用户名: 密码: 验证码:
鸡肠道Cajal间质细胞与肠神经系统的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新近的观点认为正常的肠道蠕动依赖于肠壁中肠神经系统(Enteric Nervous System, ENS)、Cajal间质细胞(interstitial cells of cajal, ICC)和平滑肌细胞之间的相互作用。ICC是位于自主神经末梢和消化道平滑肌细胞之间的一类特殊的间质细胞,它在三个方面起作用:胃肠道平滑肌活动的起搏,推进电活动的传播和调节神经递质。以往关于ENS和ICC的研究主要集中在哺乳动物胃肠道。鸟类与哺乳动物的胃肠道在结构上存在一定差异性,同时,鸟类的肠神经系统不仅包括肠壁内的神经丛,还包括位于肠管外肠系膜缘的肠神经(又称Remak's nerve).这种差异是否导致ENS和ICC结构及其作用机制的不同?本研究以鸡作为试验动物,详细研究了鸡肠道内ICC的鉴定、分布以及与神经、平滑肌之间的联系,并对鸡NES中与ICC关系最为密切的NOS和AChE阳性神经元进行了胚后发育和分布比较研究。研究结果将从细胞和分子水平阐明鸡ENS和ICC的结构组成和相互联系,对揭示鸟类胃肠道功能有着重要意义,为鸟类胃肠动力学疾病治疗提供科学依据。
     试验I鸡肠道Cajal间质细胞的超微结构研究本试验应用透射电镜系统观察了鸡肠道Cajal间质细胞(interstitial cells of cajal, ICC)的超微结构特点,结果显示在鸡肠道的不同部位均有ICC的存在,分布密度不等。根据分布位置的不同可将ICC分为肌间ICC、肌内ICC、粘膜下层ICC、深肌层ICC和固有层ICC。电镜下,这些ICC具有共同的超微特征:存在大量的线粒体、丰富的中间丝;细胞核呈梭形或椭圆形,内含大量异染色质。ICC胞体呈梭形或星形,有数量不等的胞质突起,这些突起与周围平滑肌细胞和肠道神经形成密切联系。部分ICC也显示了平滑肌细胞的一些结构特点,如不连续的基底膜、胞膜小凹和致密体。ICC之间,以及ICC与邻近的平滑肌细胞之间存在着明显的缝隙连接样结构。与哺乳动物不同,鸡回肠固有层也分布有ICC。在鸡肠道组织中,成纤维细胞的分布也较为丰富,它们与ICC的主要区别在于其具有发达的分泌性细胞器,包括囊泡和不连续的基底膜,但缺乏中间丝和胞膜小凹。鸡肠道ICC的分布、超微结构特点及其与其它细胞的联系表明,ICC在鸡消化道动力学机制中发挥着重要的调控作用。ICC在粘膜固有层的分布,提示鸡肠道ICC可能比哺乳类具有更多的亚型。
     试验Ⅱ鸡肠道的C-kit阳性细胞表达与分布由于缺乏合适的标记物,Cajal间质细胞(interstitial cells of cajal, ICC)在禽类肠道的分布未见资料报道,本试验在第三章对鸡肠道ICC超微结构鉴定的基础上,应用合成的三相探针通过原位杂交方法,检测ICC的标记物c-kit mRNA在鸡肠道不同区域的分布规律;同时,应用实时荧光定量PCR(RT-PCR)分别对不同肠段粘膜组织和去粘膜肠壁组织的c-kit mRNA表达进行测定。原位杂交结果显示出两种类型的c-kit mRNA阳性细胞。第一种为纺锤形或星极细胞组成,主要位于内环形肌和外纵形肌之间的肌间层,粘膜下层、环形肌和纵形肌内也有发现。这种类型的细胞被界定为ICC。进一步根据此类细胞分布位置不同可分为肌间ICC、肌内ICC和粘膜下ICC三种,而且不同肠段内阳性细胞数目也不相同。第二种为圆形或颗粒型细胞组成,主要位于粘膜固有层内,粘膜下层也有少量发现,这类细胞被界定为肥大细胞,主要分布于回肠和空肠。RT-PCR结果显示在不同肠段均有c-kit mRNA的表达:在去粘膜肠壁组织中,回肠和结肠表达最高,空肠和十二指肠次之,盲肠最低;而在粘膜组织中,空肠表达最高,十二指肠和回肠其次,结肠和盲肠最低。实验结果揭示了鸡肠道ICC的分布模式,显示了鸡肠道不同部位中c-kitmRNA表达差异,这种差异可能与不同肠段的功能及其调节方式有关。
     试验Ⅲ不同日龄鸡肠道c-kit与其配体SCF mRNA的表达研究本试验以β-actin为内参,采用SYBR染料法的实时荧光定量PCR (RT-PCR)技术。选取第1、10、20和40日龄三黄鸡去除粘膜后的十二指肠、空肠、回肠、盲肠和结肠肠壁中c-kit及其配体SCF mRNA的表达进行相对定量,初步阐明正常鸡肠道中c-kit及其配体SCF的mRNA表达量随着日龄变化的规律。结果显示所有肠段中c-kit mRNA的表达量从1日龄至40日龄逐渐降低,至20日龄时c-kit mRNA表达极显著低于1日龄。SCFmRNA的表达量从1日龄至10日龄逐渐升高,10日龄时mRNA表达最高,之后慢慢下降,至20日龄时的SCF mRNA表达显著低于10日龄。各肠段在不同日龄的c-kit和SCF mRNA表达量的变化表现如下:1日龄时,结肠中c-kit mRNA表达量最高,回肠最低;十二指肠中SCF mRNA表达量最高,盲肠最低。10日龄时,结肠中c-kit mRNA表达量最高,空肠最低;结肠中SCF mRNA表达量最高,盲肠最低。20至40日龄时,变化趋于稳定,都是回肠中c-kit和SCF mRNA表达量最高,盲肠最低。结果表明鸡肠道的胚后发育和功能形成是一个逐渐成熟的过程,而且c-kit及其配体SCF之间存在着密切的联系。
     试验Ⅳ鸡肠道Vimentin与NSE免疫荧光双标研究本试验采用ICC的标记物之一波形蛋白(vimentin)和神经元的特异标记物神经元特异性烯醇化酶(Neuron-specific Enolase, NSE),对肠道切片进行免疫细胞化学双标,观察鸡不同肠段内vimentin、NSE阳性细胞的分布特征,探究ICC与神经之间的联系。结果发现:vimentin阳性细胞及其突起主要分布在肌层、粘膜下层和固有膜内,特别是在内环形肌和外纵形肌之间的肌间层大量出现。阳性细胞在大肠与小肠的肌内分布稍有区别,前者主要见于肌间隔内,而后者主要见于肌束内。大部分NSE阳性细胞分布于肌间层和粘膜下层,肌层内有零散分布;固有膜NSE阳性细胞量较少,但小肠固有膜vimentin阳性细胞明显多于大肠。粘膜上皮附近也能观察到。通过双标观察,肠道肌间和粘膜下层vimentin阳性细胞紧密围绕在NSE阳性细胞周围。固有膜内vimentin阳性细胞也多位于NSE阳性细胞周围。表明鸡vimentin细胞与NSE阳性细胞在肠道各段呈交错分布,两者关系紧密,提示它们在肠道活动中存在一定调节关系。
     试验V鸡肠道肌间层NOS阳性神经元胚后发育的结构研究肠神经系统(Enteric Nervous System, ENS)的正常发育对了解肠道功能是非常重要的。鸡胚是研究肌间神经丛发育和ENS功能的理想模型,但关于鸡胚后肌间神经丛的发育未见报道。本研究的目的是定性和定量分析胚后发育期间鸡肌间神经丛NOS阳性神经元(即氮能神经元)的形态和分布。分别对7日龄、15日龄和成年鸡不同肠段(十二指肠、空肠、回肠、盲肠和结肠)进行肌间铺片制作,还原型尼克酰胺腺嘌呤二核苷酸黄递酶(NADPH-d)组织化学反应后,利用IPP6.0软件对阳性神经元和神经节进行定量分析。结果显示NOS阳性神经元和神经纤维形成典型的三级网状结构,NOS阳性神经元形态各异,聚集在一起构成大小不等的神经节。NOS阳性神经元反应强度存在一定差异,数个阳性神经元经常可形成串珠形和U形结构。NOS阳性神经元和神经节的密度随着年龄的增长而降低,但神经节中的阳性神经元的数量却有所增加。在所有年龄组中,NOS阳性神经元数量在结肠最高,随后是回肠,空肠,十二指肠和盲肠。结果表明,鸡肠道肌间神经丛存在胚后发育现象,提示鸡ENS功能形成是一个逐渐成熟和完善的过程;另外在每个肠段之间的发育并无明显差异,提示不同肠段的功能执行在出生后就已确定。
     试验Ⅵ鸡回肠粘膜下层胆碱能神经元的胚后发育研究乙酰胆碱能神经元释放的乙酰胆碱(ACh)是胃肠道最主要的兴奋性神经递质,能刺激平滑肌收缩,增强胃肠道分泌,促进肠道激素的释放。本研究分别制作0、5、10、20、40日龄三黄鸡回肠粘膜下层铺片样品,通过乙酰胆碱酯酶(AChE)组织化学反应,探究0日龄到40日龄鸡肠道粘膜下神经丛胆碱能神经元的构筑及其变化。结果显示AChE阳性神经元和神经纤维形成立体的三级网状结构,AChE阳性神经元形态各异,聚集在一起构成大小不等的神经节。随着年龄的增长神经节密度明显降低,直到40日龄组。相反,神经节中神经元大小逐渐增加,40日龄组中几乎是0日龄组的3倍。在胚后发育初期,每个神经节中的神经元数量从10日龄起,基本呈现稳定上升的趋势。鸡回肠粘膜下神经丛胚后发育变化的研究结果,将为鸡的肠神经系统失调引起的胃肠道疾病诊断提供重要的病理组织学参考。
     试验Ⅶ鸡回肠段胆碱能和氮能神经元的组织化学定位分别制作鸡回肠冰冻切片、肌间和粘膜下层铺片,应用乙酰胆碱酯酶(AChE)和还原型尼克酰胺腺嘌呤二核苷酸黄递酶(NADPH-d)组织化学反应,分别对胆碱能和氮能神经元进行定位分析。冰冻切片结果显示AChE和NADPH-d阳性反应广泛分布于神经元胞体和神经纤维中。阳性神经元呈不规则或多边形,主要在肌间和粘膜下层零星或成簇出现,肌内也有一定的分布。肌间阳性神经纤维可明显插入环形肌内,阳性神经纤维经常围绕在血管周围,也有一些阳性神经纤维从肌层发出,穿过粘膜下层进入粘膜固有层,并且渗透到肠绒毛上皮下;肌内和粘膜中的AChE神经纤维的数量远超过NADPH-d阳性神经元和神经纤维。铺片结果显示AChE和NADPH-d阳性神经元位于神经节中,神经节之间通过阳性纤维相连形成致密的网络样结构,粘膜下网络明显比肌间密集,粘膜下神经节密度远大于肌间,但粘膜下每个神经节中的神经元数目要远小于肌间,粘膜下层神经元的大小也较肌间的小。AChE阳性神经元数目要远多于NADPH-d阳性神经元数目。结果表明鸡回肠广泛分布有兴奋性的胆碱能和抑制性的氮能神经元,可能在胃肠道功能调节中发挥重要作用。
At present, it is generally accepted that the normal intestinal peristalsis is dependent on the interaction among the enteric nervous system (ENS), the interstitial cells of Cajal (ICC) and smooth muscle cells. ICC is a special class of interstitial cells located between the autonomous nerve endings and gastrointestinal smooth muscle cells. Works mainly in three aspects:The ICC generate pacemaker activity throughout the gastrointestinal tract by initiating the slow wave activity that is integral to the coordination of gastrointestinal motility; In addition, ICC are thought to be involved in mediating neurotransmission and facilitating active propagation of electrical events.
