用户名: 密码: 验证码:
复杂流场特征提取与可视化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流场可视化是可视化研究的一个重要方向,在科学计算和工程分析中占据着非常重要的地位。流场具有典型拓扑特征,并且这些特征具有普遍性。特征可视化通过提取流场特征,使用户能忽略大部分冗余、不感兴趣的数据,减少了可视化映射的数据量,同时保持了信息的准确性,具有独特的优势。
     如何描述和提取流场特征信息是流场特征可视化需要解决的首要问题,虽已有较多的研究成果,但目前已有的复杂流场特征描述理论与提取方法仍存在通用性和扩展性较差问题。三维复杂流场特征纹理可视化可准确地表现特征在三维空间的连续变化特性,但由于存在显示遮挡问题,使用户难以发现和分析流场内隐藏的特征性质。本文针对复杂流场特征可视化存在的问题,对流场特征描述、提取及可视化方法进行较深入研究。基于提取的特征结构,采用纹理可视化方法得到了高质量的流场表现,取得的研究成果包括如下几个方面:
     (1)针对已有特征提取方法对拓扑图中重要的构成要素——临界点特征无法合理界定区域范围的问题,本文提出了一种基于拓扑分析的2D流场临界点特征区域界定方法,在不需要用户选择的条件下,可自动合理地界定和填充各种类型临界点的特征区域范围。实验结果表明该方法能在定性描述流场全局拓扑结构的同时,也对流场特征的定量属性如强度及其变化进行刻画,具有较好的应用意义。
     (2)针对已有特征提取方法通用性和扩展性较差问题,结合神经网络强大的非线性映射能力,提出了一种基于BP(Back Propagation)神经网络的智能流场特征提取方法。为提高提取方法的性能,设计了基于GPU的BP特征检测与识别算法。实验结果表明,本文提出的算法的通用性较好,能有效提取典型的2D/3D流场特征。同时,算法对于新的用户感兴趣的局部流场特征也能有效进行提取,扩展性较好。
     (3)针对复杂3D流场特征精确描述与提取困难问题,本文采用模糊理论对流场典型特征区域进行了统一描述,提出了一种基于模糊理论的流场特征区域提取算法FRFE。理论分析表明FRFE算法在最小平方和准则下是对流场区域的最优模糊划分,并具有良好的划分性质。实验表明,与传统特征提取涡旋特征方法相比,FRFE算法提取的涡旋特征区域更为准确。
     (4)针对传统的菜单式交互方式和确定的特征提取算法难以保证对复杂流场特征所具有的不确定性进行有效描述问题,在已提出的FRFE算法基础上,提出了一种模糊特征描述语言FFDL和基于FFDL的交互式模糊特征提取算法。实验结果证明该方法可实现对三维流场特征的交互式模糊提取,并可实现与研究人员和工程人员知识和经验的灵活结合。
     (5)针对3D流场纹理可视化方法面临的遮挡问题,提出了一种基于流场特征模糊提取的自适应稀疏纹理绘制方法。同时为提高稀疏纹理的方向感,提出了两种冷暖光照方法。实验表明,通过生成与流场特征重要性成正比的LIC卷积纹理,可有效改善3D流场的遮挡现象。同时,提出的冷暖光照方法可有效解决纹理方法对流场具体方向表现上的缺陷。
Flow visualization is an important topic in scientific visualization, and plays an important role in scientific computation and engineering analysis. There are some typical and universal feature structures in flow field. Feature-based approaches have been developed to extract flow features to eliminate the redundant and uninterested data, which can reduce the final rendering data while maintaining the correct information. This advantage makes feature-based approaches an excellent method compared with others to visualize flow field
     How to describe and extract feature structures is the main problem in visualizing flow fields, and there are lots of papers try to solve this problem. However, the existing methods mainly aim at a certain class of features, such as vortices, which lack universality and extensibility. Texture-based methods can represent the continuous variability very well, but it is difficult for users to discover and analyze the inner feature structures due to the occlusion problem. To solve this problem, this paper investigates the related theories about flow feature description, extraction and visualization. Based on the extracted features, this paper adopts texture-based methods and obtains a high quality flows representation. The main research achievements are detailed as follows:
     (1) It is incapable of depicting the scope of the flow features for the topology-based methods, whereas the existing feature analysis methods are difficult to define the feature boundary for the vector direction of the flows. To solve this problem, this paper presents a feature extraction approach based on these two kinds of methods, which can define the feature scope in 2D flow fields reasonably without the user’s selection. The experiments show that this approach can define the scope reasonably and describe the trend of flow features in the time-dependent fields very well.
