用户名: 密码: 验证码:
高维数据的维数约简算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在这个“信息爆炸”的时代,人类常常要面临分析和处理各种数据信息的要求,如海量web数据、大规模数据库文本、大量遥感图像等,这就对统计学、模式识别、人工智能、数据挖掘、机器学习等相关学科领域的发展提出了挑战。这些数据不仅呈几何级数式增长,而且现实中通常是高维的。这些高维数据常常会引发所谓的“维数灾难”,一方面,它们通常是稀疏的、冗余的,容易掩盖数据的真实结构,甚至会导致错误的分析处理结果;另一方面,它们增加了分析处理数据的负担。作为解决“维数灾难”的有效途径,维数约简发展成为一个重要的研究课题,它将数据从高维特征空间约简到低维特征空间,约简后的特征空间更能体现数据的本质结构,并且提高了数据的分析处理效率。本文对维数约简的理论方法和实际应用进行了深入的研究,主要工作概括如下:
     1.提出一种动态寻优子空间方法。该方法是通过寻找平衡主成分分析(PCA)和最大边缘准则(MMC)目标函数的最佳系数来实现的,它的目的是使得PCA寻找代表原始数据结构的线性投影方向时,能够更多地考虑判别信息,同时也使得MMC在寻找实现约简特征维数和提取分类信息的线性投影方向时,能够更好地表达样本的原始数据结构。另外,不同的数据,甚至是同种数据不同条件下,会有不同的结构特点,因此应该根据数据的结构特点来选择算法,而该方法很好地满足了这个要求。使用基因微阵列数据的肿瘤分类实验证明了,这种新的特征提取方法是有效的、稳定的。
     2.提出一种基于稀疏表示的无监督特征选择算法一稀疏评分(SS)。稀疏表示虽然属于全局性的方法,却含有天然的判别性和局部性,这就使得SS不仅具有较强的判别能力,还有局部结构保持能力和一定的全局结构保持能力。另外,SS所选取的特征方差比较大,即信息含量比较大。人脸图像的聚类实验结果显示,SS对特征重要性的评价效果明显优于方差评分(VS)和拉普拉斯评分(LS)这两种特征选择算法。
     3.提出一种基于低秩表示的监督特征提取算法--低秩表示判别投影(LRDP)。基于低秩表示,LRDP拥有良好的数据全局结构表达能力和一定的判别结构表达能力,另外,LRDP依据SRC决策准则,使得它拥有良好的判别性能。人脸图像的分类实验结果显示,LRDP的性能要优于其它一些特征提取算法,包括主成分分析(PCA)、线性判别分析(LDA)和稀疏保持投影(SPP)。
     4.以本体理论为依据,提出一种基于农业本体的农业文本特征优化方法。首先进行特征映射,即用农业本体的概念取代向量空间模型的术语,概念频率权重由术语频率权重统计得到。其次进行特征加权,即根据农业本体的概念层次结构,将概念相似度权重追加到概念权重。该方法结合特征频率权重和特征相似度权重,不仅大幅减少了特征空间的维数,而且为特征空间引入了语义信息。通过农业文本文档的聚类实验,该方法的可行性和有效性得到了验证。
In the era of "information explosion", we are often faced with the analysis and processing of various data, such as the mass of web data, large-scale database text, and a large number of remote sensing images, which present a challenge to the development of statistics, pattern recognition, artificial intelligence, data mining, machine learning and other related disciplines. These data show rapid growth with geometric progression and are usually with high dimensionality in reality. These high-dimensional data often led to the so-called "the curse of dimensionality". On the one hand, they are usually sparse and redundant, thus are easy to conceal the true structure of the data, and even can lead to erroneous results. On the other hand, they increase the burden of analyzing and processing data. As an effective way to solve "the curse of dimensionality", dimensionality reduction has become an important research topic. Dimensionality reduction can reduce the high-dimensional feature space into a low-dimensional feature space, which can better reflect the nature of the data structure and improve the efficiency of data analysis and processing. In this paper, we made a thorough research on the theoretics and applications of dimensionality reduction.
