review [J]. Clinical Trials,2008,5(5):517-522.
    [133]Lange C, Schroeder J, Lioznov M V, et al. High-potential human mesenchymal stem cells [J]. Stem Cells and Development,2005,14(1):70-80.
    [134]Meirelles L d S, Caplan A I, Nardi N B. In search of the in vivo identity of mesenchymal stem cells [J]. Stem Cells,2008,26(9):2287-2299.
    [135]Wakitani S, Saito T, Caplan A I. Myogenic cells derived from rat bone-marrow mesenchymal stem-cells exposed to 5-azacytidine [J]. Muscle & Nerve,1995,18(12):1417-1426.
    [136]Tomita S, Li R K, Weisel R D, et al. Autologous transplantation of bone marrow cells improves damaged heart function [J]. Circulation,1999,100(19):247-256.
    [137]Rangappa S, Fen C, Lee E H, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes [J]. Annals of Thoracic Surgery,2003,75(3):775-779.
    [138]Pereira W C, Khushnooma I, Madkaikar M, et al. Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation [J]. Journal of Tissue Engineering and Regenerative Medicine,2008,2(7):394-399.
    [139]Monzen K, Hiroi Y, Kudoh S, et al. Smads, takl, and their common target atf-2 play a critical role in cardiomyocyte differentiation [J]. Journal of Cell Biology,2001,153(4):687-698.
    [140]Monzen K, Nagai R, Komuro I. A role for bone morphogenetic protein signaling in cardiomyocyte differentiation [J]. Trends in Cardiovascular Medicine,2002,12(6):263-269.
    [141]Zhang Z, Li H, Ma Z, et al. Efficient cardiomyogenic differentiation of bone marrow mesenchymal stromal cells by combination of wntll and bone morphogenetic protein 2 [J]. Experimental Biology and Medicine,2012,237(7):768-776.
    [142]Gao C, Wang H, Wu Z, et al. Bone morphogenetic protein-2 induces rat bone marrow mesenchymal stem cells to differentiate into cardiomyocyte-like cells in vitro [J]. Chinese Journal of Tissue Engineering Research,2012,16(27):4953-4958.
    [143]Giasson E, Meloche S. Role of p70 s6 protein-kinase in angiotensin-ii-induced protein-synthesis in vascular smooth-muscle cells [J]. Journal of Biological Chemistry,1995,270(10):5225-5231.
    [144]Chang L F, Karin M. Mammalian map kinase signalling cascades [J]. Nature,2001, 410(6824):37-40.
    [145]Schultz J E J, Witt S A, Glascock B J, et al. Tgf-beta 1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin ii [J]. Journal of Clinical Investigation,2002,109(6):787-796.
    [146]Li T F, O'Keefe R J, Chen D. Tgf-beta signaling in chondrocytes [J]. Frontiers in Bioscience,2005, 10:681-688.
    [147]张卫泽,樊艳,陈永清,等.血管紧张素Ⅱ诱导成人脂肪间充质干细胞分化为心肌样细胞的实验研究[J].第三军医大学学报,2008,30(19):4.
    [148]Xing Y, Lv A, Wang L, et al. The combination of angiotensin ii and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells [J]. Molecular and Cellular Biochemistry,2012,360(1-2):279-287.
    [149]Rangappa S, Entwistle J W C, Wechsler A S, et al. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype [J]. Journal of Thoracic and Cardiovascular Surgery,2003,126(1):124-132.
    [150]Chu Z-h, Hui J, Han L-h. Effect of 5-azacytidine and simulated biological microenvironment on differentiation from bone marrow mesenchymal stem cells into myocardial-like cells [J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2009,13(40):7931-7936.
    [151]Wang T Z, Xu Z Y, Jiang W H, et al. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell [J]. International Journal of Cardiology, 2006,109(1):74-81.
    [152]He X Q, Chen M S, Li S H, et al. Co-culture with cardiomyocytes enhanced the myogenic conversion of mesenchymal stromal cells in a dose-dependent manner [J]. Molecular and Cellular Biochemistry,2010,339(1-2):89-98.
    [153]Li H W, Yu B, Zhang Y, et al. Jaggedl protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes [J]. Biochemical and Biophysical Research Communications,2006, 341(2):320-325.