     (2) To solve the universality and extensibility deficiency of the existing feature extraction methods, this paper proposes an intelligent feature extraction approach based on the back propagation network, which can make full use of the powerful non-linear description ability of the network. The proposed approach is implemented on GPU to improve the performance. The experiment results show that the approach proposed has favorable universality and extensibility, which can extract the typical and new-come local features very well.
     (3) To solve the problem of describing and extracting the 3D flow features accurately, this paper proposes a universal description approach based on the fuzzy theory. Based on this description, an extracted algorithm called FRFE is presented. This algorithm is proved to be optimal in the minimum square sum rule. The experiments show that the FRFE algorithm can extract the feature structures more accurately than the traditional methods.
     (4) Traditional menu-based interaction and certain feature extraction methods can’t describe the uncertainty of the complex flow features. To solve this problem, this paper presents a fuzzy feature define language (FFDL) based on the FRFE algorithm. Furthermore, an interactive fuzzy feature extraction algorithm is proposed with the aid of the FFDL. The experiments show that this method can extract the feature structures fuzzily and can utilize the users’knowledge flexibly as well.
     (5) To solve the occlusion problem in the texture-based method when visualizing 3D flows, this paper proposes an adaptive sparse texture rendering method. Furthermore, two cool/warm illumination methods are presented to represent the concrete flow direction. The experiments show that the method can relieve the occlusion phenomena very well by generating a multi-resolution linear integration convolution (LIC) textures. In addition, the disadvantage for the texture-based method, i.e. the concrete direction problem, can also be solved well by the two cool/warm illumination methods.
引文
[1] McCormick B H, DeFanti T A, Brown M D. Visualization in Scientific Computing [J]. Computer Graphics, 1987, 1(2): 99~108.
    [2] Halverson J, Motel L, Perkins L. Hurricane Danielle's Hot Towers [EB/OL]. http://svs.gsfc.nasa.gov/vis/a000000/a003700/a003759, 2010-08-30.
    [3]唐泽圣等.三维数据场可视化[M].北京:清华大学出版社,1999.12:149~188.
    [4] Helgeland A, Elboth T, High-Quality and Interactive Animations of 3D Time-Varying Vector Fields [J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(6):1535~1546.
    [5] Post F H, Vrolijk B, Hauser H, Laramee R S, Doleisch H. The State of the Art in Flow Visualisation: Feature Extraction and Tracking [J]. Computer Graphics Forum, 2003, 22 (4):775~792.
    [6] Elmqvist N, Tsigas P. A Taxonomy of 3D Occlusion Management for Visualization [J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14 (5):1095~1109.
    [7] Doleisch H, Gasser M, Hauser H. Interactive Feature Specification for Focus+context Visualization of Complex Simulation Data [C]. In Proceeding of 5th Joint IEEE TCVG-EG Symp. on Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2003:239~248.
    [8] Doleisch H, Mayer M, Gasser M, et al. Interactive Feature Specification for Simulation Data on Time-varying Grids [C]. In Proceeding of Simulation and Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2005: 291~304.
    [9] Helman J L, Hesselink L. Visualizing Vector Field Topology in Fluid Flows [J]. IEEE Computer Graphics and Applications, 1991, 11(3): 36~46.
    [10] Scheuermann G. Topological Vector Field Visualization with Clifford Algebra [D]. Rheinland-Pfalz: Fachbereich Informatik, University of Kaiserslautern, 1999: 213~223.
    [11] Wischgoll T, Scheuermann G. Detection and Visualization of Closed Streamlines in Planar Flows [J]. IEEE Transactions on Visualization and Computer Graphics, 2001, 7(2): 165~172.
    [12] Wischgoll T, Scheuermann G, Hagen H. Tracking Closed Streamlines in Time Dependent Planar Flows [C]. In Proceedings of the Vision Modeling and Visualization Conference, Chemnitz: Aka GmbH, 2001: 447~454.