     1. A novel subspace learning method of dynamic optimization for feature extraction was proposed. This method is accomplished by searching for the optimal coefficient to balance the objective function of the principal component analysis (PCA) and maximum margin criterion (MMC). The PCA can consider more of the discriminant information while representing the original data structure by linear projection direction. Moreover, the MMC can better express the original data structure of the sample while searching the linear projection direction for the reduction of feature dimensionality and the extraction of classified information simultaneously. In addition, different data, or even those with the same kind under different conditions, may have different structural characteristics. Therefore, algorithm should be developed based on the structural characteristics of the data. Actually this method can meet this requirement. Finally, tumor classification experiments on gene microarray data verified that this new feature extraction method was effective and stable.
     2. An unsupervised feature selection algorithm based on sparse representation called sparse score (SS) was proposed. Although sparse representation belongs to global methods in nature, it owns some discriminating and local properties, which makes SS not only have strong discriminating ability, but also have the abilities of preserving local structure and certain global structure. In addition, SS selected features with relatively large variance, i.e., large information content. Experimental results of clustering on face images show that, in the evaluation of feature significance, SS significantly outperformed the other two kinds of feature selection algorithms, Variance Score (VS) and Laplacian Score (LS).
     3. A supervised feature extraction algorithm based on low-rank discriminant projection (LRDP) was proposed. Based on low-rank representation, LRDP has good abilities for representing global structure and certain discrimination structure. In addition, LRDP based on the decision rule of SRC, which makes it have good discriminating ability. Experimental results of classification on face images reveal that, the LRDP has better performance than some other feature extraction algorithms, including PCA, LDA and sparsity preserving projections (SPP).4. Based on ontology theory, a novel method of ontology-based feature optimization for agricultural text was proposed. First, the terms of vector space model were replaced by concepts of agricultural ontology, where the concept frequency weights were computed statistically by term frequency weights. Second, the concept similarity weights were assigned to the concept weights, through the concept hierarchy structure of agricultural ontology. By combining feature frequency weights and feature similarity weights based on agricultural ontology, the dimensionality of the feature space can be reduced dramatically. Moreover, the semantic information can be incorporated into the feature space. Finally, the agricultural text clustering experiments were carried out to verify the effectiveness of this method.
引文
Abdi, HandWilliams, LJ 2010. Principal component analysis[J]. Wiley Interdisciplinary reviews: Computational Statistics,2:433-459.
    Alon, U, Barkai, N, Notterman, DA, et al.1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J]. Proceedings of the National Academy of Sciences of the United States of America,96: 6745-6750.
    Amaldi, EandKann, V 1998. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems[J]. Theoretical Computer Science,209:237-260.
    Antoniadis, A, Lambert-Lacroix, SandLeblanc, F 2003. Effective dimension reduction methods for tumor classification using gene expression data[J]. Bioinformatics,19:563-570.
    Baldi, PandHatfield, GW.2002. DNA microarrays and gene expression:from experiments to data analysis and modeling[M]. Cambridge, England:Cambridge University Press.
    Batet, M, Sanchez, DandValls, A 2010. An ontology-based measure to compute semantic similarity in biomedicine[J]. Journal of Biomedical Informatics,44:118-125.
    Baudat, GandAnouar, F 2000. Generalized discriminant analysis using a kernel approach[J]. Neural computation,12:2385-2404.
    Belhumeur, PN, Hespanha, JPandKriegman, DJ 1997. Eigenfaces vs. fisherfaces:Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,19:711-720.
    Belkin, MandNiyogi, P 2001. Laplacian eigenrnaps and spectral techniques for embedding and clustering [J]. Advances in neural information processing systems,14:585-591.
    Belkin, MandNiyogi, P 2003. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation,15:1373-1396.
