用户名: 密码: 验证码:
基于纳米探针技术的NSCLC细胞表面形貌和力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癌症以其高发病率和致死率已经成为人类面临的重要公共卫生问题,由于癌细胞具有隐蔽性强、无限增殖、侵袭和转移的生物学特性,准确的进行癌症的早期诊断对及时开展治疗最为关键。目前确诊癌症的组织病理学方法需要制备切片,不仅制片过程繁复、成本高、使细胞丧失生理结构,而且诸多因素会影响切片的正确判断,如肿瘤细胞分化程度、细胞的异质性、非特异性染色等,并且这些方法仅限于定性和半定量阶段。如何进行癌症的有效早期诊断已经成为亟待解决的难题,尤其是定量诊断和预报癌变是当前追求的目标。
     原子力显微镜(AFM)除了能以纳米级别的分辨率在液相中检测活细胞表面的超微形貌,也能通过对细胞施加微弱的作用力获得细胞的力学特性,进而获取细胞内部结构变化和细胞的功能状态信息。尽管AFM已经检测了包括鱼角膜细胞、肿瘤细胞、干细胞等多种细胞的粘弹性,但是其弹性模量值从100Pa-100kPa不等,如此大的差异并非都归因于细胞亚结构的区别,还受到检测条件、方法和模型等方面的影响。因此本文根据准确分析非小细胞肺癌(NSCLC)细胞力学特性的需要,旨在从表面成像参数设定、检测条件、模型选择等角度,提出准确可行的细胞力学特性的评价方法,并据此分析NSCLC细胞力学特性、内部细胞骨架结构及其转移潜能的关系。这也是首次对不同恶性程度的NSCLC细胞力学特性和骨架结构的对比分析。具体研究内容主要包括以下几个方面:
     提出了优化细胞AFM成像质量的方法,为细胞的力学特性检测奠定基础。利用二次回归正交旋转设计,模拟出了以细胞扫描图像的清晰度为因变量,AFM扫描电压、扫描频率和比例增益为自变量的数学模型,并计算出理论上在扫描电压为0.61V,扫描频率为2.23Hz,比例增益为3.85的条件下,扫描得到的细胞图像最优。以此最佳扫描条件获得了不同恶性程度NSCLC细胞的形貌图,可以较清晰的观察细胞的表面结构,如伪足、分泌颗粒、细胞骨架纤维、细胞间连接甚至核仁等,不同恶性程度的NSCLC细胞的骨架纤维分布存在较大差异。
     分析多种检测因素对NSCLC细胞弹性模量(E)的影响,提出了肺癌细胞力学特性的准确评价方法,应采用球形针尖以避免锥形针尖对细胞弹性的高估;对于细胞中心和边缘区域的力学检测应分别以半无限和有限厚度的Hertz模型进行准确计算;检测温度应为近细胞生理环境的37℃,细胞形态对细胞弹性无明显影响;应以低于1Hz的加载速率而避免细胞粘性对检测结果的影响。该评价方法为准确检测癌细胞的粘弹性提供了技术保障。
     提出了以细胞的外部力学特性鉴定肺癌细胞恶性程度的新方法,提供了细胞癌变鉴别的新手段。以三种NSCLC细胞为研究对象,发现恶性程度不同的三种细胞弹性模量关系为:E低恶性>E中恶性>E高恶性。基于AFM的应力衰减实验研究了不同恶性程度的NSCLC的粘性特征,高转移性的大细胞肺癌NCI-H1299与低转移性的A549细胞相比,NCI-H1299细胞的松弛模量ER低26%、Kelvin弹簧常数K1低26%,表观粘性系数μ低23%。证明了肺癌细胞的顺应性和其侵袭性呈正相关,细胞粘弹性的减小使细胞变得更柔软,更有利于转移性癌细胞从原发灶释放、穿过毛细血管的内皮间隙进行内渗和外渗,转移至区域淋巴结甚至远处器官等。
     利用纳米原位力学检测系统研究了NSCLC细胞的弹性和粘性特征。以Oliver-Pharr方法进行计算,最终得到的细胞的弹性特征:ENCI-H1299Cancer has become an important public health issue in humanity with its highincidence and fatality rate. Cancer could undergo a hidden unlimited proliferation,invasion and metastasis, therefore accurate early diagnosis of cancer is critical forcarrying out treatment in a timely manner. Histopathology, a definitive diagnosismethod of cancer, needs preparation of tissue slices. Not only these producing processare complicated and high costing which make cells loss physiological structure, andmany other factors will affect the correct judgment of the slice, such as the degree oftumor cell differentiation, cell heterogeneity, non-specific staining etc.. These methodsare restricted to the qualitative and semi-quantitative stage. Effective early diagnosis ofcancer has become a problem demanding prompt solution. The current pursuit of goal isquantitative diagnosis and prognosis of cancer, especially.