     In the past, the studies on ENS and ICC are mainly concentrated in the mammals' gastrointestinal tract. The structure between birds and mammals is different, and the ENS of avian contains neurons that are in the wall of the gastrointestinal tract, as well as the intestinal nerve of Remak (INR) located in the mesenteric edge outside of the intestinal wall. Would this variation lead to the difference of the structure and mechanism of interactions between the ENS and the ICC? Chicken was selected as experimental animals on behalf of birds for detail researches of gastrointestinal tract, such as the identification and distribution of ICC, the relations between ICC and nerves and smooth muscle. In addition, the comparative study on the postnatal development and distribution of NOS and AChE positive neurons were revealed, because the two types of neurons were closely related with ICC in intestine. Those researches explain the structure and relation of cells and molecule in the ENS and ICC from chicken intestine, and analyze the functional significance of the ENS and ICC. This study provide basic datum for the works of the function and the protection of diseases in chicken gastrointestinal tract.
     Experiment I Identification and distribution of interstitial cells of cajal in the intestine of chicken The present study has observed the ultrastructural feature of ICC in the chicken intestine by transmission electron microscopy (TEM). The results showed ICC could be found in different regions and the numbers were different. They were classified into several subtypes:ICC at the layer of myenteric plexus、ICC at the intramuscular level、 ICC in the deep muscular plexus、ICC on the submucosal plexus and ICC in the lamina propria mucosae. This cells share common ultrastructural features, such as the presence of numerous mitochondria, abundant intermediate filaments, their nuclei were fusiform, oval or indented with a dense band of peripheral heterochromatin, they also form close contacts with neighbouring SMC (SMC) and with enteric nerve. They are spindle-shaped or stellate, having a different number of ramified cell processes. In addition, some ICC also shows some typical features of SMC including a basal lamina, caveolae, and dense bodies. Ture gap junctions have been detected between with other ICC or with neighbouring SMC. We also identified a possible new subtype of ICC located in the lamina propria mucosae, which was different with mammals. Fibroblast-like cells (FLC) were abundant showing well-developed secretory organelles, including coated vesicles, a patchy basal lamina, but lacked prominent intermediate filaments and caveolae. The widespread distribution of ICC or equivalent cells in chicken intestine, together with the conservation of their ultrastructural features, suggests that they play same key regulatory roles in gastrointestinal movement with mammals. The observation of ICC in the lamina propria mucosae indicates that there may be more subtypes of these cells in the intestine than previously considered.
     Experiment II The identification and expression of c-kit positive cells in the intestine of chicken The distribution of the interstitial cells of Cajal (ICC) remains obscure because of lacking suitable marker. In the present study on the basis of the third chapter about the ultrastructure identification of ICC in chicken intestine, the identification and expression of c-kit positive cells in the chicken intestine were demonstrated by means of in situ hybridization (ISH) histochemistry, and the expression of c-kit gene in the intestinal wall lacking mucosa and mucosa of normal chickens were also revealed by real-time fluorescence quantitative polymerase chain reaction (RT-PCR). Two types of cells stained positive for c-kit mRNA. The first group consisted of spindle-shaped or bipolar cells identified as ICC. ICC were found at a variety of locations-at the level of the myenteric plexus between the circular and longitudinal muscle, and intermingled with smooth muscle cells within muscle bundles in the circular and longitudinal muscle layers. ICC was also identified along the submucosal layer; they were classified into several subtypes. The second group was comprised of round-shaped cells, which resembled mast cells. Mast cells were mainly found in the lamina propria region as well as in submucosal layer. RT-PCR revealed the expression of c-kit mRNA throughout the intestinal wall lacking mucosa and mucosa of the total intestine. In intestinal wall lacking mucosa, c-kit mRNA was detected at high levels in all samples of the ileum and colon, moderate levels in the duodenum and jejunem, low levels in the caeca; in mucosa, c-kit mRNA was detected at high levels in all samples of the jejunum, following by ileum and duodenum. While the levels of mRNA in the caeca and colon was low. Conclusively, this study reveals for the first time the distribution of ICC, quantifies the expression of c-kit mRNA in the intestine of chicken and also compares the c-kit positive cell types on morphologically. The results indicate the difference may be related to different bowel functions.
     Experiment Ⅲ The study on c-kit and SCF mRNA expression in chicken intestine of different ages Tissue samples (the intestinal wall lacking mucosa of duodenum, jejunum, ileum, caeca, and colon) were made in1-days-old,10-days-old,20-days-old and adult (40-days-old) chickens (n=5) and identify the expression of c-kit and its ligand SCF mRNA in this tissues by real-time fluorescence quantitative polymerase chain reaction (RT-PCR) with SYBR green and were normalized against the housekeeping gene β-actin. The results showed that the expression patterns were different between c-kit and SCF genes. The expression of c-kit mRNA was decreased in different intestinal segments with ages. In1-days-old group, c-kit mRNA was detected at highest levels, the expression of c-kit mRNA detected in20-days-old and adult group were extremely significantly lower than that of1-days-old group. The expression of SCF mRNA was increased from1-days-old to10-days-old, and then the tendency was descend. The expression of SCF mRNA detected in20-days-old and adult group were significantly lower than that of10-days-old group. In different age groups, the expression of c-kit and SCF mRNA showed a dynamic change. In1-days-old group, c-kit mRNA was detected at highest level in colon and lowest level in caeca, SCF mRNA was detected at highest level in duodenum and lowest level in caeca. In10-days-old group, c-kit mRNA was detected at highest level in colon and lowest level in jejunum, SCF mRNA was detected at highest level in colon and lowest level in caeca. But in20-days-old and adult group, the change was similar, SCF and c-kit mRNA was detected at highest level in ileum and lowest level in caeca. Conclusively, this study reveals it is a close relationship between SCF and c-kit and indicates the functional maturation in development of postnatal intestine is a gradually process.
     Experiment Ⅳ Double-labeled immunofluorescence study on vimentin and NSE protein in chicken intestine Different intestinal segments were used in this study in order to investigate the morphological relationship between the interstitial cells of Cajal and nerve using immunofluorescent study on vimentin and Neuron-specific Enolase (NSE) by double-labeled immunofluorescence combined laser-scanning confocal microscopy, and distribution of the two positive cells were analyzed. The results showed vimentin positive cells and their processes were mainly found within lamina muscularis, submucosal layer and lamina propria, specially in he myenteric plexus between the circular and longitudinal muscle. However, vimentin positive cells were distributed in the septum of lamina muscularis of the large intestine and within the muscle bundles of small intestine. NSE positive cells mainly located in the myenteric plexus between the circular and longitudinal muscle and submucosal layer, and scattered within muscle bundles in the circular and longitudinal muscle layers. NSE positive cells were lower in mucosa than that of lamina muscularis, and these cells were more in small intestinal mucosa than that of large intestine; these cells were also found near mucosal epithelium. We found the vimentin positive cells closely surround the NSE positive cells in lamina muscularis and submucosal layer by double-labelling, and similar relations seen in mucosa. Conclusively, the vimentin and NSE positive cells form close contacts with each other, suggesting they play an important biological role in the intestinal motility.