    Benesty, J, Chen, J, Huang, Y, et al.2009. Pearson Correlation Coefficient[J]. Noise Reduction in Speech Processing:1-4.
    Berry, MW.2004. Survey of Text Mining:Clustering,Classification,and Retrieval[M]. Berlin, Heidelberg.:Springer-Verlag
    Bishop, CM.1995. Neural networks for pattern recognition[M]. Oxford:Clarendon press.
    Bloehdorn, S, Cimiano, P, Hotho, A, et al.2005. An ontology-based framework for text mining[J]. GLDV-Journal for Computational Linguistics and Language Technology,20:87-112.
    Borst, WN.1997. Construction of engineering ontologies for knowledge sharing and reuse[D]. PhD, Twente Universiteit.
    Brun, A, Westin, CF, Herberthson, M, et al.2005. Fast manifold learning based on riemannian normal coordinates[J]. Image Analysis:455-461.
    Cai, D, He, XandHan, J 2005. Document clustering using locality preserving indexing[J]. IEEE Transactions on Knowledge and Data Engineering:1624-1637.
    Cai, D, He, XandHan, J. Year. Isometric projection[C]. In Proceedings of the 2007 AAAI Conference on Artificial Intelligence.22:528.
    Cai, D, He, XF, Han, JW, et al. Year. Semi-supervised discriminant analysis[C]. the 11th IEEE International Conference on Computer Vision, New York:222-228.
    Cai, D, Zhang, CandHe, X. Year. Unsupervised feature selection for multi-cluster data[C]. In Proceedings of the 16th ACM SIGKDD international conference on BCnowledge discovery and data mining New York, NY, USA:333-342.
    Candes, EJandRecht, B 2009. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics,9:717-772.
    Candes, EJandPlan, Y 2010. Matrix completion with noise[J]. Proceedings of the IEEE,98:925-936.
    Candes, EJ, Romberg, JandTao, T 2006a. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory,,52: 489-509.
    Candes, EJ, Romberg, JKandTao, T 2006b. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on pure and applied mathematics,59:1207-1223.
    Chen, RCandChuang, CH 2008. Automating construction of a domain ontology using a projective adaptive resonance theory neural network and Bayesian network[J]. Expert Systems,25: 414-430.
    Cooley, R, Mobasher, BandSrivastava, J. Year. Web mining:Information and pattern discovery on the world wide web[C]. In proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence, Newport Beach, CA:558-567.
    Cunningham, P 2008. Dimension reduction[J]. Machine learning techniques for multimedia:91-112.
    Dai, JJ, Lieu, LandRocke, D 2006. Dimension reduction for classification with gene expression microarray data[J]. Statistical Applications in Genetics and Molecular Biology,5:1544-6115.
    De Sa, JPM.2001. Pattern recognition:concepts, methods, and applications[M]. Berlin, Heidelberg.: Springer-Verlag.
    Dollah, RBandAono, M 2011. Ontology Based Approach for Classifying Biomedical Text Abstracts[J]. International Journal of Data Engineering (IJDE),2:84.
    Donoho, DL 2006. For most large underdetermined systems of linear equations the minimal 1(1)-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics,59: 797-829.
    Elad, MandAharon, M 2006. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing,15:3736-3745.
    Elhamifar, EandVidal, R. Year. Sparse subspace clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition.
    Elhamifar, EandVidal, R. Year. Clustering disjoint subspaces via sparse representation[J]. IEEE International Conference on Acoustics, Speech, and Signal Processing:1926-1929.
    Fazel, M.2002. Matrix rank minimization with applications[D]. PhD Stanford University.
    Golub, TR, Slonim, DK, Tamayo, P, et al.1999. Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J]. Science,286:531-537.
    Gruber, TR 1993. A translation approach to portable ontology specifications[J]. Knowledge acquisition,5:199-220.
    He, DandWu, X. Year. Ontology-based feature weighting for biomedical literature classification[C]. In Proceeding of the 2006 IEEE International Conference on Information Reuse and Integration, Waikoloa, Hawaii, USA:280-285.