    [13] Theisel H, Weinkauf T, Seidel H P, et al. Grid-Independent Detection of Closed Stream Lines in 2D Vector Fields [C]. In Proceedings of the Conference on Vision, Modeling and Visualization, Chemnitz: Aka GmbH, 2004: 421~428.
    [14] Sadarjoen I A, Post F H. Detection, Quantification, and Tracking of Vortices using Streamline Geometry [J]. Computers and Graphics, 2000, 24(3): 333~341.
    [15] Tricoche X, Scheuermann G, Hagen H. Topology-Based Visualization of Time-Dependent 2D Vector Fields [C]. In Proceeding of Data Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2001:117~126.
    [16] Theisel H, Seidel H P. Feature Flow Fields [C]. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2003: 141~148.
    [17] Theisel H, Weinkauf T, Hege H C, et al. Stream Line and Path Line Oriented Topology for 2D Time-Dependent Vector Fields [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2004:321~328.
    [18] Theisel H, Weinkauf T, Hege H C, et al. TopologicalMethods for 2D Time- Dependent Vector Fields Based On Stream Lines and Path Lines [J]. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(4):.383~394.
    [19] Theisel H, Rossl C, Seidel H. Using Feature Flow Fields for Topological Comparison of Vector Fields [C]. In Proceedings of the Conference on Vision, Modeling and Visualization, Chemnitz: Aka GmbH, 2003: 521~528.
    [20] Lavin Y, Batra R K, Hesselink L. Feature Comparisons of Vector Fields Using Earth Mover’s Distance [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1998: 103~110.
    [21] Tricoche X, Garth C, Scheuermann G. Fast and Robust Extraction of Separation Line Features [C]. In Scienti?c Visualization: The Visual Extraction of Knowledge from Data, Berlin: Springer-Verlag: Springer, 2005: 249~264.
    [22] Weinkauf T, Theisel H, Hege H C, et al. Boundary Switch Connectors for Topological Visualization of Complex 3D Vector Fields [C]. In In Proceedings of Data Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2004: 183~192.
    [23] Theisel H, Weinkauf T, Hege H C, et al. Saddle Connectors–An Approach to Visualizing the Topological Skeleton of Complex 3D Vector Fields [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2003: 225~232.
    [24] Weinkauf T, Theisel H, Hege H C, et al. Topological Construction and Visualization of Higher Order 3D Vector Fields [J]. Computer Graphics Forum, 2004, 23(3): 469~478.
    [25] Theisel H. Designing 2D Vector Fields of Arbitrary Topology [J]. Computer Graphics Forum, 2002, 21(3):595~595.
    [26] Reinders F, Sadarjoen I A, Vrolijk B, et al. Vortex Tracking and Visualisation in a Flow Past a Tapered Cylinder [J]. Computer Graphics Forum, 2002, 21(4): 675~682.
    [27] Tricoche X, Garth C, Kindlmann G, et al. Visualization of Intricate FlowStructures for Vortex Breakdown Analysis [C]. In Proceedings of IEEE Visualization 2004, Los Alamitos, CA: IEEE Computer Society Press, 2004: 187~194.
    [28] Keqin W, Zhanping L, Song Z, et al. Topology-Aware Evenly-Spaced Streamline Placement [J]. IEEE Transactions on Visualization and Computer Graphics ,2009, 16(5): 791~801.
    [29] Peikert R, Sadlo F. Topologically Relevant Stream Surfaces for Flow Visualization[C]. In Proceedings of the 25th Spring Conference on Computer Graphics, New York : ACM, 2009: 43~50.
    [30] Garth C, Tricoche X, Scheuermann G. Tracking of Vector Field Singularities in Unstructured 3D Time-Dependent Datasets [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2004:329~335.
    [31] Peikert R, Roth M. The Parallel Vectors Operator - A Vector Field Visualization Primitive [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society, 1999: 263~270.
    [32] Sahner J, Weinkauf T, Hege H C. Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines [C]. In Proceedings of the Joint Eurographics - IEEE VGTC Symposium on Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2005: 151~160.
    [33] Stegmaier S, Ertl T. A Graphics Hardware-Based Vortex Detection and Visualization System [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society, 2004: 195~202.