    [154]Haider H K, Jiang S, Idris N M, et al. Igf-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of sdf-1 alpha/cxcr4 signaling to promote myocardial repair [J]. Circulation Research,2008,103(11):1300-1308.
    [155]Tang J, Wang J, Zheng F, et al. Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats [J]. Molecular and Cellular Biochemistry,2010,339(1-2):107-118.
    [156]Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro [J]. Journal of Clinical Investigation,1999,103(5):697-705.
    [157]Gaustad K G, Boquest A C, Anderson B E, et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes [J]. Biochemical and Biophysical Research Communications, 2004,314(2):420-427.
    [158]Li X, Yu X, Lin Q, et al. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment [J]. Journal of Molecular and Cellular Cardiology,2007, 42(2):295-303.
    [159]Qian Q, Qian H, Zhang X, et al.5-azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase [J]. Stem Cells and Development,2012,21(1):67-75.
    [160]Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, et al. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine [J]. Interactive cardiovascular and thoracic surgery,2007,6(5):593-597.
    [161]Spiegel S, Milstien S. Sphingosine-1-phosphate:An enigmatic signalling lipid [J]. Nature Reviews Molecular Cell Biology,2003,4(5):397-407.
    [162]Hannun Y A, Obeid L M. Principles of bioactive lipid signalling:Lessons from sphingolipids [J]. Nature Reviews Molecular Cell Biology,2008,9(2):139-150.
    [163]Calise S, Blescia S, Cencetti F, et al. Sphingosine 1-phosphate stimulates proliferation and migration of satellite cells role of slp receptors [J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2012,1823(2):439-450.
    [164]Kim R H, Takabe K, Milstien S, et al. Export and functions of sphingosine-1-phosphate [J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2009,1791(7):692-696.
    [165]Pebay A, Bonder C S, Pitson S M. Stem cell regulation by lysophospholipids [J]. Prostaglandins& Other Lipid Mediators,2007,84(3-4):83-97.
    [166]Ghosh T K, Bian J, Gill D L. Intracellular calcium release mediated by sphingosine derivatives generated in cells [J]. Science,1990,248(4963):1653-1656.
    [167]Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptor potential channels [J]. Faseb Journal,2009,23(2):297-328.
    [168]Dobrowolski R, Willecke K. Connexin-caused genetic diseases and corresponding mouse models [J]. Antioxidants & Redox Signaling,2009,11(2):283-295.
    [169]Squecco R, Sassoli C, Nuti F, et al. Sphingosine 1-phosphate induces myoblast differentiation through cx43 protein expression:A role for a gap junction-dependent and-independent function [J]. Molecular Biology of the Cell,2006,17(11):4896-4910.
    [170]Means C K, Xiao C Y, Li Z, et al. Sphingosine 1-phosphate slp(2) and slp(3) receptor-mediated akt activation protects against in vivo myocardial ischemia-reperfusion injury [J]. American Journal of Physiology-Heart and Circulatory Physiology,2007,292(6):H2944-H2951.
    [171]Nincheri P, Luciani P, Squecco R, et al. Sphingosine 1-phosphate induces differentiation of adipose tissue-derived mesenchymal stem cells towards smooth muscle cells [J]. Cellular and Molecular Life Sciences,2009,66(10):1741-1754.
    [172]Sachinidis A, Gissel C, Nierhoff D, et al. Identification of plateled-derived growth factor-bb as cardiogenesis-inducing factor in mouse embryonic stem cells under serum-free conditions [J]. Cellular Physiology and Biochemistry,2003,13(6):423-429.
    [173]Tat P A, Sumer H, Jones K L, et al. The efficient generation of induced pluripotent stem (ips) cells from adult mouse adipose tissue-derived and neural stem cells [J]. Cell Transplantation,2010, 19(5):525-536.
    [174]Jiang J, Chan Y S, Loh Y H, et al. A core klf circuitry regulates self-renewal of embryonic stem cells [J]. Nature Cell Biology,2008,10(3):353-U103.
    [175]Cai L, Johnstone B H, Cook T G, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization [J]. Stem Cells, 2007,25(12):3234-3243.