    He, X, Cai, DandNiyogi, P. Year. Laplacian score for feature selection[C]. Advances in Neural Information Processing Systems.18:507.
    He, X, Cai, D, Yan, S, et al. Year. Neighborhood preserving embedding[C]. IEEE International Conference on Computer Vision.2:1208-1213 Vol.2.
    He, XandNiyogi, P. Year. Locality preserving projections[C]. In:Proceedings of the NIPS, Advances in Neural Information Processing Systems., Vancouver.103.
    Hotelling, H 1933. Analysis of a complex of statistical variables into principal components[J]. Journal of educational psychology,24:417-441.
    Hotho, A, Maedche, AandStaab, S. Year. Ontology-based text document clustering[C]. In Proceedings of the IJCAI-2001 Workshop "Text Learning:Beyond Supervision", Seattle, USA.16:48-54.
    Iizuka, N, Oka, M, Yamada-Okabe, H, et al.2003. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection[J]. Mechanisms of disease,361:923-929.
    Jain, AK, Duin, RPWandMao, J 2000. Statistical pattern recognition:A review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,,22:4-37.
    Jing, L, Zhou, L, Ng, MK, et al. Year. Ontology-based distance measure for text clustering[C]. In Proceedings of the Sixth SIAM International Conference on Data Mining, Bethesda, MD.
    John, GH, Kohavi, RandPfleger, K. Year. Irrelevant features and the subset selection problem[C]. Machine Learning:Proceedings of the Eleventh International Conference, San Francisco, CA. 129:121-129.
    Jolliffe, IT.1986. Principal component analysis[M]. Berlin, Heidelberg.:Springer-Verlag.
    Keshavan, RH, Montanari, Aand Oh, S 2010. Matrix completion from noisy entries[J]. The Journal of Machine Learning Research,11:2057-2078.
    Khan, J, Wei, JS, Ringner, M, et al.2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J]. Nature medicine,7:673-679.
    Khan, LandLuo, F. Year. Ontology construction for information selection[C]. proceedings of 14th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2002):122-127.
    Kohavi, RandJohn, GH 1997. Wrappers for feature subset selection[J]. Artificial intelligence,97: 273-324.
    Kung, SYandHwang, JN 1998. Neural networks for intelligent multimedia processing[J]. Proceedings of the IEEE,86:1244-1272.
    Kuo, CCandMa, KY. Year. Error Analysis and Confidence Measure of Chinese Word Segmentation[C].5th International Conference on Spoken Language Processing, Sydney, Australia.
    Li, H, Jiang, TandZhang, K 2006. Efficient and robust feature extraction by maximum margin criterion[J]. IEEE Transactions on Neural Networks,17:157-165.
    Li, LandLi, H 2004. Dimension reduction methods for microarrays with application to censored survival data[J]. Bioinformatics,20:3406-3412.
    Li, Y, Gao, YandErdogan, H. Year. Weighted pairwise scatter to improve linear discriminant analysis[C]. the 6th International Conference on Spoken Language Processing, Beijing, China.4: 608-611.
    Lilliefors, HW 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown[J]. Journal of the American Statistical Association:399-402.
    Liu, G, Lin, Z, Yan, S, et al. Year. Robust recovery of subspace structures by low-rank representation[C]. Computing Research Repository (CoRR):Arxiv preprint arXiv:1010.2955.
    Liu, G, Lin, ZandYu, Y. Year. Robust subspace segmentation by low-rank representation[C]. The 27th International Conference on Machine Learning 663-670.
    Liu, J, Chen, S, Tan, X, et al.2007. Comments on "Efficient and robust feature extraction by maximum margin criterion"[J]. IEEE Transactions on Neural Networks,,18:1862-1864.
    Liu, Y, Wang, XandWu, C 2008. ConSOM:A conceptional self-organizing map model for text clustering[J]. Neurocomputing,71:857-862.