     Atomic force microscope (AFM) can detect the ultrastructural surface morphologyof living cells with nanometer level resolution in the liquid phase, it also can obtain themechanical characteristics of cell through appling a weak force on cell, and thus toobtain the cell internal structural changes. AFM has evaluated viscoelasticity of manydifferent kinds of cells including fish corneal cells, tumor cells, stem cells etc. whoseelastic modulus ranged from100Pa to100kPa. Such large difference is not onlyattributed to the difference between the cellular sub-structures, but also can be affectedby the impact of the detection conditions, methods and models, etc.. Based on the needof accurate analysis of non-small cell lung cancer (NSCLC) cell mechanical properties,this article aimed at the establishment of accurate and viable cancer cell mechanicalproperties evaluation method from surface imaging parameters setting, testingconditions, model selection perspective. Analysis of the relationship among themechanical properties, internal cytoskeleton structure and cellular metastatic potentialof NSCLC cells were performed. This is the first comparative analysis of themechanical properties and cytoskeletal fibers of NSCLC cells with different malignancydegree. This research mainly includes the following aspects:
     A novel method was proposed to optimize the quality of AFM imaging of livingcells and this layed a foundation for the detection of the mechanical properties of livingcells.A quadratic regression orthogonal design was made to simulate a mathematicalmodel for cell surface scanning. The clarity of cell image surface was defined as thedependent variable, while the AFM scanning setpoint, scanning rate and proportionalgain were defined as the independent variable in this mathematical model. Theoretically,the optimal cell image can be obtained at the scan setpoint of1.31V, the integral gain of1.93, and the proportional gain of3.96. The topography images of NSCLC cells with different malignancy degree were taken by this optimal scanning conditions. Thesurface structure of the cell can be observed clearly, such as cell pseudopod, protrusion,secretory granules, cytoskeletal fiber, cellular connection, nucleolus etc.. Greatdifference exists among the skeleton fibers of NSCLC cells with different degree ofmalignancy.
     Impact of a variety of detection factors on NSCLC cell elastic modulus (E) wereanalyzed in AFM experiments. Thus a new evaluation method was established for theaccurate identification of mechanical properties of lung cancer cells. Spherical tip isessential to avoid elasticity overestimation which might be caused by pyramidal tip.Mechanical detection at cell center and edge can be accurately evaluated by thesemi-infinite and finite thickness Hertz model, separately. Experiment environmentshould be similar to the physiological environment of37°C. No significant influenceof cell morphology has on cell elasticity. Loading rate should be lower than1Hz toavoid the cellular viscous effect. This evaluation method provided technical support forthe accurate detection of cancerous cell viscoelasticity.
     A new method was proposed for the identification of lung cancer cells withdifferent malignancy degree by external mechanical characteristics. A new means wasprovided for identification of cancerous cell. Three NSCLC cell lines were investigatedin this study. The elastic modulus relationship of the three NSCLC cells yielded Elowmalignant> Emedium malignant> Ehighly malignant. The viscous characteristics of NSCLC cellswith different malignant degree were established based on the AFM stress relaxationtesting. Compared with the low metastatic A549cell, high-metastatic NCI-H1299cellhad a26%lower relaxation modulus ER,26%lower Kelvin spring constant K1,23%lower apparent viscosity coefficient μ. These data proved that compliance andinvasiveness of lung cancer cell was positive correlation. The reduced viscoelasticitymakes cell softer and more conducive to the release of metastatic cancer cells from theprimary tumor, through the capillary endothelial gap endosmosis and extravasation andmetastasis to regional lymph nodes or distant organs.
     Elasticity and viscosity characteristics of lung cancer cells were investigated bynanoindentation testing system. The Oliver-Pharr method was used to calculate theelastic modulus of cells and yielded ENCI-H1299
引文
[1] Siegel R, Naishadham D, Jemal A. Cancer statistics,2013[J]. CA: A CancerJournal for Clinicians,2013,63(1):11-30.
    [2] Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a newpotential biomarker for cancer diagnosis and prognosis[J]. Cancer Science,2010,101(10):2087-2092.
    [3] Xie Y, Todd N W, Liu Z, et al. Altered miRNA expression in sputum fordiagnosis of non-small cell lung cancer[J]. Lung Cancer,2010,67(2):170-176.
    [4] Ordó ez N G. Application of immunohistochemistry in the diagnosis ofepithelioid mesothelioma: a review and update[J]. Human Pathology,2012,132(3):397-401.
    [5] Nakagaki W R, Bertran C A, Matsumura C Y, et al. Mechanical, biochemicaland morphometric alterations in the femur of mdx mice[J]. Bone,2011,48(2):372-379.