    [34] Mahrous K M, Bennett J C, Hammann B, et al. Improving Topological Segmentation of Three-dimensional Vector Fields [C]. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2003: 203~212.
    [35] Mahrous K, Bennett J C, Scheuermann G, et al. Topological Segmentation in Three-dimensional Vector Fields [J]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10(2):198~205.
    [36] Wischgoll T, Scheuermann G. Locating Closed Streamlines in 3D Vector Fields [C]. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2002: 227~280.
    [37] Weinkauf T, Sahner J, Gunther B, et al. Feature-based Analysis of a Multi-Parameter Flow Simulation [C]. In Proceedings of Simulation and Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2008:237~252.
    [38] Christoph P, Jens K, Steffen P. Hierarchical Vortex Regions in Swirling Flow [J]. Computer Graphics Forum, 2009, 28(3):863~870.
    [39] Garth C, Gerhardt F, Tricoche X, et al. Efficient Computation and Visualization of Coherent Structures in Fluid Flow Applications [J]. IEEE Transactionson Visualization and Computer Graphics, 2007, 13(6): 1464~1471.
    [40] Garth C, Wiebel A, Tricoche X, et al. Lagrangian Visualization of Flow-Embedded Surface Structures [C]. In Proceedings of the joint Eurographics/IEEE-VGTC Symposium on Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2008, 27(3): 1007~1014.
    [41] Pobitzer A, Peikert R, Fuchs R, et al. On the Way Towards Topology-Based Visualization of Unsteady Flow– the State of the Art [C]. In Proceeding of EuroGraphics, Aire-la-Ville, Switzerland: Eurographics Association Press, 2010: 137~154.
    [42] Loffelmann H, Doleisch H, Groller E. Visualizing Dynamical Systems Near Critical Points [C]. In In Proceeding of the Spring Conference on Computer Graphics and its Applications, New York: ACM, 1998: 175~184.
    [43] Donoho A W, Donoho D L, Gasko M. MacSpin: Dynamic Graphics on a Desktop Computer [J]. IEEE Computer Graphics and Applications, 1998, 8(4), 51~58.
    [44] Becker B G. Volume Rendering for Relational Data [C]. In Proceedings of the IEEE Symposium on Information Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1997: 87~90.
    [45] Kosara R, Sahling G N, Hauser H. Linking Scienti?c and Information Visualization with Interactive 3D Scatterplots [C]. In Proceedings of WSCG, Plzen: UNION Agency-Science Press, 2004: 133~140.
    [46] Piringer H, Kosara R, Hauser H. Interactive Focus+Context Visualization with Linked 2D/3D Scatterplots [C]. In International Conference on Coordinated and Multiple Views in Exploratory Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2004: 49~60.
    [47] Sanftmann H, Weiskopf D. Illuminated 3D Scatterplots [J]. In Proceeding of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2009: 751~758.
    [48] Zockler M, Stalling D, Hege H C. Interactive Visualization Of 3D-Vector Fields Using Illuminated Stream Lines [J]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1996:107~113.
    [49] Turk G, Banks D. Image-Guided Streamline Placement. In Proceedings of ACM SIGGRAPH, New York: ACM Press, 1996: 453~460.
    [50] Jobard B, Leffer W. Creating Evenly–Spaced Streamlines of Arbitrary Density [C]. In Proceedings of the Eurographics Workshop on Visualization in Scienti?c Computing, Berlin: Springer-Verlag Press, 1997: 43~56.
    [51] Jobard B, Lefer W. The Motion Map: Ef?cient Computation of Steady Flow Animations [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1997:323~328.
    [52] Jobard B, Lefer W. Multiresolution Flow Visualization [C]. In Proceedings ofWSCG, Plzen: UNION Agency-Science Press, 2001:33~37.
    [53] Lefer W, Jobard B, Leduc C. High Quality Animation of 2D Steady Vector Felds [J]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10(1): 2~14.
    [54] Mebarki A, Alliez P, Devillers O. Farthest Point Seeding for Efficient Placement of Streamlines [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2005:479~486.
    [55] Liu Z P, Moorhead II R J. An Advanced Evenly-Spaced Streamline Placement Algorithm [J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 965~972.