    Loog, M, Duin, RPWandHaeb-Umbach, R 2001. Multiclass linear dimension reduction by weighted pairwise Fisher criteria[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,23: 762-766.
    Lovasz, LandPlummer, MD.1986. Matching theory[M]. Amsterdam:North-Holland.
    Marcellin, MW, Gormish, MJ, Bilgin, A, et al. Year. An overview of JPEG-2000[C]. In Proceedings of IEEE Data Compression Conference:523-541.
    Martinez, AMandKak, AC 2001. Pca versus lda[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,,23:228-233.
    Marton, MJ, DeRisi, JL, Bennett, HA, et al.1998. Drug target validation and identification of secondary drug target effects using DNA microarrays[J]. Nature medicine,4:1293-1301.
    Mika, S, Ratsch, G, Weston, J, et al. Year. Fisher discriminant analysis with kernels[C]. IEEE Workshop on Neural Networks for Signal Processing:41-48.
    Moravec, P, Kolovrat, MandSnasel, V 2004. LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval[J]. Databases, Texts (DATESO):254-259.
    Neches, R, Fikes, RE, Finin, T, et al.1991. Enabling technology for knowledge sharing[J]. Al magazine,12:36.
    Nyberg, K, Raiko, T, Tiinanen, T, et al. Year. Document classification utilising ontologies and relations between documents[C]. Proceedings of the Eighth Workshop on Mining and Learning with Graphs:86-93.
    ORL.人脸数据集 (http://www.uk.research.att.com/pub/data/att faces.zip) [Online].
    Pearson, K 1901. LⅢ. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,2:559-572.
    Qiao, LS, Chen, SandTan, X 2010. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition,43:331-341.
    Rao, S, Tron, R, Vidal, R, et al.2010. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,,32: 1832-1845.
    Raudys, SJandJain, AK 1991. Small sample size effects in statistical pattern recognition: Recommendations for practitioners [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,13:252-264.
    Roweis, STandSaul, LK 2000. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,290:2323-2326.
    Saul, LKandRoweis, ST 2003. Think globally, fit locally:unsupervised learning of low dimensional manifolds[J]. The Journal of Machine Learning Research,4:119-155.
    Schena, M, Heller, RA, Theriault, TP, et al.1998. Microarrays:biotechnology's discovery platform for functional genomics[J]. Trends in biotechnology,16:301-306.
    Scholkopf, B, Smola, AandMiiller, KR 1997. Kernel principal component analysis[J]. Artificial Neural Networks:583-588.
    Scholkopf, B, Smola, AandMtiller, KR 1998. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural computation,10:1299-1319.
    Shi, JandMalik, J 2000. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,,22:888-905.
    Sikora, T 1997. MPEG digital video-coding standards[J]. IEEE Signal Processing Magazine,14: 82-100.
    Solka, JL 2008. Text data mining:theory and methods[J]. Statistics Surveys,2:94-112.
    Song, Y, Nie, F, Zhang, C, et al.2008. A unified framework for semi-supervised dimensionality reduction[J]. Pattern Recognition,41:2789-2799.
    Studer, R, Benjamins, VRandFensel, D 1998. Knowledge engineering:principles and methods[J]. Data & knowledge engineering,25:161-197.
    Swets, DLandWeng, JJ 1996. Using discriminant eigenfeatures for image retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,18:831-836.
    Tenenbaum, JB, De Silva, VandLangford, JC 2000. A global geometric framework for nonlinear dimensionality reduction[J]. science,290:2319-2323.
    Tibshirani, R 1996. Regression shrinkage and selection via the Iasso[J]. Journal of the Royal Statistical Society. Series B (Methodological):267-288.
    Turk, MandPentland, A 1991a. Eigenfaces for recognition[J]. Journal of cognitive neuroscience,3: 71-86.
    Turk, MAandPentland, AP. Year. Face recognition using eigenfaces[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition:586-591.