    [6] Wang M, Peng Z, Watson J, et al., Atomic Force Microscopy Investigation onYoung’s Modulus of Cartilage for Osteoarthritis Study, Engineering AssetManagement and Infrastructure Sustainability, Springer,2012, pp.1019-1025.
    [7] Niu H, Wang Q, Zheng Y, et al. A new method for computing the uniaxialmodulus of articular cartilages using modified inhomogeneous triphasicmodel[J]. Acta Mechanica Sinica,2010,26(1):121-126.
    [8] Collinsworth A M, Zhang S, Kraus W E, et al. Apparent elastic modulus andhysteresis of skeletal muscle cells throughout differentiation[J]. AmericanJournal of Physiology-Cell Physiology,2002,283(4):1219-1227.
    [9] Jacot J G, Kita‐Matsuo H, Wei K A, et al. Cardiac myocyte forcedevelopment during differentiation and maturation[J]. Annals of the New YorkAcademy of Sciences,2010,1188(1):121-127.
    [10] Barabino G A, Platt M O, Kaul D K. Sickle cell biomechanics[J]. Annualreview of biomedical engineering,2010,12,345-367.
    [11] Maciaszek J L, Lykotrafitis G. Sickle cell trait human erythrocytes aresignificantly stiffer than normal[J]. Journal of Biomechanics,2011,44(4):657-661.
    [12] Cross S E, Jin Y-S, Rao J, et al. Nanomechanical analysis of cells from cancerpatients[J]. Nature nanotechnology,2007,2(12):780-783.
    [13] Luo S, Shi Q, Zha Z, et al. Morphology and mechanics of chondroid cells fromhuman adipose-derived Stem cells detected by atomic force microscopy[J].Molecular and cellular biochemistry,2012,365(1-2):223-231.
    [14] Ghibaudo M, Di Meglio J-M, Hersen P, et al. Mechanics of cell spreadingwithin3D-micropatterned environments[J]. Lab on a Chip,2011,11(5):805-812.
    [15] Cao L, Wu A, Truskey G A. Biomechanical effects of flow and coculture onhuman aortic and cord blood-derived endothelial cells[J]. Journal ofBiomechanics,2011,44(11):2150-2157.
    [16] Barbee K A, Davies P F, Lal R. Shear stress-induced reorganization of thesurface topography of living endothelial cells imaged by atomic forcemicroscopy[J]. Circulation Research,1994,74(1):163-171.
    [17] Trache A, Trzeciakowski J P, Gardiner L, et al. Histamine effects onendothelial cell fibronectin interaction studied by atomic force microscopy[J].Biophysical Journal,2005,89(4):28-38.
    [18] Bálint Z, Krizbai I A, Wilhelm I, et al. Changes induced by hyperosmoticmannitol in cerebral endothelial cells: an atomic force microscopic study[J].European Biophysics Journal,2007,36(2):113-120.
    [19] Arce F T, Meckes B, Camp S M, et al. Heterogeneous elastic response ofhuman lung microvascular endothelial cells to barrier modulating stimuli[J].Nanomedicine: Nanotechnology, Biology and Medicine,2013,4:54-63.
    [20] Fantner G E, Barbero R J, Gray D S, et al. Kinetics of antimicrobial peptideactivity measured on individual bacterial cells using high-speed atomic forcemicroscopy[J]. Nature nanotechnology,2010,5(4):280-285.
    [21] Kodera N, Yamamoto D, Ishikawa R, et al. Video imaging of walking myosinV by high-speed atomic force microscopy[J]. Nature,2010,468(7320):72-76.
    [22] Igarashi K, Uchihashi T, Koivula A, et al. Traffic jams reduce hydrolyticefficiency of cellulase on cellulose surface[J]. Science,2011,333(6047):1279-1282.
    [23] Igarashi K, Uchihashi T, Koivula A, et al.9Visualization of CellobiohydrolaseI from Trichoderma reesei Moving on Crystalline Cellulose Using High-SpeedAtomic Force Microscopy[J]. Methods in Enzymology,2012,510:169-172.
    [24] Shibata M, Yamashita H, Uchihashi T, et al. High-speed atomic forcemicroscopy shows dynamic molecular processes in photoactivatedbacteriorhodopsin[J]. Nature nanotechnology,2010,5(3):208-212.
    [25] Shibata M, Uchihashi T, Yamashita H, et al. Structural Changes inBacteriorhodopsin in Response to Alternate Illumination Observed byHigh‐Speed Atomic Force Microscopy[J].Angewandte Chemie,2011,123(19):4502-4505.