    [56] Li L, Hsien H H, Shen H. W. Illustrative Streamline Placement and Visualization [J]. In Proceeding of IEEE Paci?c Visualization Symposium, Los Alamitos, CA: IEEE Computer Society Press, 2008: 79~86.
    [57] Marchesin S. Chen C K, Ho C, et al. View-Dependent Streamlines for 3D Vector Fields [J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1578 ~ 1586.
    [58] Mao X, Hatanka Y, Higashida H, et al. Image-Guided Streamline Placement on Curvilinear Grid Surfaces [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1998: 135~142.
    [59] Spencer B, Laramee R S, Chen G, et al. Evenly-Spaced Streamlines for Surfaces [J]. Computer Graphics Forum, 2009, 23(4): 65~71.
    [60] Mattausch O, Theussl T, Hauser H, et al. Strategies for Interactive Exploration of 3D Flow Using Evenly-Spaced Illuminated Streamlines [C]. In Proceedings of the 19th Spring Conference on Computer Graphics, New York : ACM Press, 2003: 213~222.
    [61] Laramee R S, Hauser H. Geometric Flow Visualization Techniques for CFD Simulation Data [C]. In Proceedings of the 21st Spring Conference on Computer Graphics , New York : ACM Press, 2005: 213~216.
    [62] Chen Y, Cohen J D, Krolik J. Similarity Guided Streamline Placement with Error Evaluation [J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1448~1455.
    [63] Mallo O, Peikert R, Sigg C, et al. Illuminated Lines Revisited [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2005 (2005), pp. 19~26.
    [64] Hultquist J P M. Constructing Stream Surfaces in Steady 3D Vector Fields [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1992: 171~178.
    [65] Scheuermann G, Bobach T, Hagen H, et al. A Tetrahedral-Based Stream Surface Algorithm [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEEComputer Society Press, 2001: 151~157.
    [66] Garth C, Tricoche X, Salzbrunn T, Bobach T, et al. Surface Techniques or Vortex Visualization [C]. In Proceedings of the 6th Joint Eurographics-IEEE VGTC Symposium on Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2004: 155~164.
    [67] Laramee R S, Garth C, Schneider J, Hauser H. Texture-Advection on Stream Surfaces: A Novel Hybrid Visualization Applied to CFD Results [C]. In Proceedings of the Joint Eurographics-IEEE VGTC Symposium on Visualization Aire-la-Ville, Switzerland: Eurographics Association Press, 2006: 155~162.
    [68] Schafhitzel T, Tejada E, Weiskopf D, et al. Point-Based Stream Surfaces and Path Surfaces [C]. In Proceedings of Graphics Interface, New York: ACM Press, 2007: 289~296.
    [69] Von Funck W, Weinkauf T, Sahner J, et al. Smoke Surfaces: An Interactive Flow Visualization Technique Inspired by Real World Flow Experiments [J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1396~1403.
    [70] Buerger K, Ferstl F, Theisel H, et al. Interactive Streak Surface Visualization on the GPU [J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1259~1266.
    [71] Krishnan H, Garth C, Joy K. Time and Streak Surfaces for Flow Visualization in Large Time-Varying Data Sets [J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1267~1274.
    [72] Max N, Becker B, Crawfis R. Flow Volumes for Interactive Vector Field Visualization [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1993: 19~24.
    [73] Xue D, Zhang C, Crawfis R. Rendering Implicit Flow Volumes [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2004: 99~106.
    [74] van Wijk J J. Spot Noise-Texture Synthesis for Data Visualization [C]. In Proceedings of ACM SIGGRAPH, New York: ACM Press, 1991: 309~318.
    [75] Cabral B, Leedom L. Imaging Vector Fields Using Line Integral Convolution [C]. In Proceedings of ACM SIGGRAPH, New York: ACM Press, 1993: 263~272.
    [76] Jobard B, Erlebacher G, Hussaini M. Lagrangian-Eulerian Advection for Unsteady Flow Visualization [J]. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(3):211~222.
    [77] van Wijk J J. Image Based Flow Visualization [J]. ACM Transactions on Graphics, 2002, 21(3):745~754.
    [78] Laramee R S, Hauser H, Doleisch H, et al. The State of the Art in Flow Visualization: Dense and Texture Based Techniques [C]. Computer Graphics Forum 2004, 23(2): 203~221.