     Experiment V The structural study on NOS positive neurons in myenteric plexus of the chicken intestine during postnatal development Information regarding the development of the enteric nervous system (ENS) is important for understanding the intestinal function. Because fertilized chicken eggs provide easy access to embryos chicken model have been widely used to study developing fetal myenteric plexus, however no study has been focused on the postnatal period. The aim of this study was to perform a qualitative and quantitative analysis of NOS positive cells (the nitrergic neurons) in the myenteric plexus of developing chickens in the postnatal period. Whole-mount preparations of the myenteric plexus were made in7-days-old,15-days-old and adult chickens (n=15). The myenteric plexus was studied after nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry using light microscopy, digital photography and IPP6.0software. The number of positively stained neurons and ganglia was counted in the duodenum, jejunum, ileum, cecum and colon in the different age groups. The results showed the nerve fiber bundles connecting the ganglia form a clear meshwork. The positively stained neurons showed various morphology, staining intensity and formed bead-shaped and U-shaped arrangements in the myenteric plexus. The number of positively stained neurons per area and the number of ganglia per area decreased with age; however the number of positive neurons per ganglia increased. The number of NADPH-d positive neurons was highest in the colon, following by the ileum, the jejunum, the duodenum and the cecum in all age groups. Conclusively, Developmental changes in the myenteric plexus of chickens continue in the postnatal period, this indicates that the formation of function needs a gradual process of maturation and improvement. In addition, no significant difference is seen among different intestinal segments during postnatal development, suggesting that the function of different intestinal segments had been determined after birth.
     Experiment VI The study on morphology and distribution of AChE positive neurons in submucosal plexus of the chicken ileum Acetylcholine is recognized as a potent mediator of excitatory nerves responsible for the constriction of the smooth muscle of the gastrointestinal tract, enhance the secretion of the gastrointestinal tract, and stimulate the release of gut hormones. The aim of this study was to determine the normal cholinergic neuronal density and morphology in the submucosal plexus of the chicken ileum from0--days-old to40-days-old. In this experiment, whole-mount preparations of the submucosal plexus of chicken ileum were made in0-days-old,5-days-old,10-days-old,20-days-old and40-days-old chickens. The submucosal plexus was studied after acetylcholine esterase (AChE) histochemistry. The results showed that the positively stained neurons showed various morphology, staining intensity and formed a clear network by ganglia and nerve fibers. The number of ganglia per area decreased with age, however the size of positive neurons increased, and the size in40-days-old group was3times than that of0-days-old group. The change of number of positive neurons per ganglia was dynamic, but the tendency was stably increased from10-days-old to adult. Conclusively, developmental changes in the submucosal plexus of chickens was marked in the postnatal period by qualitative and quantitative analysis, this study will provide an important histopathological reference on the diagnosis of causes of enteric nervous system disorders.
     Experiment Ⅶ Histochemical localization of the cholinergic and nitrergic neurons in the chicken ileum Histochemical localization and analysis of the cholinergic and nitrergic neurons in the chicken ileum were investigated by staining with acetylcholine esterase (AChE) and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), respectively. AChE and NADPH-d activity was demonstrated in neuronal cell bodies and nerve fibers in the chicken ileum. The positive neurons showed irregular or polygonal shape and were mainly present sporadic or clumped in the myenteric and submucosal plexus. The positive nerve fibers frequently surrounded the ileac blood vessels. They were abundantly present in myenteric and submucosal plexus of the ileum forming a network. Some positive nerve fibers traversed the submucosa into the lamina propria mucosae. Fine nerve fibers were found to penetrate into intestinal villi underneath the epithelium. Extensive networks of more intensely staining AChE positive nerve fibers were present in the mucosa as compared to that of NADPH-d positive fibers. Ganglia density of submucosal plexus was markedly higher than that of myenteric plexus, whereas neurons per ganglion and the number of neurons per mm2and the size of neurons of submucosal plexus were shorter than that of myenteric plexus. In addition, the number of AChE positive neurons was more than that of NADPH-d positive neurons. We concluded that the chicken ileum is characterized by abundance of nerve structures which may play a significant functional role in ileum of the chicken.
引文
[1]祝炼,余保平,吴志轩等.小鼠空肠Cajal间质细胞的分离,培养和亚甲蓝活染选择性标记[J].世界华人消化杂志,2007,15(32):3440-3443
    [2]Xue C, Ward SM, Shuttleworth CW, et al. Identification of interstitial-cells in canine proximal colon using NADH diaphorase histochemistry [J]. Histochemistry,1993,99(5):373-384
    [3]雷亚宁,丁友梅,钱旭等.大鼠回肠肌间神经丛Cajal间质细胞的乙酰胆碱酯酶组化染色法和新功能[J].温州医学院学报,2005,35(5):353-356
    [4]Kobayashi S. Network-structure of the peripheral autonomic innervation apparatus should be duly evaluated [J]. Behavioral and Brain Sciences,1990,13(2):307-307
    [5]Christensen J. A commentary on the morphological identification of interstitial-cells of cajal in the gut [J]. Journal of the Autonomic Nervous System,1992,37(2):75-88
    [6]Zhou DS, Komuro T. Ultrastructure of the zinc iodide-osmic acid stained cells in guinea-pig small-intestine [J]. Journal of anatomy,1995,187(3):481-485
    [7]童卫东,蔡文琴.大鼠结肠肌间神经丛Cajal间质细胞的形态[J].解剖学杂志,1999,22(4):316-318
    [8]Ward SM, Burke EP, Sanders KM. Use of rhodamine 123 to label and lesion interstitial-cells of cajal in canine colonic circular muscle [J]. Anatomy and Embryology,1990,182(3):215-224
    [9]Anderson CR, Edwards L. Subunit-b of cholera-toxin labels interstitial-cells of cajal in the gut of rat and mouse [J]. Histochemistry,1993,100(6):457-464
    [10]Hanani M, Louzon V, Miller SM, et al. Visualization of interstitial cells of Cajal in the mouse colon by vital staining [J]. Cell and Tissue Research,1998,292(2):275-282
    [11]Hanani M, Belzer V, Rich A, et al. Visualization of interstitial cells of Cajal in living, intact tissues [J]. Microscopy Research and Technique,1999,47(5):336-343
    [12]Kinoshita K, Horiguchi K, Fujisawa M, et al. Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis [J]. Histochemistry and Cell Biology,2007,127(1):41-53
    [13]Xue C, Pollock J, Schmidt H, et al. Expression of nitric-oxide synthase immunoreactivity by interstitial-cells of the canine proximal colon [J]. Journal of the Autonomic Nervous System, 1994,49(1):1-14
    [14]Shuttleworth CW, Xue C, Ward SM, et al. Immunohistochemical localization of 3',5'-cyclic guanosine-monophosphate in the canine proximal colon-responses to nitric-oxide and electrical-stimulation of enteric inhibitory neurons [J]. Neuroscience,1993,56(2):513-522
    [15]Young HM, McConalogue K, Furness JB, et al. Nitric-oxide targets in the guinea-pig intestine identified by induction of cyclic-gmp immunoreactivity [J]. Neuroscience,1993,55(2):583-596
    [16]Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system [J]. Development,1992,116(2):369-375
    [17]Ward SM, Burns AJ, Torihashi S, et al. Mutation of the protooncogene c-kit blocks development of interstitial-cells and electrical rhythmicity in murine intestine [J]. Journal of Physiology-London,1994,480:91-97
    [18]Huizinga JD, Thuneberg L, Kluppel M, et al. W/Kit gene required for interstitial-cells of cajal and for intestinal pacemaker activity [J]. Nature,1995,373(6512):347-349
    [19]Torihashi S, Ward SM, Nishikawa SI, et al. C-kit-dependent development of interstitial-cells and electrical-activity in the murine gastrointestinal-tract [J]. Cell and Tissue Research,1995, 280(1):97-111
    [20]Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine [J]. Journal of the Autonomic Nervous System, 1996,61(2):169-174
    [21]Burns AJ, Herbert TM, Ward SM, et al. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry [J]. Cell and Tissue Research, 1997,290(1):11-20