    [176]Ebrahimian T G, Pouzoulet F, Squiban C, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing [J]. Arteriosclerosis Thrombosis and Vascular Biology,2009,29(4):503-510.
    [177]Chen C W, Montelatici E, Crisan M, et al. Perivascular multi-lineage progenitor cells in human organs:Regenerative units, cytokine sources or both? [J]. Cytokine & Growth Factor Reviews,2009, 20(5-6):429-434.
    [178]Kilroy G E, Foster S J, Wu X, et al. Cytokine profile of human adipose-derived stem cells: Expression of angiogenic, hematopoietic, and pro-inflammatory factors [J]. Journal of Cellular Physiology,2007,212(3):702-709.
    [179]Lee E Y, Xia Y, Kim W S, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells:Increase in stem cell proliferation and up-regulation of vegf and bfgf [J]. Wound Repair and Regeneration,2009,17(4):540-547.
    [180]Wei X, Du Z, Zhao L, et al. Ifats collection:The conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats [J]. Stem Cells,2009, 27(2):478-488.
    [181]Moon K M, Park Y H, Lee J S, et al. The effect of secretory factors of adipose-derived stem cells on human keratinocytes [J]. International Journal of Molecular Sciences,2012,13(1):1239-1257.
    [182]Yang X F, He X, He J, et al. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells [J]. Journal of Biomedical Science,2011,18.
    [183]Qiao C, Xu W, Zhu W, et al. Human mesenchymal stem cells isolated from the umbilical cord [J]. Cell Biology International,2008,32(1):8-15.
    [184]Yang L, Cheng F, Liu T, et al. Comparison of mesenchymal stem cells released from poly(n-isopropylacrylamide) copolymer film and by trypsinization [J]. Biomedical Materials,2012, 7(3).
    [185]郑翠玲.低血清浓度培养的间充质干细胞特性及其对人th细胞的免疫调节作用[D].北京:中国协和医科大学,2009.
    [186]Weissman B E, Saxon P J, Pasquale S R, et al. Introduction of a normal human chromosome-11 into a wilms tumor-cell line controls its tumorigenic expression [J]. Science,1987,236(4798):175-180.
    [187]Sell S. Stem cell origin of cancer and differentiation therapy [J]. Critical Reviews in Oncology Hematology,2004,51 (1):1-28.
    [188]王晗.原儿茶酸对脂肪干细胞体外增殖和迁移的影响[D].大连:大连理工大学,2008.
    [189]Wang H, Liu T Q, Zhu Y X, et al. Proliferative enhancement of human adipose tissue-derived stromal cells by protocatechuic acid from alpinia oxyphylla in vitro [J]. Progress in Biochemistry and Biophysics,2008,35(10):1168-1174.
    [190]Yan Y, Xiao C, Wei L I, et al. Effect of low dose radiation on biological characteristics of human mesenchymal stem cells from bone marrow [J]. Journal of Jilin Univeristy Medicine edition,2008, 34(1):28-31.
    [191]Wei Z, Yang Y, Zhang P, et al. Klf4 interacts directly with oct4 and sox2 to promote reprogramming [J]. Stem Cells,2009,27(12):2969-2978.
    [192]Marciniak-Czochra A, Stiehl T, Ho A D, et al. Modeling of asymmetric cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation [J]. Stem Cells and Development,2009,18(3):377-385.
    [193]Fujita M, Takeshita H, Sawa H. Cyclin e and cdk2 repress the terminal differentiation of quiescent cells after asymmetric division in c. Elegans [J]. Plos One,2007,2(5).
    [194]Li X, Du M, Liu X, et al. Millimeter wave treatment promotes chondrocyte proliferation by upregulating the expression of cyclin-dependent kinase 2 and cyclin a [J]. International Journal of Molecular Medicine,2010,26(1):77-84.
    [195]Jeon E M, Choi H C, Lee K Y, et al. Hemin inhibits hypertensive rat vascular smooth muscle cell proliferation through regulation of cyclin d and p21 [J]. Archives of Pharmacal Research,2009, 32(3):375-382.
    [196]Beltrami A P, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction [J]. New England Journal of Medicine,2001,344(23):1750-1757.