    [79] Max N, Becker B. Flow Visualization Using Moving Textures [C]. In Proceedings of the ICASW/LaRC Symposium on Visualizing Time-Varying Data, 1995: 77~87.
    [80] Kao D, Zhang B, Kim K, et al. 3D Flow Visualization Using Texture Advection [C]. In Proceedings of International Conference on Computer Graphics and Imaging, Calgary: ACTA Press , 2001:1056~1062.
    [81] van Wijk J J. Image Based Flow Visualization for Curved Surfaces [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2003: 123~130.
    [82] Telea A, van Wijk J J. 3D IBFV: Hardware-Accelerated 3D Flow Visualization [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2003: 233~240.
    [83]王斌,王文平,雍俊海等.基于半规则纹理合成的矢量场可视化技术[J].计算机辅助设计与图形学学报,2005,17(8):1678~1685.
    [84]吉晓娟,顾耀林.基于弹性算法的矢量场可视化方法的研究[J].计算机应用,2006,26(6):1386~1388.
    [85]何兵,陈恺,于兆海.一种非结构矢量场的线卷积积分方法[J],计算机研究与发展,2006,43(9): 1511~1515.
    [86] Weiskopf D, Ertl T. GPU-Based 3D Texture Advection for the Visualization of Unsteady Flow Fields[C]. In Proceedings of WSCG 2004(Short Papers), Plzen: UNION Agency-Science Press, 2004:259~266.
    [87] Weiskopf D, Schafhitzel T, Ertl T. Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow[J], In Proceedings of the Joint Eurographics/IEEE TCVG Symposium on Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2005: 13~20.
    [88] Bachthaler S, Strengert M, Weiskopf D, et al. Parallel Texture-Based Vector Field Visualization on Curved Surfaces Using GPU Cluster Computers [C]. In Proceedings of Eurographics Symposium on Parallel Graphics and Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2006: 75~82.
    [89] Weiskopf D, Schafhitzel T, Ertl T. Texture-Based Visualization of Unsteady 3D Flow by Real-Time Advection and Volumetric Illumination [J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(3): 569~582.
    [90] Helgeland A, Andreassen ?, Ommundsen A, et al. Visualization of the Energy-Containing Turbulent Scales [C]. In Proceedings of IEEE/SIGGRAPH Symposium on Volume Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2004: 103~109.
    [91] Helgeland, A. Reif, B.A.P. Andreassen, O. Wasberg, C.E. Visualization of Vorticity and Vortices in Wall-Bounded Turbulent Flows [J]. IEEE Transactions onVisualization and Computer Graphics, 2007, 13(5): 1055~1067.
    [92] Li G S, Bordoloi U, Shen H W. Chameleon: An Interactive Texture-based Rendering Framework for Visualizing Three-dimensional Vector Fields [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2003: 241~248.
    [93] Shen H W, Li G S, Bordoloi U. Interactive Visualization of Three-Dimensional Vector Fields with Flexible Appearance Control [J]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10(4): 434~445.
    [94] Kaufman A, Mueller K. The Visualization Handbook [M]. Oxford UK: Elsevier Inc, Academic Press, 2005:261~312.
    [95] Scheuermann G, Hamann B, Joy K I, et al. Visualizing Local Vector Field Topology [J]. Journal of electronic imaging, 2000, 9(4): 356-367.
    [96] Tricoche X. Vector and Tensor Topology Simplification, Tracking, and Visualization [D]. Doctor dissertation, Kaiserslautern:University of Kaiserslautern, Schriftenreihe Fachbereich Informatik, 2002: 11~39.
    [97] Theisel H, Weinkauf T, Hege H C, et al. On the Applicability of Topological Methods for Complex Flow Data [C]. In Proceedings of the 4th Workshop on Topology-Based Methods in Data Analysis and Visualization(TopoInVis), Berlin: Springer-Verlag Press, 2005: 105~120.
    [98]吴克勤.复杂时变流场中不稳定结构的检出及可视化——极限环的抽取及向量场拓扑简化研究[D].青岛:中国海洋大学硕士学位论文.2004:11~18.
    [99] Weiskopf D. GPU-Based Interactive Visualization Techniques [M]. Berlin: Springer-Verlag Press, 2006:81~159.