    [22]Mei F, Yu B, Ma H, et al. Interstitial cells of Cajal could regenerate and restore their normal distribution after disrupted by intestinal transection and anastomosis in the adult guinea pigs [J]. Virchows Archiv,2006,449(3):348-357
    [23]李宇航,王庆国,陈萌等.大鼠胃电节律失常模型胃肌间Cajal间质细胞含量的变化[J].世界华人消化杂志,2004,12(3):639-641
    [24]Smith MA, Pallister CJ, Smith JG. Stem cell factor:Biology and relevance to clinical practice [J].Acta Haematologica,2001,105(3):143-150
    [25]Komuro T, Tokui K, Zhou DS. Identification of the interstitial cells of Cajal [J]. Histology and Histopathology,1996,11(3):769-786
    [26]Komuro T, Hashimoto Y.3-dimensional structure of the rat intestinal wall (mucosa and submucosa) [J]. Archives of Histology and Cytology,1990,53(1):1-21
    [27]Mei F, Zhu J, Guo S, et al. An age-dependent proliferation is involved in the postnatal development of interstitial cells of Cajal in the small intestine of mice [J]. Histochemistry and Cell Biology,2009,131(1):43-53
    [28]Patterson LM, Zheng HY, Ward SM, et al. Immunohistochemical identification of cholecystokinin A receptors on interstitial cells of Cajal, smooth muscle, and enteric neurons in rat pylorus [J]. Cell and Tissue Research,2001,305(1):11-23
    [29]Thuneberg L. Interstitial-cells of cajal-intestinal pacemaker cells [J]. Advances in Anatomy Embryology and Cell Biology,1982,71:1-130
    [30]Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of cajal [J]. Archives of Histology and Cytology,1999,62(4):295-316
    [31]林琳,姜柳琴,张红杰等.慢传输运动小鼠结肠组织中Cajal间质细胞的改变[J].胃肠病学,2006,11(008):462-467
    [32]林琳,许海尘,张红杰等.结肠慢传输运动小鼠Cajal间质细胞的改变[J].世界华人消化杂志,2004,12(9):2107-2110
    [33]Rumessen JJ, Peters S, Thuneberg L. Light and electron microscopical studies of interstitial cells of Cajal (ICC) and muscle cells at the submucosal border of human colon [J]. Laboratory Investigation,1993,68(4):481-495
    [34]Hanani M, Farrugia G, Komuro T. Intercellular coupling of interstitial cells of cajal in the digestive tract. In:Jeon KW ed., International Review of Cytology-a Survey of Cell Biology, Vol 242 2005:249-252
    [35]Hagger R, Finlayson C, Jeffrey I, et al. Role of the interstitial cells of Cajal in the control of gut motility [J]. British Journal of Surgery,1997,84(4):445-450
    [36]Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract [J]. Gastroenterology,1996,111(2):492-515
    [37]Huizinga JD, Liu LWC, Malysz J, et al. Interstitial cells of Cajal as pacemaker cells of the gut [M].1996:427-435
    [38]Takaki M. Gut pacemaker cells:The interstitial cells of cajal (ICC) [J]. Journal of Smooth Muscle Research,2003,39(5):137-161
    [39]Ward SM, Ordog T, Koh SD, et al. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria [J]. Journal of Physiology-London,2000,525(2):355-361
    [40]David G, Hirst S. Involvement of interstitial cells of Cajal in'myogenic'and neuronal control of gastric motility [J]. Journal of Pharmacological Sciences,2003,91(3):21-25
    [41]Hirst GDS, Suzuki H. Involvement of interstitial cells of Cajal in the control of smooth muscle excitability [J]. Journal of Physiology-London,2006,576(3):651-652
    [42]Hirst GDS, Ward SM. Interstitial cells:involvement control of gut smooth muscle [J]. Journal of Physiology-London,2003,550(2):337-346
    [43]Kim JH, Choi SJ, Yeum CH, et al. Involvement of thromboxane A(2) in the modulation of pacemaker activity of interstitial cells of Cajal of mouse intestine [J]. Korean Journal of Physiology & Pharmacology,2008,12(1):25-30
    [44]Remorgida V, Ragni N, Ferrero S, et al. The involvement of the interstitial Cajal cells and the enteric nervous system in bowel endometriosis [J]. Human Reproduction (Oxford),2005,20(1): 264-271
    [45]Suzuki H, Ward SM, Bayguinov YR, et al. Involvement of intramuscular interstitial cells in nitrergic inhibition in the mouse gastric antrum [J]. Journal of Physiology-London,2003,546(3): 751-763
    [46]Ward SM, Sanders KM. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract [J]. Journal of Physiology-London,2006,576(3): 675-682
    [47]Ward SM, Sanders KM. Interstitial cells of Cajal:Primary targets of enteric motor innervation [J]. Anatomical Record,2001,262(1):125-135
    [48]Groneberg D, Koenig P, Koesling D, et al. The role of interstitial cells of Cajal in the nitrergic relaxation of gastrointestinal smooth muscle [J]. Naunyn-Schmiedebergs Archives of Pharmacology,2010,381:20-20
    [49]Jun JY. The important roles of interstitial cells of cajal and cholinergic receptors on diabetes related dysfunction of colon [J]. Journal of neurogastroenterology and motility,2011,17(4): 333-334
    [50]Torihashi S. Roles of interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal muscle layer. In:Kitamura Y ed., Gann Monograph on Cancer Research 2004:135-147
    [51]Zhang RX, Wang XY, Chen D, et al. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach [J]. Neurogastroenterology and Motility,2011,23(9):356-371
    [52]Cai Z, Li Y, Qi Q. Morphological changes in interstitial cells of Cajal in the deep muscular plexus and enteric motor neurons of the intestine in rats with multiple organ dysfunction syndrome [J]. Neural Regeneration Research,2010,5(8):635-640
    [53]lino S, Horiguchi K, Nojyo Y. W(sh)/W(sh) c-Kit mutant mice possess interstitial cells of Cajal in the deep muscular plexus layer of the small intestine [J]. Neuroscience Letters,2009,459(3): 123-126
    [54]Lee SE, Wi JS, Min YI, et al. Distribution and Three-Dimensional Appearance of the Interstitial Cells of Cajal in the Rat Stomach and Duodenum [J]. Microscopy Research and Technique, 2009,72(12):951-956
    [55]Pokkunuri VB, Morales W, Zhu AL, et al. Both Campylobacter Jejuni and CDT-C. Jejuni Acutely Reduce the Number of Deep Muscular Plexus Interstitial Cells of Cajal [J]. Gastroenterology,2009,136(5):581-581
    [56]Ward SM, McLaren GJ, Sanders KM. Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine [J]. Journal of Physiology-London,2006,573(1):147-159
    [57]Radenkovic G, Nikolic I, Todorovic V. Interstitial cells of cajal-pacemakers of the intestinal musculature [J]. Medicine and Biology,2005,12(2):1-5
    [58]Pluja L, Alberti E, Fernandez E, et al. Evidence supporting presence of two pacemakers in rat colon [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2001,281(1): 255-266
    [59]Faussone-Pellegrini M-S, Vannucchi M-G, Ledder O, et al. Plasticity of interstitial cells of Cajal: a study of mouse colon [J]. Cell and Tissue Research,2006,325(2):211-217
    [60]Han J, Shen WH, Jiang YZ, et al. Distribution, development and proliferation of interstitial cells of Cajal in murine colon:an immunohistochemical study from neonatal to adult life [J]. Histochemistry and Cell Biology,2010,133(2):163-175
    [61]Vanderwinden JM, Rumessen JJ, Bernex F, et al. Distribution and ultrastructure of interstitial cells of Cajal in the mouse colon, using antibodies to Kit and Kit(W-lacZ) mice [J]. Cell and Tissue Research,2000,302(2):155-170
    [62]Aranishi H, Kunisawa Y, Komuro T. Characterization of interstitial cells of Cajal in the subserosal layer of the guinea-pig colon [J]. Cell and Tissue Research,2009,335(2):323-329
    [63]Hagger R, Finlayson C, Gharaie S, et al. Interstitial cells of cajal (ICC) in the human colon: Regional density variations [J]. Gastroenterology,1997,112(4):742-742
    [64]Mazzia C, Porcher C, Jule Y, et al. Ultrastructural study of relationships between c-kit immunoreactive interstitial cells and other cellular elements in the human colon [J]. Histochemistry and Cell Biology,2000,113(5):401-411
    [65]Torihashi S, Horisawa M, Watanabe Y. c-Kit immunoreactive interstitial cells in the human gastrointestinal tract [J]. Journal of the Autonomic Nervous System,1999,75(1):38-50
    [66]Hagger R, Gharaie S, Finlayson C, et al. Distribution of the interstitial cells of Cajal in the human anorectum [J]. Journal of the Autonomic Nervous System,1998,73(2-3):75-79
    [67]Romert P, Mikkelsen HB. c-kit immunoreactive interstitial cells of Cajal in the human small and large intestine [J]. Histochemistry and Cell Biology,1998,109(3):195-202
    [68]Hagger R, Gharaie S, Finlayson C, et al. Regional and transmural density of interstitial cells of Cajal in human colon and rectum [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,1998,275(6):1309-1316
    [69]Vanderwinden JM, Verslijpe M, Gillard K, et al. Distribution of interstitial cells of Cajal in normal human intestine, duodenum and in megaduodenum [J]. Gastroenterology,1999,116(4): 1507-1510