    [197]Bai X, Yan Y, Song Y H, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction [J]. European Heart Journal,2010, 31(4):489-501.
    [198]Wu K H, Mo X M, Zhou B, et al. Cardiac potential of stem cells from whole human umbilical cord tissue [J]. Journal of Cellular Biochemistry,2009,107(5):926-932.
    [199]Kadivar M, Khatami S, Mortazavi Y, et al. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells [J]. Biochemical and Biophysical Research Communications, 2006,340(2):639-647.
    [200]Zhao Z, Chen Z, Zhao X, et al. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions [J]. Journal of Biomedical Science,2011,18.
    [201]Meacci E, Nuti F, Donati C, et al. Sphingosine kinase activity is required for myogenic differentiation of c2c12 myoblasts [J]. Journal of Cellular Physiology,2008,214(1):210-220.
    [202]Allende M L, Proia R L. Sphingosine-1-phosphate receptors and the development of the vascular system [J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2002, 1582(1-3):222-227.
    [203]Bers D M. Cardiac excitation-contraction coupling [J]. Nature,2002,415(6868):198-205.
    [204]Olivera A, Spiegel S. Sphingosine kinase:A mediator of vital cellular functions [J]. Prostaglandins& Other Lipid Mediators,2001,64(1-4):123-134.
    [205]Wamhoff B R, Lynch K R, Macdonald T L, et al. Sphingosine-1-phosphate receptor subtypes differentially regulate smooth muscle cell phenotype [J]. Arteriosclerosis Thrombosis and Vascular Biology,2008,28(8):1454-1461.
    [206]Donati C, Marseglia G, Magi A, et al. Sphingosine 1-phosphate induces differentiation of mesoangioblasts towards smooth muscle. A role for gata6 [J]. Plos One,2011,6(5).
    [207]Medlin M D, Staus D P, Dubash A D, et al. Sphingosine 1-phosphate receptor 2 signals through leukemia-associated rhogef (larg), to promote smooth muscle cell differentiation [J]. Arteriosclerosis Thrombosis and Vascular Biology,2010,30(9):1779-1786.
    [208]Daum G, Grabski A, Reidy M A. Sphingosine 1-phosphate a regulator of arterial lesions [J]. Arteriosclerosis Thrombosis and Vascular Biology,2009,29(10):1439-1443.
    [209]Owens G K, Kumar M S, Wamhoff B R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease [J]. Physiological Reviews,2004,84(3):767-801.
    [210]Xu W R, Zhang X R, Qian H, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro [J]. Experimental Biology and Medicine,2004, 229(7):623-631.
    [211]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium [J]. Nature,2001,410(6829):701-705.
    [212]Ravichandran R, Venugopal J R, Sundarrajan S, et al. Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers [J]. World journal of cardiology,2013,5(3):28-41.
    [213]Sohl G, Willecke K. Gap junctions and the connexin protein family [J]. Cardiovascular Research, 2004,62(2):228-232.
    [214]Konieczny S F, Emerson C P.5-azacytidine induction of stable mesodermal stem-cell lineages from 10t1/2 cells- evidence for regulatory genes-controlling determination [J]. Cell,1984,38(3):791-800.
    [215]Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering [J], Artificial Organs,2001,25(3):187-193.
    [216]Liu Y, Song J A, Liu W X, et al. Growth and differentiation of rat bone marrow stromal cells:Does 5-azacytidine trigger their cardiomyogenic differentiation? [J]. Cardiovascular Research,2003, 58(2):460-468.
    [217]Martin-Rendon E, Sweeney D, Lu F, et al.5-azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies [J]. Vox Sanguinis,2008,95(2):137-148.
    [218]Taylor S M, Jones P A. Multiple new phenotypes induced in 10tl/2-cells and 3t3-cells treated with 5-azacytidine [J]. Cell,1979,17(4):771-779.
    [219]Quinn L S, Haugk K L. Overexpression of the type-i insulin-like growth factor receptor increases ligand-dependent proliferation and differentiation in bovine skeletal myogenic cultures [J]. Journal of Cellular Physiology,1996,168(1):34-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700