    [26] Uchihashi T, Iino R, Ando T, et al. High-speed atomic force microscopy revealsrotary catalysis of rotorless F1-ATPase[J]. Science,2011,333(6043):755-758.
    [27] Uchihashi T, Kodera N, Ando T. Guide to video recording of structuredynamics and dynamic processes of proteins by high-speed atomic forcemicroscopy[J]. Nature Protocols,2012,7(6):1193-1206.
    [28] Ando T. High-speed atomic force microscopy coming of age[J].Nanotechnology,2012,23(6):1-27.
    [29] Fung C K M, Seiffert-Sinha K, Lai K W C, et al. Investigation of humankeratinocyte cell adhesion using atomic force microscopy[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2010,6(1):191-200.
    [30] La Storia A, Ercolini D, Marinello F, et al. Atomic force microscopy analysisshows surface structure changes in carvacrol-treated bacterial cells[J].Research in microbiology,2011,162(2):164-172.
    [31] Hu M, Wang J, Zhao H, et al. Nanostructure and nanomechanics analysis oflymphocyte using AFM: from resting, activated to apoptosis[J]. Journal ofBiomechanics,2009,42(10):1513-1519.
    [32]柯长洪,彭元,陈伟等.雷公藤红素抑制血管内皮细胞增殖的AFM研究[J].生物技术,2011,21(4):61-66.
    [33]马丽娜,宋兵,金花等.华蟾素对乳腺癌细胞株MCF-7的杀伤作用研究[J].中国药理学通报,2011,27(1):37-41.
    [34]马丽娜.华蟾素注射剂诱导乳腺癌MDA-MB-231细胞的凋亡研究[D].暨南大学,2012:28-31.
    [35]李密,刘连庆,席宁等.基于AFM的红细胞及不同侵袭程度癌细胞的成像及机械特性测量[J].2012,42(11):919-925.
    [36] Oh M, Kuhr F, Byfield F, et al. Micropipette aspiration of substrate-attachedcells to estimate cell stiffness[J]. Journal of visualized experiments: JoVE,2012(67):877-882.
    [37] Brugués J, Maugis B, Casademunt J, et al. Dynamical organization of thecytoskeletal cortex probed by micropipette aspiration[J]. Proceedings of theNational Academy of Sciences,2010,107(35):15415-15420.
    [38] Nawaz S, Sánchez P, Bodensiek K, et al. Cell Visco-Elasticity Measured withAFM and Optical Trapping at Sub-Micrometer Deformations[J]. PLoS One,2012,7(9):45297.
    [39] Fung C K M, Xi N, Yang R, et al. Quantitative analysis of human keratinocytecell elasticity using atomic force microscopy (AFM)[J]. NanoBioscience, IEEETransactions on,2011,10(1):9-15.
    [40] Fernandes H P, Fontes A, Thomaz A, et al. Measuring red blood cellaggregation forces using double optical tweezers[J]. Scandinavian Journal ofClinical&Laboratory Investigation,2013,2:1-3.
    [41] Kasza K E, Vader D, K ster S, et al. Magnetic twisting cytometry[M]. ColdSpring Harbor Protocols,2011:55-99.
    [42] Ladjal H, Hanus J-L, Pillarisetti A, et al. Reality-Based Real-Time CellIndentation Simulator[J]. Mechatronics, IEEE/ASME Transactions on,2012,17(2):239-250.
    [43] Kelly G M, Kilpatrick J I, Van Es M H, et al. Bone cell elasticity andmorphology changes during the cell cycle[J]. Journal of Biomechanics,2011,44(8):1484-1490.
    [44] Scott D, Tan W, Lee J S, et al., Vascular Cell Physiology Under Shear Flow:Role of Cell Mechanics and Mechanotransduction[J]. Mechanical andChemical Signaling in Angiogenesis, Springer,2013,14:121-141.
    [45] Janmey P A, McCulloch C A. Cell mechanics: integrating cell responses tomechanical stimuli[J]. Annu. Rev. Biomed. Eng.,2007,9:1-34.
    [46] Dufrêne Y F, Pelling A E. Force nanoscopy of cell mechanics and celladhesion[J]. Nanoscale,2013,4:97-105.
    [47] Kuznetsova T G, Starodubtseva M N, Yegorenkov N I, et al. Atomic forcemicroscopy probing of cell elasticity[J]. Micron,2007,38(8):824-833.
    [48] Fischer L J, McIlhenny S, Tulenko T, et al. Endothelial differentiation ofadipose-derived stem cells: effects of endothelial cell growth supplement andshear force[J]. Journal of Surgical Research,2009,152(1):157-166.
    [49] Sakamoto N, Saito N, Han X, et al. Effect of spatial gradient in fluid shearstress on morphological changes in endothelial cells in response to flow[J].Biochemical and Biophysical Research Communications,2010,395(2):264-269.