    [70]Faussonepellegrini MS, Pantalone D, Cortesini C. An ultrastructural-study of the interstitial-cells of cajal of the human stomach [J]. Journal of Submicroscopic Cytology and Pathology,1989,21(3):439-460
    [71]Christensen J, Rick GA, Lowe LS. Distributions of interstitial-cells of cajal in stomach and colon of cat, dog, ferret, opossum, rat, guinea-pig and rabbit [J]. Journal of the Autonomic Nervous System,1992,37(1):47-56
    [72]Rumessen JJ, Mikkelsen HB, Thuneberg L. Ultrastructure of interstitial-cells of cajal associated with deep muscular plexus of human small-intestine [J]. Gastroenterology,1992,102(1):56-68
    [73]Rumessen JJ, Mikkelsen HB, Qvortrup K, et al. Ultrastructure of interstitial cells of Cajal in circular muscle of human small intestine [J]. Gastroenterology,1993,104(2):343-350
    [74]Faussonepellegrini MS, Pantalone D, Cortesini C. Smooth muscle cells, interstitial cells of Cajal and myenteric plexus interrelationships in the human colon [J]. Acta Anatomica,1990, 139(1):31-44
    [75]Faussonepellegrini MS, Cortesini C, Pantalone D. Neuromuscular structures specific to the submucosal border of the human colonic circular muscle layer [J]. Canadian Journal of Physiology and Pharmacology,1990,68(11):1437-1446
    [76]Rumessen JJ, Peters S, Thuneberg L. Light microscopic and electron-microscopic studies of interstitial-cells of cajal and muscle-cells at the submucosal border of human colon [J]. Laboratory Investigation,1993,68(4):481-495
    [77]Christensen J, Rick GA, Lowe LS. Distributions of interstitial cells of Cajal in stomach and colon of cat, dog, ferret, opossum,rat, guinea pig and rabbit [J]. Journal of the Autonomic Nervous System,1992,37(1):47-56
    [78]Lemmon MA, Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases [J]. Cell,2010, 141(7):1117-1134
    [79]Satake M, Hamada T, Eibl G, et al. Pancreatic transdifferentiation induced by signal transduction system of c-kit receptor tyrosine kinase and its ligand stem cell factor [J]. Gastroenterology,2008,134(4):287-287
    [80]Fantl WJ, Johnson DE, Williams LT. Signaling by receptor tyrosine kinases [J]. Annual Review of Biochemistry,1993,62(4):453-481
    [81]Schlessinger J. Signal-transduction by receptors with protein-tyrosine kinase-activity [M]. 1993:39-48
    [82]Ashman LK. The biology of stem cell factor and its receptor C-kit [J]. International Journal of Biochemistry & Cell Biology,1999,31(10):1037-1051
    [83]Kubota Y, Kawa Y, Ono H, et al. The role of stem cell factor in the c-Kit expression and melanogenesis of cultured mouse neural crest cells. In:Hori YHVJNJ ed., International Congress Series; Melanogenesis and malignant melanoma:Biochemistry, cell biology, molecular biology, pathophysiology, diagnosis and treatment 1996:17-24
    [84]Epperson A, Hatton WJ, Callaghan B, et al. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal [J]. American Journal of Physiology-Cell Physiology, 2000,279(2):529-539
    [85]Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of cajal:Origin, kit dependence and neuronal and nonneuronal sources of kit ligand [J]. Journal of Neuroscience Research,2000,59(3):384-401
    [86]Beckett EAH, Ro S, Bayguinov Y, et al. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract [J]. Developmental Dynamics,2007,236(1):60-72
    [87]Fintl C, Pearson GT, Ricketts SW, et al. The development and distribution of the interstitial cells of Cajal in the intestine of the equine fetus and neonate [J]. Journal of anatomy,2004,205(1): 35-44
    [88]Kluppel M, Huizinga JD, Malysz J, et al. Developmental origin and kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine [J]. Developmental Dynamics, 1998,211(1):60-71
    [89]Radenkovic G. Two patterns of development of interstitial cells of Cajal in the human duodenum [J]. Journal of Cellular and Molecular Medicine,2012,16(1):185-192
    [90]Radenkovic G, Savic V, Mitic D, et al. Development of c-kit immunopositive interstitial cells of Cajal in the human stomach [J]. Journal of Cellular and Molecular Medicine,2010,14(5): 1125-1134
    [91]Torihashi S, Ward SM, Sanders KM. Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine [J]. Gastroenterology,1997,112(1):144-155
    [92]Ward SM, Harney SC, Bayguinov JR, et al. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis [J]. Journal of Physiology-London,1997,505(1):241-258
    [93]Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract [J]. Cell and Tissue Research,2005, 319(3):367-382
    [94]Ward SM, Burns AJ, Torihashi S, et al. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants [J]. American Journal of Physiology-Cell Physiology, 1995,269(6):C1577-C1585
    [95]Mikkelsen HB, Malysz J, Huizinga JD, et al. Action potential generation, Kit receptor immunohistochemistry and morphology of steel-Dickie (S1/S1(d)) mutant mouse small intestine [J]. Neurogastroenterology and Motility,1998,10(1):11-26
    [96]Brannan CI, Lyman SD, Williams DE, et al. Steel-dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains [J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(11):4671-4674
    [97]Flanagan JG, Chan DC, Leder P. Transmembrane form of the kit ligand growth-factor is determined by alternative splicing and is missing in the si(d) mutant [J]. Cell,1991,64(5): 1025-1035
    [98]Ward SM, Ordog T, Bayguinov JR, et al. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves [J]. Gastroenterology,1999,117(3):584-594
    [99]Kenny SE, Connell G, Woodward MN, et al. Ontogeny of interstitial cells of cajal in the human intestine [J]. Journal of Pediatric Surgery,1999,34(8):1241-1247
    [100]Lecoin L, Gabella G, LeDouarin N. Origin of the c-kit-positive interstitial cells in the avian bowel [J]. Development,1996,122(3):725-733
    [101]Young HM, Ciampoli D, Southwell BR, et al. Origin of interstitial cells of Cajal mouse intestine [J]. Developmental Biology,1996,180(1):97-107
    [102]Huizinga JD, Robinson TL, Thomsen L. The search for the origin of rhythmicity in intestinal contraction; from tissue to single cells [J]. Neurogastroenterology and Motility,2000,12(1):3-9
    [103]Thomsen L, Robinson TL, Lee JCF, et al. Interstitial cells of Cajal generate a rhythmic pacemaker current [J]. Nature Medicine,1998,4(7):848-851
    [104]Ward SM, Beckett EAH, Wang XY, et al. Interstitial cells of cajal mediate cholinergic neurotransmission from enteric motor neurons [J]. Journal of Neuroscience,2000,20(4): 1393-1403
    [105]Wang XY, Sanders KM, Ward SM. Intimate relationship between interstitial cells of Cajal and enteric nerves in the guinea-pig small intestine [J]. Cell and Tissue Research,1999,295(2): 247-256
    [106]Burns AJ, Lomax AEJ, Torihashi S, et al. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach [J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(21):12008-12013
    [107]Ward SM, Morris G, Reese L, et al. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters [J]. Gastroenterology,1998, 115(2):314-329
    [108]Powell DW, Mifflin RC, Valentich JD, et al. Myofibroblasts. Ⅱ. Intestinal subepithelial myofibroblasts [J]. American Journal of Physiology-Cell Physiology,1999,277(2):C183-C201
    [109]Sanders KM, Koh SD, Ward SM. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annual Review of Physiology 2006:307-343
    [110]Sanders KM, Ordog T, Koh SD, et al. Development and plasticity of interstitial cells of Cajal [J]. Neurogastroenterology and Motility,1999,11(5):311-338
    [111]Nakagawa T, Misawa H, Nakajima Y, et al. Absence of peristalsis in the ileum of W/W-V mutant mice that are selectively deficient in myenteric interstitial cells of Cajal [J]. Journal of Smooth Muscle Research,2005,41(3):141-151
    [112]Seki K, Komuro T. Distribution of interstitial cells of Cajal and gap junction protein, Cx 43 in the stomach of wild-type and W/W-v mutant mice [J]. Anatomy and Embryology,2002, 206(1-2):57-65
    [113]Seki K, Zhou DS, Komuro T. Immunohistochemical study of the c-kit expressing cells and connexin 43 in the guinea-pig digestive tract [J]. Journal of the Autonomic Nervous System, 1998,68(3):182-187
    [114]Nemeth L, Maddur S, Puri P. Immunolocalization of gap junction protein, connexion-43, in the interstitial cells of Cajal of the normal and Hirschsprung's disease bowel [J]. Pediatrics,1999, 104(3):766-767
    [115]贾后军,刘宝华,童卫东等.Balb/c小鼠小肠Cajal间质细胞形态学特征及慢波活动的研究[J].中国现代医学杂志,2006,16(15):2241-2244
    [116]李卫东,张书征,连至诚.脾虚大鼠结肠电及动力基本功能单位病理改变研究[J].北京中医药大学学报,2005,28(4):49-51
    [117]Liu LWC, Thuneberg L, Huizinga JD. Selective lesioning of interstitial-cells of cajal by methylene-blue and light leads to loss of slow waves [J]. American Journal of Physiology,1994, 266(3):485-496