    UMIST. 认脸数据集(http://cs.nyu.edu/-roweis/data.html) [Online].
    Wang, BB, McKay, RI, Abbass, HA, et al. Year. A comparative study for domain ontology guided feature extraction[C].25th Australian Computer Science Conference, Adelaide, South Australia. 16:69-78.
    Wang, YandWang, Y. Year. Semi-Supervised Dimensionality Reduction[C]. the 3rd International Symposium Computer Science & Computational Technology (ISCSCT 2010), Jiaozuo, China: 506-509.
    Weng, SS, Tsai, HJ, Liu, SC, et al.2006. Ontology construction for information classification[J]. Expert Systems with Applications,31:1-12.
    Wright, J, Yang, AY, Ganesh, A, et al.2009. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,,31:210-227.
    Wus SHandHsu, WL. Year. SOAT:a semi-automatic domain ontology acquisition tool from Chinese corpus[C]. In Proceedings of the 19th international conference on Computational linguistics, Taipei.Taiwan.2:1-5.
    Wu, SH, Tsai, THandHsu, WL. Year. Text categorization using automatically acquired domain ontology[C]. the 6th international workshop on Information retrieval with Asian languages, Sapporo, Japan.11:138-145.
    Xu, W, Liu, XandGong, Y. Year. Document clustering based on non-negative matrix factorization[C]. Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, New York, USA:267-273.
    Yale.认脸数据集(http://cvc.yale.edu/proiects/valefaces/valefaces.html.) [Online].
    Yan, S, Xu, D, Zhang, B, et al.2007. Graph embedding and extensions:A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,29: 40-51.
    Yang, J, Wright, J, Huang, T, et al. Year. Image super-resolution as sparse representation of raw image patches[C]. IEEE Conference on Computer Vision and Pattern Recognition 1-8.
    Zhang, D, Chen, SandZhou, ZH 2008a. Constraint Score:A new filter method for feature selection with pairwise constraints[J]. Pattern Recognition,41:1440-1451.
    Zhang, D, Jing, XYandYang, J 2006. Linear Discriminant Analysis[M]. Biometric Image Discrimination Technologies:Computational Intelligence and its Applications Series. Hershey, Pennsylvania, USA:Igl Global.
    Zhang, X, Jing, L, Hu, X, et al.2007. A comparative study of ontology based term similarity measures on PubMed document clustering[J]. Advances in Databases:Concepts, Systems and Applications:115-126.
    Zhang, X, Liping, J, Xiaohua, H, et al.2008b. Medical Document Clustering Using Ontology-Based Term Similarity Measures [J]. International Journal of Data Warehousing&Mining,4:62-73.
    Zou, HandHastie, T 2005. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),67:301-320.
    于秀林,数理统计,任雪松,et al1999.多元统计分析[M].北京:中国统计出版社.
    田捷and杨鑫.2005.生物特征识别技术理论与应用[M].北京:电子工业出版社.
    李瑶.2006.基因芯片数据分析与处理[M].北京:化学工业出版社.
    周海城,李连弟,罗贤懋,et al2002.中国癌症控制策略研究报告[J].中国肿瘤:11:250-260.
    樊代明.2006.肿瘤前沿研究[M].西安.
    冯玉贵.2007.人脸与掌纹识别的子空间特征提取方法研究[D].博士论文,国防科学技术大学.
    吴逸飞.2002.模式识别一一原理,方法及应用[M].北京::清华大学出版社.
    孙即祥.2008.现代模式识别[M].北京:高等教育出版社.
    边肇祺and张学工.2000.模式识别[M].北京:清华大学出版社.
    邓志鸿,唐世渭,张铭,et al.2002. Ontology研究综述[J].北京大学学报,38:730-738.
    钱平,郑业鲁.2006.农业本体论研究及应用[M].北京:中国农业科学技术出版社.
    陈省身and陈维桓.1983.微分几何讲义[M].北京:北京大学出版社.
    陈维桓.2001.微分流形初步[M].北京:高等教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700