    [50] Zeng D, Juzkiw T, Read A T, et al. Young’s modulus of elasticity of Schlemm’scanal endothelial cells[J]. Biomechanics and modeling in mechanobiology,2010,9(1):19-33.
    [51] Haga H, Nagayama M, Kawabata K, et al. Time–lapse viscoelastic imaging ofliving fibroblasts using force modulation mode in AFM[J]. Journal of electronmicroscopy,2000,49(3):473-481.
    [52] Peschetola V, Laurent V M, Duperray A, et al. Time-dependent traction forcemicroscopy for cancer cells as a measure of invasiveness[J]. Cytoskeleton,2013,70(4):201-214.
    [53] Lo C-M, Wang H-B, Dembo M, et al. Cell movement is guided by the rigidityof the substrate[J]. Biophysical Journal,2000,79(1):144-152.
    [54] Friedl P, Sahai E, Weiss S, et al. New dimensions in cell migration[J]. NatureReviews Molecular Cell Biology,2012,7:139-147.
    [55] Ghosh K, Pan Z, Guan E, et al. Cell adaptation to a physiologically relevantECM mimic with different viscoelastic properties[J]. Biomaterials,2007,28(4):671-679.
    [56] Nemir S, West J L. Synthetic materials in the study of cell response to substraterigidity[J]. Annals of biomedical engineering,2010,38(1):2-20.
    [57] Banerjee A, Arha M, Choudhary S, et al. The influence of hydrogel modulus onthe proliferation and differentiation of encapsulated neural stem cells[J].Biomaterials,2009,30(27):4695-4699.
    [58] Sanz-Herrera J A, Moreo P, García-Aznar J M, et al. On the effect of substratecurvature on cell mechanics[J]. Biomaterials,2009,30(34):6674-6686.
    [59] Boal D, Boal D H, Mechanics of the Cell[M], Cambridge University Press,2012.
    [60] Lieber S C, Aubry N, Pain J, et al. Aging increases stiffness of cardiacmyocytes measured by atomic force microscopy nanoindentation[J]. AmericanJournal of Physiology-Heart and Circulatory Physiology,2004,287(2):645-651.
    [61] Hampoelz B, Lecuit T. Nuclear mechanics in differentiation anddevelopment[J]. Current opinion in cell biology,2011,23(6):668-675.
    [62] Zhao R, Wang W, Boudou T, et al. Measuring the correlation between cellmechanics and myofibroblastic differentiation during maturation of3Dmicrotissues[J]. Bulletin of the American Physical Society,2013,58(1):57-68.
    [63] Maloney J M, Nikova D, Lautenschl ger F, et al. Mesenchymal stem cellmechanics from the attached to the suspended state[J]. Biophysical Journal,2010,99(8):2479-2487.
    [64] Qi J, Fox A M, Alexopoulos L G, et al. IL-1β decreases the elastic modulus ofhuman tenocytes[J]. Journal of Applied Physiology,2006,101(1):189-195.
    [65] Worthen G S, Schwab B r, Elson E L, et al. Mechanics of stimulatedneutrophils: cell stiffening induces retention in capillaries[J]. Science,1989,245(4914):183-186.
    [66] Li Q, Lee G, Ong C, et al. AFM indentation study of breast cancer cells[J].Biochemical and Biophysical Research Communications,2008,374(4):609-613.
    [67] Lekka M, Laidler P, Gil D, et al. Elasticity of normal and cancerous humanbladder cells studied by scanning force microscopy[J]. European BiophysicsJournal,1999,28(4):312-316.
    [68] Faria E C, Ma N, Gazi E, et al. Measurement of elastic properties of prostatecancer cells using AFM[J]. Analyst,2008,133(11):1498-1500.
    [69] Pedeux R, Ythier D, Duperray A. Cancer: Cell Motility and Tumor SuppressorGenes[J]. Cell Mechanics: From Single Scale-Based Models to MultiscaleModeling,2010,32(6):17-24.
    [70] Lulevich V, Yang H-y, Rivkah Isseroff R, et al. Single cell mechanics ofkeratinocyte cells[J]. Ultramicroscopy,2010,110(12):1435-1442.
    [71] Lam W A, Rosenbluth M J, Fletcher D A. Increased leukaemia cell stiffness isassociated with symptoms of leucostasis in paediatric acute lymphoblasticleukaemia[J]. British journal of haematology,2008,142(3):497-501.
    [72] Lam W A, Fletcher D A, Cellular Mechanics of Acute Leukemia and Chemoth-erapy, Cellular and Biomolecular Mechanics and Mechanobiology, Springer,2011,2:523-558.