    [118]Dickens EJ, Edwards FR, Hirst GDS. Selective knockout of intramuscular interstitial cells reveals their role in the generation of slow waves in mouse stomach [J]. Journal of Physiology-London,2001,531(3):827-833
    [119]Ward SM, Dixon RE, de Faoite A, et al. Voltage-dependent calcium entry underlies propagation of slow waves in canine gastric antrum [J]. Journal of Physiology-London,2004,561(3): 793-810
    [120]Yanagida H, Yanase H, Sanders KM, et al. Intestinal surgical resection disrupts electrical rhythmicity, neural responses, and interstitial cell networks [J]. Gastroenterology,2004,127(6): 1748-1759
    [121]Sanders K. Role of interstitial cells of Cajal in health and disease of the GI tract [J]. Neurogastroenterology and Motility,2007,19:4-4
    [122]Wouters MM, Farrugia G, Schemann M.5-HT receptors on interstitial cells of Cajal, smooth muscle and enteric nerves [J]. Neurogastroenterology and Motility,2007,19:5-12
    [123]Beckett EAH, McGeough CA, Sanders KM, et al. Pacing of interstitial cells of Cajal in the murine gastric antrum:neurally mediated and direct stimulation [J]. Journal of Physiology-London,2003,553(2):545-559
    [124]Forrest AS, Ordog T, Sanders KM. Neural regulation of slow-wave frequency in the murine gastric antrum [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2006, 290(3):486-495
    [125]Iino S, Horiguchi K. Interstitial cells of Cajal are involved in neurotransmission in the gastrointestinal tract [J]. Acta Histochemica Et Cytochemica,2006,39(6):145-153
    [126]Reynhout JK, Duke GE. Identification of interstitial cells of Cajal in the digestive tract of turkeys (Meleagris gallopavo) [J]. Journal of Experimental Zoology,1999,283(4-5):426-440
    [127]Imaizumi M, Hama K. An electron microscopic study on interstitial cells of gizzard in love-bird [J]. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie,1969,97(3):351-356
    [128]Reedy MV, Johnson RL, Erickson CA. The expression patterns of c-kit and SI in chicken embryos suggest unexpected roles for these genes in somite and limb development [J]. Gene Expression Patterns,2003,3(1):53-58
    [129]Junquera C, Martinez-Ciriano C, Castiella T, et al. Intrinsic Innervation of a Reptilian Esophagus Podarcis hispanica [J]. Neurochemical research,1998,23(4):493-504
    [130]Junquera C, Martinez Ciriano C, Castiella T, et al. Enteric plexus and interstitial cells of Cajal, Interrelationship in the stomach of Podarcis hispanica (Reptilia). An ultrastructural study [J]. 2001,29(4):591-598
    [131]包慧君,王帅,刘仪等.Cajal间质细胞在中华鳖肠道的分布差异和超微特征[J].水生生物学报,2012,36(2):368-374
    [132]Miyamoto-Kikuta S, Komuro T. Ultrastructural observations of the tunica muscularis in the small intestine of Xenopus laevis, with special reference to the interstitial cells of Cajal [J]. Cell and Tissue Research,2007,328(2):271-279
    [133]Huizinga JD. Neural injury, repair, and adaptation in the GI tract IV. Pathophysiology of GI motility related to interstitial cells of Cajal [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,1998,275(3):381-386
    [134]De Ceulaer K, Van Ginneken C, Philips W, et al. Interstitial cells of Cajal and their role in veterinary gastrointestinal pathologies [J]. Anatomia, histologia, embryologia,2007,36(4): 300-310
    [135]高颖,曲政,王磊等.Cajal间质细胞在先天性巨结肠分布的研究[J].中国现代普通外科进展,2008,11(4):317-320
    [136]Rolle U, Piotrowska AP, Nemeth L, et al. Altered distribution of interstitial cells of Cajal in Hirschsprung disease [J]. Archives of Pathology & Laboratory Medicine,2002,126(8):928-933
    [137]张娟,王维林,张志波等.Cajal间质细胞和缝隙连接蛋白43在先天性巨结肠中的表达[J].中国医科大学学报,2008,37(2):227-229
    [138]Yang Y, Hou Y, Zhao X, et al. Distribution of connexin 43 and interstitial cells of Cajal in bowels of children with Hirschsprung's disease [J]. Zhongguo dang dai er ke za zhi= Chinese journal of contemporary pediatrics,2009,11(3):213-216
    [139]张亚萍,张宽学.糖尿病大鼠肠道Cajal间质细胞结构变化的研究[J].中华内科杂志,2002,41(5):310-312
    [140]龙庆林,房殿春,史洪涛等.糖尿病大鼠胃窦SCF-Kit信号改变及其对Cajal间质细胞的影响[J].第三军医大学学报,2007,29(2):141-143
    [141]张晓艳,谢鹏雁.食管肠神经系统调控的研究进展[J].世界华人消化杂志,2009,17(8):790-797
    [142]Rumessen J. Ultrastructure of interstitial cells of Cajal at the colonic submuscular border in patients with ulcerative colitis [J]. Gastroenterology,1996,111(6):1447-1455
    [143]Chan J. Mesenchymal tumors of the gastrointestinal tract:a paradise for acronyms (STUMP, GIST, GANT, and now GIPACT), implication of c-kit in genesis, and yet another of the many emerging roles of the interstitial cell of Cajal in the pathogenesis of gastrointestinal diseases? [J]. Advances in anatomic pathology,1999,6(1):19-26
    [144]项一宁,高冬霞,王玉萍等.胃肠道间质瘤诊断中CD117表达检测的标准化及其免疫组织化学技术[J].中华病理学杂志,2005,34(1):50-52
    [145]胡晔东,林琳.Cajal间质细胞与慢传输型便秘[J].国外医学:内科学分册,2004,31(11):503-506
    [1]Gariepy CE. Developmental disorders of the enteric nervous system:Genetic and molecular bases [J]. Journal of Pediatric Gastroenterology and Nutrition,2004,39(1):5-11
    [2]Wood JD, Alpers DH, Andrews PLR. Fundamentals of neurogastroenterology [J]. Gut,1999, 45(2):1006-1016
    [3]Gershon MD. The enteric nervous system:a second brain [J]. Hospital practice (1995),1999, 34(7):31
    [4]Gershon MD. Nerves, reflexes, and the enteric nervous system-Pathogenesis of the irritable bowel syndrome [J]. Journal of Clinical Gastroenterology,2005,39(4):184-193
    [5]谷成明.胃肠动力研究进展[J].世界医学杂志,1999,3(7):82-85
    [6]Bagyanszki M, Roman V, Fekete E. Quantitative Distribution of NADPH-diaphorase-positive Myenteric Neurons in Different Segments of the Developing Chicken Small Intestine and Colon [J]. The Histochemical Journal,2000,32(11):679-684
    [7]Maifrino LBM, Prates JC, DeSouza RR, et al. Morphometry and acetylcholinesterase activity of the myenteric plexus of the wild mouse Calomys callosus [J]. Brazilian Journal of Medical and Biological Research,1997,30(5):627-632
    [8]Phillips RJ, Hargrave SL, Rhodes BS, et al. Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers [J]. Journal of Neuroscience Methods,2004, 133(1-2):99-107
    [9]Bornstein JC, Costa M, Grider JR. Enteric motor and interneuronal circuits controlling motility [J]. Neurogastroenterology and Motility,2004,16(3):34-38
    [10]Scheuermann DW, Stach W, Timmermans JP, et al. Neuron-specific enolase and s-100 protein immunohistochemistry for defining the structure and topographical relationship of the different enteric nerve plexuses in the small-intestine of the pig [J]. Cell and Tissue Research,1989, 256(1):65-75
    [11]Song ZM, Brookes SJH, Costa M. Identification of myenteric neurons which project to the mucosa of the guinea-pig small-intestine [J]. Neuroscience Letters,1991,129(2):294-298
    [12]Neunlist M, Schemann M. Projections and neurochemical coding of myenteric neurons innervating the mucosa of the guinea pig proximal colon [J]. Cell and Tissue Research,1997, 287(1):119-125
    [13]吴瑞炜,方圣云,刘威琴.人小肠粘膜内神经元的组织学与组织化学观察[J].中国组织化学与细胞化学杂志,1993,2(4):291-296
    [14]Bates MD. Development of the enteric nervous system [J]. Clinics in Perinatology,2002,29(1): 97-102
    [15]Wood JD. Effects of bacteria on the enteric nervous system-Implications for the irritable bowel syndrome [J]. Journal of Clinical Gastroenterology,2007,41(5):7-19
    [16]Turner DJ, Martin PC, Rao JN, et al. Substance P regulates migration in rat intestinal epithelial cells [J]. Annals of Surgery,2007,245(3):408-414
    [17]雷治海,刘英.鸡食管副交感节前神经元和感觉神经元的定位[J].南京农业大学学报,1993,16(1):84-90
    [18]李珊,方秀才.肠神经调控的分泌功能及其在功能性肠病发病中的作用[J].中华消化杂志,2009,28(11):784-786
    [19]Brokhman Ⅰ, Arntfield M, Smukler S, et al. Dual embryonic origin of the mammalian enteric nervous system [J]. Society for Neuroscience Abstract Viewer and Itinerary Planner,2011, 41(2):509-511
    [20]Kulkarni S, Becker L, Tiwari G, et al. Gene Expression Analysis of the Enteric Nervous System in Germ Free Mice [J]. Gastroenterology,2011,140(5):522-522
    [21]Laranjeira C, Pachnis V. Enteric nervous system development:Recent progress and future challenges [J]. Autonomic Neuroscience-Basic & Clinical,2009,151(1):61-69
    [22]Miura H. Development of automatic profile and shape control-system in hot strip mill.2. development of automatic thickness and shape control-system in hot strip mill [J]. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,1986,72(12):1223-1223
    [23]Metzger M, Wallace AS, Schaefer KH, et al. Development of the mucosal plexus of the human enteric nervous system [J]. Neurogastroenterology and Motility,2009,21(2):1011-1014