    [100] Weinkauf T, Theisel H, Shi K, et al. Extracting Higher Order Critical Points and Topological Simplification of 3D Vector Fields[C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2005: 559~566.
    [101] Scheuermann G, Hagen H, Kruger H, etal. Visualization of Higher Order Singularities in Vector Fields [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1997: 67~74.
    [102] Scheuermann G, Tricoche X, Hagen H. C1-Interpolation for Vector Field Topology Visualization [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1999: 271~278.
    [103] Tricoche X, Scheuermann G, Magen H. Continuous Topology Simplification of Planar Vector Fields [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2001: 159 ~166.
    [104] De Leeuw W, Van Liere R. Collapsing Flow Topology Using Area Metrics [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1999: 149~354.
    [105] Lodha S, Renteria J, Roskin K. Topology Preserving Compression of 2D Vector Fields [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2000: 343~350.
    [106] Tricoche X, Wischgoll T, Scheuermann G, et al. Toplogy Tracking for the Visualization of Time-Depedent Two-Dimensional Flows [J]. Computers & Graphics, Special Issue on Data Visualization. 2002, 26(2):249~257.
    [107]周培德.计算几何——算法设计与分析(第2版)[M].北京:清华大学出版社, 2005:174~176.
    [108]方世昌,离散数学(第二版)[M],西安电子科技大学出版社,2001.10:158~183.
    [109] Sadlo F, Peikert R, Parkinson E. Vorticity Based Flow Analysis and Visualization for Pelton Turbine Design Optimization [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2004: 179~186
    [110] Tzeng F Y, Lum E, Ma K L. A Novel Interface for Higher-Dimensional Classification of Volume Data [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2003: 505~512.
    [111] Tzeng F Y, Ma K L. A Cluster-Space Visual Interface for Arbitrary Dimensional Classification of Volume Data[C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2004: 17~24.
    [112] Tzeng F Y, Ma K L. Opening the Black Dox - Data Driven Visualization of Neural Networks [C]. In Proceedings IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2005: 383~390.
    [113] Tzeng F Y. An Intelligent System Approach to Higher-Dimensional Classification of Volume Data [J]. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(3): 273~284.
    [114] Carpenter G A, Grossberg S. Adaptive Resonance Theory [M]. In M.A. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, Second Edition, Cambridge, MA: MIT Press, 2003:87~90.
    [115] Jantzen J. Introduction to Perceptron Networks. Lyngby [DB/CD]. Denmark:Technical University of Denmark, Technical Report 98-H 873 1998.
    [116] Chauvin Y, Rumelhart D E. Backpropagation: Theory, Architectures, and Applications [M]. U.K, East Sussex: Psychology Press, 1995: 149~198.
    [117] Somervuo P, Kohonen T. Self-Organizing Maps and Learning Vector Quantization for Feature Sequences [J]. Neural Processing Letters, 1999, 10(2): 151~159.
    [118] MacKinlay C J, Shnei-derman B. Readings in Information Visualization: Using Vision to Think [M]. San Fransisco: Morgan Kaufmann Publishers, 1998:356~424.
    [119]裴浩东等.多层前向神经网络的权值平衡算法[J].电子学报,2002, 30(1): 139~141.
    [120] Furnas G. Generalized Fisheye Views [C]. In Proceeding of ACM CHI’86 Conference on Human Factors in Computing Systems, New York: ACM, 1986: 16~23.
    [121] Salzbrunn T, Scheuermann G. Streamline Predicates [J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(6): 1601~1612.
    [122] Botchen R P, Lauser A, Weiskopf D, et al. Flow Feature Visualization Using Logical Operators on Multivariate Fields [C]. In Proceeding of the International Symposium on Flow Visualization, Los Alamitos, CA: IEEE Computer Society Press, 2008: 1~12.
    [123] Zadeh L A (著),阮达,黄崇福(译).模糊集与模糊信息粒理论[M].北京:北京师范大学出版社,2005.
    [124]高洪波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社, 2004:6~61.
    [125] Jeong J, Hussain F. On the Identification of a Vortex [J]. Journal of Fluid Mechanics, 1995, 28(5): 69~94.