    [73] Kumar S, Weaver V M. Mechanics, malignancy, and metastasis: the forcejourney of a tumor cell[J]. Cancer and Metastasis Reviews,2009,28(1-2):113-127.
    [74] Raman A, Trigueros S, Cartagena A, et al. Mapping nanomechanical propertiesof live cells using multi-harmonic atomic force microscopy[J]. Naturenanotechnology,2011,6(12):809-814.
    [75] Sato M, Nagayama K, Kataoka N, et al. Local mechanical properties measuredby atomic force microscopy for cultured bovine endothelial cells exposed toshear stress[J]. Journal of Biomechanics,2000,33(1):127-135.
    [76] Nagayama K, Hanada K, Yoshitake T, et al., Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Films Prepared by a Coaxial Arc PlasmaGun, Materials Science Forum, Trans Tech Publ,2010,6(1):2927-2932.
    [77] Laurent V M, Kasas S, Yersin A, et al. Gradient of rigidity in the lamellipodiaof migrating cells revealed by atomic force microscopy[J]. Biophysical Journal,2005,89(1):667-675.
    [78] McKee C T, Last J A, Russell P, et al. Indentation versus tensile measurementsof Young's modulus for soft biological tissues[J]. Tissue Engineering Part B:Reviews,2011,17(3):155-164.
    [79] Wang M, Peng Z, Watson J A, et al. Nanoscale study of cartilage surfaces usingatomic force microscopy[J]. Proceedings of the Institution of MechanicalEngineers, Part H: Journal of Engineering in Medicine,2012,226(12):899-910.
    [80] Girasole M, Dinarelli S, Boumis G. Structural, morphological and nanomecha-nical characterisation of intermediate states in the ageing of erythrocytes[J].Journal of Molecular Recognition,2012,25(5):285-291.
    [81] Rico F, Roca-Cusachs P, Gavara N, et al. Probing mechanical properties ofliving cells by atomic force microscopy with blunted pyramidal cantilevertips[J]. Physical Review E,2005,72(2):021914.
    [82] Na S, Sun Z, Meininger G, et al. On atomic force microscopy and theconstitutive behavior of living cells[J]. Biomechanics and modeling inmechanobiology,2004,3(2):75-84.
    [83] Mahaffy R, Park S, Gerde E, et al. Quantitative analysis of the viscoelasticproperties of thin regions of fibroblasts using atomic force microscopy[J].Biophysical Journal,2004,86(3):1777-1793.
    [84] Rebelo L, de Sousa J, Mendes Filho J, et al. Comparison of the viscoelasticproperties of cells from different kidney cancer phenotypes measured withatomic force microscopy[J]. Nanotechnology,2013,24(5):102-109.
    [85] Costa K D, Sim A J, Yin F. Non-Hertzian approach to analyzing mechanicalproperties of endothelial cells probed by atomic force microscopy[J]. Journalof biomechanical engineering,2006,128(2):176.
    [86] Fletcher D A, Mullins R D. Cell mechanics and the cytoskeleton[J]. Nature,2010,463(7280):485-492.
    [87] Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure andmechanics in fibroblasts: an atomic force microscopy study[J]. BiophysicalJournal,2000,78(1):520-535.
    [88] Cai X, Xing X, Cai J, et al. Connection between biomechanics andcytoskeleton structure of lymphocyte and Jurkat cells: An AFM study[J].Micron,2010,41(3):257-262.
    [89] Plodinec M, Loparic M, Suetterlin R, et al. The nanomechanical properties ofrat fibroblasts are modulated by interfering with the vimentin intermediatefilament system[J]. Journal of Structural Biology,2011,174(3):476-484.
    [90] Sharma S, Santiskulvong C, Bentolila L A, et al. Correlative nanomechanicalprofiling with super-resolution F-actin imaging reveals novel insights intomechanisms of cisplatin resistance in ovarian cancer cells[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2012,8(5):757-766.
    [91] Li M, Liu L, Xi N, et al. Imaging and measuring the rituximab-inducedchanges of mechanical properties in B-lymphoma cells using atomic forcemicroscopy[J]. Biochemical and Biophysical Research Communications,2011,404(2):689-694.
    [92] Badique F, Stamov D R, Davidson P M, et al. Directing nuclear deformation onmicropillared surfaces by substrate geometry and cytoskeleton organization[J].Biomaterials,2013(34):2991-3001.
    [93] Takai E, Costa K D, Shaheen A, et al. Osteoblast elastic modulus measured byatomic force microscopy is substrate dependent[J]. Annals of biomedicalengineering,2005,33(7):963-971.
    [94] Kueh H Y, Brieher W M, Mitchison T J. Quantitative Analysis of ActinTurnover in Listeria Comet Tails: Evidence for Catastrophic FilamentTurnover[J]. Biophysical Journal,2010,99(7):2153-2162.