    [24]Anderson RB, Newgreen DF, Young HM. Neural crest and the development of the enteric nervous system. In:Saintleanne JP ed., Neural Crest Induction and Differentiation 2006(3): 181-196
    [25]Martinez L, Aras-Lopez R, Lancha S, et al. Abnormal development of the enteric nervous system in rat embryos and fetuses with congenital diaphragmatic hernia [J]. Pediatric Surgery International,2011,27(2):165-173
    [26]Zhang D, Brinas IM, Binder BJ, et al. Neural crest regionalisation for enteric nervous system formation:Implications for Hirschsprung's disease and stem cell therapy [J]. Developmental Biology,2010,339(2):280-294
    [27]Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel-development of the enteric nervous-system [J]. Journal of Neurobiology,1993,24(2):199-214
    [28]Burns AJ, LeDouarin NM. Colonisation of the avian hindgut by neural crest-derived cells occurs along two migration fronts [J]. Gastroenterology,1997,112(4):863-863
    [29]Pomeranz HD, Sherman DL, Smalheiser NR, et al. Expression of a neurally related laminin binding-protein by neural crest-derived cells that colonize the gut-relationship to the formation of enteric ganglia [J]. Journal of Comparative Neurology,1991,313(4):625-642
    [30]Tarn PKH, Lister J. Development profile of neuron-specific enolase in human gut and its implications in hirschsprungs-disease [J]. Gastroenterology,1986,90(6):1901-1906
    [31]Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo [J]. Journal of embryology and experimental morphology,1973,30(1):31-48
    [32]Gabella G. Fall in the number of myenteric neurons in aging guinea-pigs [J]. Gastroenterology, 1989,96(6):1487-1493
    [33]Marcal Natali MR, Molinari SL, Valentini LC, et al. Morphoquantitative evaluation of the duodenal myenteric neuronal population in rats fed with hypoproteic ration [J]. Biocell,2005, 29(1):39-46
    [34]Phillips RJ, Powley TL. As the gut ages:Timetables for aging of innervation vary by organ in the Fischer 344 rat [J]. Journal of Comparative Neurology,2001,434(3):358-377
    [35]刘学志.胃肠神经系统与胃肠动力药物[J].中华腹部疾病杂志,2004,4(006):465-467
    [36]龙庆林,王振华.氮能神经递质和胆碱能神经递质对大鼠胃电节律的影响[J].重庆医学,2003,32(9):1155-1157
    [37]童卫东,张胜本,张连阳等.慢传输型便密肠神经系统一氧化氮合酶和P物质的分布意义[J].世界华人消化道杂志,1998,23(5):192-196
    [38]范少光,丁桂凤.神经内分泌与免疫系统之间相互作用的介导物质:共用的生物学语言[J].生理科学进展,1995,26(2):175-183
    [39]朱金照.,张志坚.,许其增.肝硬化大鼠胃肠道胆碱能神经分布的变化[J].解放军医学杂志,2005,30(5):391-393
    [40]Harrington AM, Hutson JM, Southwell BR. Cholinergic neurotransmission and muscarinic receptors in the enteric nervous system [J]. Progress in Histochemistry and Cytochemistry,2010, 44(4):173-202
    [41]Gao B, Feng TC, Feng SL, et al. Quantitative Enzymohistochemical Studies of Small Intestines of Diabetic Rats and Chinese Medicinal Herbs Interposition [J]. Diabetes,2009,58(4):644-644
    [42]Shi AD, Huang L, Lu CJ, et al. Synthesis, biological evaluation and molecular modeling of novel triazole-containing berberine derivatives as acetylcholinesterase and beta-amyloid aggregation inhibitors [J]. Bioorganic & Medicinal Chemistry,2011,19(7):2298-2305
    [43]Zaitseva OV, Kuznetsova TV. Distribution of acetylcholinesterase activity in the digestive system of the gastropod molluscs Littorina littorea and Achatina fulica [J]. Morfologiia,2008, 133(1):55-59
    [44]James AN, Ryan JP, Crowell MD, et al. Regional gastric contractility alterations in a diabetic gastroparesis mouse model:effects of cholinergic and serotoninergic stimulation [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2004,287(3):612-619
    [45]Li GQ, Kevetter GA, Leonard RB, et al. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells [J]. Neuroscience,2007,146(1): 384-402
    [46]Preiksaitis HG, Krysiak PS, Chrones T, et al. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle [J]. Journal of Pharmacology and Experimental Therapeutics,2000,295(3):879-888
    [47]Muinuddin A, Naqvi K, Sheu L, et al. Regional differences in cholinergic regulation of potassium current in feline esophageal circular smooth muscle [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2005,288(6):1233-1240
    [48]Shintani N, Hashimoto H, Tanaka K, et al. Amphetamine-induced attenuation of hyperactivity and prepulse inhibition deficits in mice lacking PACAP [J]. Journal of Pharmacological Sciences,2006,101(5):113-113
    [49]Woolley ML, Carter HJ, Gartlon JE, et al. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M(4) receptor knockout mice and attenuated in muscarinic M(1) receptor knockout mice [J]. European Journal of Pharmacology,2009,603(1-3):147-149
    [50]Maifrino LBM, Liberti EA, Watanabe IS, et al. Morphometry and acetylcholinesterase activity of the myenteric neurons of the mouse colon in the chronic phase of experimental Trypanosoma cruzi infection [J]. American Journal of Tropical Medicine and Hygiene,1999,60(5):721-725
    [51]Dhall U, Burnstock G. Distribution of serotonin-like immunoreactive nerves in major cerebral-arteries of rabbit-an immunohistochemical study [J]. Journal of Histochemistry & Cytochemistry,1989,37(9):1383-1386
    [52]Scholtz CL, Vowles G. An immunohistochemical study of the distribution of vip, serotonin and somatostatin in the corte in normal, blind and alzheimer subjects [J]. Neuropathology and Applied Neurobiology,1987,13(3):230-230
    [53]Gulubova M, Vlaykova T. Chromogranin A-, serotonin-, synaptophysin-and vascular endothelial growth factor-positive endocrine cells and the prognosis of colorectal cancer:An immunohistochemical and ultrastructural study [J]. Journal of Gastroenterology and Hepatology, 2008,23(10):1574-1585
    [54]Leitinger G, Pabst MA, Kral K. Serotonin-immunoreactive neurones in the visual system of the praying mantis:an immunohistochemical, confocal laser scanning and electron microscopic study [J]. Brain Research,1999,823(1-2):11-23
    [55]Rodriguez-Gomez FJ, Rendon-Unceta MC, Sarasquete C, et al. Distribution of serotonin in the brain of the Senegalese sole, Solea senegalensis:an immunohistochemical study [J]. Journal of Chemical Neuroanatomy,2000,18(3):103-115
    [56]Nada O, Toyohara T. An immunohistochemical study of serotonin-containing nerves in the colon of rats [J]. Histochemistry,1987,86(3):229-232
    [57]Keszthelyi D, Troost FJ, Jonkers DM, et al. Does acute tryptophan depletion affect peripheral serotonin metabolism in the intestine? [J]. The American journal of clinical nutrition,2012, 95(3):603-608
    [58]Liu H-N, Ohya S, Nishizawa Y, et al. Serotonin Augments Gut Pacemaker Activity via 5-HT(3) Receptors [J]. Plos One,2011,6(9):151-154
    [59]Nakamura Y, Ishida Y, Yamada T, et al. Anticancer drug irinotecan inhibits homomeric 5-HT(3A) and heteromeric 5-HT(3AB) receptor responses [J]. Biochemical and Biophysical Research Communications,2011,415(2):416-420
    [60]Lychkova AE. Serotonin regulation of motor function of the small intestine [J]. Eksperimental'nai□a i klinicheskai□a gastroenterologii□a= Experimental & clinical gastroenterology,2011, (3):130-135
    [61]Balemba OB, Semuguruka WD, Hay-Schmidt A, et al. Vasoactive intestinal peptide and substance P-like immunoreactivities in the enteric nervous system of the pig correlate with the severity of pathological changes induced by Schistosoma japonicum [J]. International Journal for Parasitology,2001,31(13):1503-1514
    [62]Koon H-W, Zhao D, Xu H, et al. Substance p-mediated expression of the pro-angiogenic factor CCN1 modulates the course of colitis [J]. American Journal of Pathology,2008,173(2): 400-410
    [63]Arciszewski MB, Nowakowski Z, Wasowicz K, et al. Expression of vasoactive intestinal polypeptide, substance P and neuropeptide Y in jejunal enteric nerves is altered in rabbits suffering from long term Trichinella spiralis infection:an immunohistochemical study [J]. Veterinarni Medicina,2009,54(12):589-597
    [64]Kasparek MS, Fatima J, Iqbal CW, et al. Age-related changes in functional NANC innervation with VIP and substance P in the jejunum of Lewis rats [J]. Autonomic Neuroscience-Basic & Clinical,2009,151(2):127-134
    [65]Lazarov NE, Itzev DE, Usunoff KG, et al. Age-related changes in substance P-immunoreactive nerve structures of the rat recto-anal region [J]. Central European Journal of Medicine,2010, 5(3):358-364
    [66]Mitsui R. Immunohistochemical analysis of substance P-containing neurons in rat small intestine [J]. Cell and Tissue Research,2011,343(2):331-341
    [67]刘学志.胃肠神经系统与胃肠动力药物[J].中华腹部疾病杂志,2004,4(6):465-467
    [68]Vera PL, Wang X, Meyer-Siegler KL. Neural control of substance P induced up-regulation and release of macrophage migration inhibitory factor in the rat bladder [J]. Journal of Urology, 2008,180(1):373-378