    [126] Weiskopf D, Eetl T. Hardware-Accelerated Visualization of Time-Varying 2D and 3D Vector Fields by Texture Advection via Programmable Per-Pixel Operations [C]. In Proceedings of Vision, Modeling, and Visualization Conference, Chemnitz: Aka GmbH Press, 2001: 439~446.
    [127] Kruger J, Kipfer P, Kondratieva P, et al. A Particle System for Interactive Visualization of 3D Flows [J]. IEEE Transactions on visualization and computer graphics, vol. 11, no.6, 2005, pp. 1~13.
    [128]刘占平,汪国平,董士海.一种新的Volume LIC可视化方法[J],中国图像图形学报,2001,6(5): 470~474.
    [129] Heidrich W, Westermann R, Seidel H P, et al. Applications of Pixel Textures in Visualization and Realistic Image Synthesis [C]. In Proceedings of ACM Symposium on Interactive 3D Graphics, Florida, New York: ACM Press, 1999: 127~134.
    [130] Li G S, Tricoche X, Hansen C. GPUFLIC: Interactive and Accurate Dense Visualization of Unsteady Flows[C]. In Proceedings of Eurographics/ IEEE-VGTC Symposium on Visualization, Aire-la-Ville, Switzerland: Eurographics Association Press, 2006: 1~6.
    [131] Okada A, Kao D. Enhanced Line Integral Convolution with Flow Feature Detection [C]. In Proceedings of IS&T/SPIE Electronic Imaging, Bellingham, Washington: SPIE Press, 1997: 206~217.
    [132] Shen H W, Johnson C R, Ma K L. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection [C]. In Proceedings of IEEE/SIGGRAPH Symposium on Volume Visualization, Los Alamitos, CA: IEEE Computer SocietyPress, 1996: 63~70.
    [133] M.W.艾森克,M.T.基恩(著).高定国,肖晓云(译).认知心理学[M].华东师范大学出版社,2002年.
    [134] Bruce A G, Gooch B, Shirley P, et al. A Non-Photorealistic Lighting Model for Automatic Technical Illustration [C]. In Proceedings of ACM SIGGRAPH, New York : ACM Press, 1998: 447~452.
    [135]姚行中,胡汉平,鲁统伟.一种基于猫视皮层细胞机制的改进的Sobel算子[J].计算机工程与应用, 2007,43(31):64~67.
    [136] Shen H W, Kao D L. UFLIC: A Line Integral Convolution Algorithm for Visualizing Unsteady Flows [C]. In Proceedings of IEEE Visualization, Los Alamitos, CA: IEEE Computer Society Press, 1997:317~323.
    [137] Falk M, Weiskopf D. Output-Sensitive 3D Line Integral Convolution. IEEE Transactions on Visualization and Computer Graphics. 2008, 14(4):820~834.
    [138] Keller A. Quasi-Monte Carlo methods in computer graphics: the global illumination problem[M]. Lectures in Applied Mathematics, Philadelphia: SIAM Press, 1996: 455~469.
    [139] Ropinski T. Accelerating Volume Raycasting using Occlusion Frustum [C]. In Proceeding of the joint IEEE/EG International Symposium on Volume and Point-based Graphics, Aire-la-Ville, Switzerland: Eurographics Association Press , 2008: 147~154.
    [140] Stegmaier S, Strengert M, Klein T, et al. A Simple and Flexible Volume Rendering Framework for Graphics-Hardware-Based Raycasting [C]. In Proceeding of the joint IEEE VGTC / EG Workshop Volume Graphics, Aire-la-Ville, Switzerland: Eurographics Association Press ,2005:187~195.
    [141] Helgeland A, Andreassen ?, Visualization of Vector Fields Using Seed LIC and Volume Rendering [J]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10(6):673~682.
    [142] Wegenkittl R, Groller E, Purgathofer W. Animating Flow Fields: Rendering of Oriented Line Integral Convolution [C]. In Proceeding of Computer Animation Conference, Los Alamitos, CA: IEEE Computer Society Press, 1997. 15~21.
    [143] Banks D C. Illumination in Diverse Codimensions [C]. In Proceeding of ACM SIGGRAPH, New York: ACM Press, 1994:327~334.
    [144] Strauss P S. A Realistic Lighting Model for Computer Animators [J]. IEEE Computer Graphics and Applications, 1990, 10(6). 56~64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700