    [95] Del Duca S, Faleri C, Iorio R A, et al. Distribution of transglutaminase in pearpollen tubes in relation to cytoskeleton and membrane dynamics[J]. Plantphysiology,2013,8(2):12-18.
    [96] Weichsel J, Herold N, Lehmann M J, et al. A quantitative measure foralterations in the actin cytoskeleton investigated with automated high-throughput microscopy[J]. Cytometry Part A,2010,77(1):52-63.
    [97] Bitler A, Dover R, Shai Y. Fractal properties of macrophage membrane studiedby AFM[J]. Micron,2012,2:13-24.
    [98] Allison D P, Mortensen N P, Sullivan C J, et al. Atomic force microscopy ofbiological samples[J]. Wiley Interdisciplinary Reviews: Nanomedicine andNanobiotechnology,2010,2(6):618-634.
    [99] Tracqui P, Broisat A, Toczek J, et al. Mapping elasticity moduli ofatherosclerotic plaque in situ via atomic force microscopy[J]. Journal ofStructural Biology,2011,174(1):115-123.
    [100] Destrade M, Gilchrist M D, Ogden R W. Third-and fourth-order elasticity ofbiological soft tissues[J]. Journal of the Acoustical Society of America,2013,54(1):74-84.
    [101] Darling E M, Zauscher S, Block J A, et al. A thin-layer model for viscoelastic,stress-relaxation testing of cells using atomic force microscopy: do cellproperties reflect metastatic potential?[J]. Biophysical Journal,2007,92(5):1784-1791.
    [102] Dimitriadis E K, Horkay F, Maresca J, et al. Determination of elastic moduli ofthin layers of soft material using the atomic force microscope[J]. BiophysicalJournal,2002,82(5):2798-2810.
    [103] Fischer-Cripps A. A simple phenomenological approach to nanoindentationcreep[J]. Materials Science and Engineering: A,2004,385(1):74-82.
    [104] Supaka N. Measurement and Compare Particle Size Determined by DLS, AFMand SEM[J]. Journal of the Microscopy Society of Thailand,2012,5(1-2):38-41.
    [105] Nam H-J. A high-speed single crystal silicon AFM probe integrated with PZTactuator for high-speed imaging applications[J]. Journal of ElectricalEngineering&Technology,2011,6(1):119-122.
    [106] Sch n P, Bagdi K, Molnár K, et al. Quantitative mapping of elastic moduli atthe nanoscale in phase separated polyurethanes by AFM[J]. European PolymerJournal,2011,47(4):692-698.
    [107] Vaid A, Yan B B, Jiang Y T, et al., A holistic metrology approach: hybridmetrology utilizing scatterometry, CD-AFM, and CD-SEM, SPIE AdvancedLithography, International Society for Optics and Photonics,2011,797:103-120.
    [108] Garcia-Manyes S, Sanz F. Nanomechanics of lipid bilayers by force spectros-copy with AFM: a perspective[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2010,1798(4):635-643.
    [109] Wang C-C, Pai N-S, Yau H-T. Chaos control in AFM system using slidingmode control by backstepping design[J]. Communications in NonlinearScience and Numerical Simulation,2010,15(3):741-751.
    [110] Hanada Y, Masuda S, Iijima M, et al. Analysis of dispersion and aggregationbehavior of carbon black particles in aqueous suspension by colloid probeAFM method[J]. Advanced Powder Technology,2013,30(3):517-527.
    [111] Müller D J, Dufrêne Y F. Atomic force microscopy: a nanoscopic window onthe cell surface[J]. Trends in Cell Biology,2011,21(8):461-469.
    [112] Wang X, Gan H, Sun T, et al. Stereochemistry triggered differential cellbehaviours on chiral polymer surfaces[J]. Soft Matter,2010,6(16):3851-3855.
    [113] Qu Q, Zhu A, Shao X, et al. Development of a carbon quantum dots-basedfluorescent Cu2+probe suitable for living cell imaging[J]. ChemicalCommunications,2012,48(44):5473-5475.
    [114] Green C P, Lioe H, Cleveland J P, et al. Normal and torsional spring constantsof atomic force microscope cantilevers[J]. Review of Scientific Instruments,2004,75(6):1988-1996.
    [115] Lin D C, Dimitriadis E K, Horkay F. Robust strategies for automated AFMforce curve analysis-I. Non-adhesive indentation of soft, inhomogeneousmaterials[J]. Transactions-American Society of Mechanical Engineers Journalof Biomecha-nical Engineering,2007,129(3):430.
    [116] Harris A R, Charras G. Experimental validation of atomic force microscopy-based cell elasticity measurements[J]. Nanotechnology,2011,22(34):102-107.
    [117] Okajima T, Tanaka M, Tsukiyama S, et al. Stress relaxation of HepG2cellsmeasured by atomic force microscopy[J]. Nanotechnology,2007,18(8):10-16.
    [118] Lekka M, Gil D, Pogoda K, et al. Cancer cell detection in tissue sections usingAFM[J]. Archives of Biochemistry and Biophysics,2012,518(2):151-156.
    [119] Wu Y, McEwen G D, Harihar S, et al. BRMS1expression alters theultrastructural, biomechanical and biochemical properties of MDA-MB-435human breast carcinoma cells: an AFM and Raman microspectroscopy study[J].Cancer letters,2010,293(1):82-91.
    [120] Jin H, Pi J, Huang X, et al. BMP2promotes migration and invasion of breastcancer cells via cytoskeletal reorganization and adhesion decrease: an AFMinvestigation[J]. Applied microbiology and biotechnology,2012,93(4):1715-1723.
    [121] Bushby A, Ferguson V, Boyde A. Nanoindentation of bone: Comparison ofspecimens tested in liquid and embedded in polymethylmethacrylate[J].Journal of Materials Research,2004,19(01):249-259.
    [122] Isaksson H, Nagao S, Ma kiewicz M, et al. Precision of nanoindentationprotocols for measurement of viscoelasticity in cortical and trabecular bone[J].Journal of Biomechanics,2010,43(12):2410-2417.
    [123] Ziskind D, Hasday M, Cohen S R, et al. Young’s modulus of peritubular andintertubular human dentin by nano-indentation tests[J]. Journal of StructuralBiology,2011,174(1):23-30.
    [124] Ryou H, Romberg E, Pashley D H, et al. Nanoscopic dynamic mechanicalproperties of intertubular and peritubular dentin[J]. Journal of the MechanicalBehavior of Biomedical Materials,2012,7:3-16.
    [125] Doube M, Firth E, Boyde A, et al. Combined nanoindentation testing andscanning electron microscopy of bone and articular calcified cartilage in anequine fracture predilection site[J]. Eur Cell Mater,2010,19:242-251.
    [126] Campbell S E, Ferguson V L, Hurley D C. Nanomechanical mapping of theosteochondral interface with contact resonance force microscopy andnanoindentation[J]. Acta Biomaterialia,2012,8(12):4389-4396.
    [127] J ger A, Hofstetter K, Buksnowitz C, et al. Identification of stiffness tensorcomponents of wood cell walls by means of nanoindentation[J]. CompositesPart A: Applied Science and Manufacturing,2011,42(12):2101-2109.
    [128] Konnerth J, Buksnowitz C, Gindl W, et al., Full set of elastic constants ofspruce wood cell walls determined by nanoindentation, Proceedings of theInternational Convention of the Society of Wood Science and Technology andUnited Nations Economic Commission for Europe-Timber Committee, Geneva,2010,8(2):82-91.
    [129] Eder M, Arnould O, Dunlop J W, et al. Experimental micromechanicalcharacte-risation of wood cell walls[J]. Wood Science and Technology,2013,47(1):163-182.
    [130] Greaves G, Greer A, Lakes R, et al. Poisson's ratio and modern materials[J].Nature materials,2011,10(11):823-837.
    [131] Bizzarri M, Giuliani A, Cucina A, et al., Fractal analysis in a systems biologyapproach to cancer, Seminars in cancer biology, Elsevier,2011:175-182.
    [132] D’Anselmi F, Valerio M, Cucina A, et al. Metabolism and cell shape in cancer:a fractal analysis[J]. The international journal of biochemistry&cell biology,2011,43(7):1052-1058.
    [133] Qian A, Li D, Han J, et al. Fractal Dimension as a Measure of Altered ActinCytoskeleton in MC3T3-E1Cells Under Simulated Microgravity Using3-D/2-D Clinostats[J]. Biomedical Engineering, IEEE Transactions on,2012,59(5):1374-1380.
    [134] Vassy J, Rigaut J P, Hill A M, et al. Analysis by confocal scanning lasermicroscopy imaging of the spatial distribution of intermediate filaments infoetal and adult rat liver cells[J]. Journal of microscopy,1990,157(1):91-104.
    [135] Thomason D B, Anderson O, Menon V. Fractal analysis of cytoskeletonrearrangement in cardiac muscle during head-down tilt[J]. Journal of AppliedPhysiology,1996,81(4):1522-1527.
    [136] Guck J, Schinkinger S, Lincoln B, et al. Optical Deformability as an InherentCell Marker for Testing Malignant Transformation and Metastatic Competence[J]. Biophysical Journal,2005,88(5):3689-3698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700