    [69]梅盛平,蒋芬,胡伊乐等.缺血再灌注对小鼠肠神经丛nNOS和iNOS表达的影响[J].中国组织化学与细胞化学杂志,2006,15(5):542-546
    [70]王刚石,徐光尧.一氧化氮和血管活性肠肽与胃肠运动[J].国外医学生理、 病理科学与临床分册,1997,17(3):261-264
    [71]Rand MJ. Nitrergic transmission:Nitric oxide as a mediator of non-adrenergic, non-cholinergic neuroeffector transmission [J]. Clinical and Experimental Pharmacology and Physiology,1992, 19(3):147-169
    [72]Degiorgio R, Parodi JE, Brecha NC, et al. Nitric oxide producing neurons in the monkey and human digestive system [J]. Journal of Comparative Neurology,1994,342(4):619-627
    [73]Kiechle FL, Malinski T. Nitric-oxide-biochemistry, pathophysiology, and detection [J]. American Journal of Clinical Pathology,1993,100(5):567-575
    [74]Vincent SR. Nitric oxide neurons and neurotransmission [J]. Progress in Neurobiology,2010, 90(2):246-255
    [75]Bult H, Boeckxstaens GE, Pelckmans PA, et al. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter [J]. Nature,1990,345(6):346-347
    [76]Belai A, Schmidt H, Hoyle CHV, et al. Colocalization of nitric-oxide synthase and nadph-diaphorase in the myenteric plexus of the rat gut [J]. Neuroscience Letters,1992, 143(1-2):60-64
    [77]Tay SSW, Moules EW, Burnstock G. Colocalization of nadph-diaphorase with nitric-oxide synthase and vasoactive intestinal polypeptide in newborn pancreatic neurons [J]. Journal of anatomy,1994,184(5):545-552
    [78]Young HM, Furness JB, Shuttleworth CWR, et al. Colocalization of nitric-oxide synthase immunoreactivity and nadph diaphorase staining in neurons of the guinea-pig intestine [J]. Histochemistry,1992,97(4):375-378
    [79]Brookes SJH. Neuronal nitric-oxide in the gut [J]. Journal of Gastroenterology and Hepatology, 1993,8(6):590-603
    [80]El-Salhy M, Sandstrom O, Holmlund F. Age-induced changes in the enteric nervous system in the mouse [J]. Mechanisms of Ageing and Development,1999,107(1):93-103
    [81]Furness JB, Li ZS, Young HM, et al. Nitric-oxide synthase in the enteric nervous-system of the guinea-pig-a quantitative description [J]. Cell and Tissue Research,1994,277(1):139-149
    [82]Cracco C, Filogamo G. Quantitative study of the NADPH-diaphorase positive myenteric neuron of the rat ileum [J]. Neuroscience,1994,61(2):351-359
    [83]Heiman-Pattersoon T, Ryder S, Muthasamy P, et al. Histopathologic Changes of the Enteric Nervous System in ALS [J]. Neurology,2009,72(11):369-369
    [84]Junquera C, Martinez-Ciriano C, Blasco J, et al. Distribution of NADPH diaphorase-positive neurons in the enteric nervous system of the rabbit intestine [J]. Neurochemical Research,1998, 23(10):1233-1240
    [85]Schmidtova K, Kocisova M, Sirot'akova M. Histochemical localization of NADPH-diaphorase in neurons of the pheasant ileum [J]. Acta Histochemica,2002,104(4):423-426
    [86]穆标,王邦茂,刘之武等.一氧化氮能神经调节异常在腹泻型肠易激综合征患者中的作用[J].中华消化杂志,2002,2(2):88-91
    [87]Chino Y, Fujimura M, Kitahama K, et al. Colocalization of NO and VIP in neurons of the submucous plexus in the rat intestine [J]. Peptides,2002,23(12):2245-2250
    [88]Gaumnitz E, Sweet MA, Sengupta A, et al. Nitrinergic and peptidergic innervations and their interrelationships in human colon [J]. Neuropeptides,1995,29(1):1-9
    [89]Singaram C, Sengupta A, Sweet MA, et al. Nitrinergic and peptidergic innervation of the human esophagus [J]. Gut,1994,35(12):1690-1696
    [90]Singaram C, Sengupta A, Sweet MA, et al. Nitrinergic and peptidergic innervation of human esophagus [J]. Gastroenterology,1993,104(4):583-583
    [91]Keranen U, Vanhatalo S, Kiviluoto T, et al. Colocalization of nadph diaphorase reactivity and vasoactive intestinal polypeptide in human colon [J]. Journal of the Autonomic Nervous System, 1995,54(3):177-183
    [92]Bishop AE, Springall DR, Merrett M, et al. Colocalization of nitric-oxide synthase with nadph diaphorase in the human colon. In:Moncada SMMAHJBHEA ed., Biology of Nitric Oxide 2. Enzymology, Biochemistry and Immunology 1992:122-124
    [93]Qu XW, Rozenfeld RA, Huang W, et al. Roles of nitric oxide synthases in platelet-activating factor-induced intestinal necrosis in rats [J]. Critical Care Medicine,1999,27(2):356-364
    [94]Oste M, Van Ginneken CJ, Van Haver ER, et al. The intestinal trophic response to enteral food is reduced in parenterally fed preterm pigs and is associated with more nitrergic neurons [J]. Journal of Nutrition,2005,135(11):2657-2663
    [95]杨英,陈隆典,陈栽容等.一氧化氮合酶抑制剂对实验性大鼠结肠炎疗效的研究[J].胃肠病学,2007,12(1):27-30
    [96]Rodriguez JL, Mullins RJ, Fabian TC, et al. Complement activation mediates intestinal injury after resuscitation from hemorrhagic shock-Discussion [J]. Journal of Trauma-Injury Infection and Critical Care,1999,46(2):232-233
    [97]Spain DA, Fruchterman TM, Matheson PJ, et al. Complement activation mediates intestinal injury after resuscitation from hemorrhagic shock [J]. Journal of Trauma-Injury Infection and Critical Care,1999,46(2):224-232
    [98]Turler A, Kalff JC, Moore BA, et al. Leukocyte-derived inducible nitric oxide synthase mediates murine postoperative ileus [J]. Annals of Surgery,2006,244(2):220-229
    [99]林洪武,黄宗海,厉周等.创伤性休克时重要脏器一氧化氮合酶的变化及意义[J].解放军医学杂志,2003,28(8):684-686
    [100]宋铁山,甘云波,胡松林.大鼠肠缺血后回肠组织内一氧化氮代谢的变化[J].临床消化病杂志,2002,14(3):105-106
    [101]仝巧云,周纳新,罗和生等.慢性应激大鼠结肠粘膜形态学变化及氨基胍的保护作用[J].中国临床康复,2006,10(2):100-103
    [102]Cinar K, Diler A. Immunohistochemical localization of glucagon, substance-P and vasoactive intestinal peptide in gastrointestinal tract mucosa of zander [J]. Journal of Fish Biology,2002, 60(2):319-327
    [103]Grzybowska-Chlebowczyk U, Wos H, Szymanska M, et al. Basal concentration of Substance P (SP) and Vasoactive Intestinal Peptide (VIP) in the blood serum of children with allergic dermatitis [J]. Medycyna wieku rozwojowego,2003,7(1):43-48
    [104]Wilkins BW, Chung LH, Holowatz LA, et al. Vasoactive intestinal peptide and nitric oxide interactions in human skin [J]. Medicine & Science in Sports & Exercise,2003,35(5):55-59
    [105]Liu J, Qin J, Feng Y, et al. Distribution of vasoactive intestinal peptide and substance P messenger ribonucleic acid in intestinal nerve of Remak of chicken [J]. Poultry Science,2009, 88(7):1421-1426
    [106]You SK, Hsu CC, Kim H, et al. Molecular cloning and expression analysis of the turkey vasoactive intestinal peptide receptor [J]. General and Comparative Endocrinology,2001, 124(1):53-65
    [107]Lynn RB, Sankey SL, Chakder S, et al. Colocalization of nadph-diaphorase staining and vip immunoreactivity in neurons in opossum internal anal-sphincter [J]. Digestive Diseases and Sciences,1995,40(4):781-791
    [108]Hauk V, Calafat M, Larocca L, et al. Vasoactive intestinal peptide/vasoactive intestinal peptide receptor relative expression in salivary glands as one endogenous modulator of acinar cell apoptosis in a murine model of Sjogren's syndrome [J]. Clinical and Experimental Immunology, 2011,166(3):309-316
    [109]Li Q, Sarna SK. Vasoactive intestinal peptide:a target and regulator of epigenetic remodeling by neonatal inflammation in rat colon [J]. Neurogastroenterology and Motility,2011,23(1): 8-16
    [110]Ekblad E, Bauer AJ. Role of vasoactive intestinal peptide and inflammatory mediators in enteric neuronal plasticity [J]. Neurogastroenterology and Motility,2004,16(2):123-128
    [111]Onoue S, Endo K, Yajima T, et al. Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide attenuate glutamate-induced nNOS activation and cytotoxicity [J]. Regulatory Peptides,2002,107(1-3):43-47
    [112]Hellstrom PM, Ljung T. Nitrergic inhibition of migrating myoelectric complex in the rat is mediated by vasoactive intestinal peptide [J]. Neurogastroenterology and Motility,1996,8(4): 299-306
    [113]Ljung T, Hellstrom PM. Vasoactive intestinal peptide suppresses migrating myoelectric complex of rat small intestine independent of nitric oxide [J]. Acta Physiologica Scandinavica, 1999,165(2):225-231
    [114]Matsuyama H, Unno T, El-Mahmoudy AM, et al. Peptidergic and nitrergic inhibitory neurotransmissions in the hamster jejunum:Regulation of vasoactive intestinal peptide release by nitric oxide [J]. Neuroscience,2002,110(4):779-788
    [115]Arranz A, Abad C, Juarranz Y, et al. Vasoactive intestinal peptide as a healing mediator in Crohn's disease [J]. Neuroimmunomodulation,2008,15(1):46-53
    [116]Hockerfelt U, Henriksson R, Franzen L, et al. Irradiation induces marked immunohistochemical expression of vasoactive intestinal peptide in colonic mucose of man [J]. Digestive Diseases and Sciences,1999,44(2):393-401
    [117]Jin Y, Sun T. Nursing of vasoactive intestinal peptide-secrating-tumors [J]. Journal of China Medical University,2008,37(3):428-430
    [118]Faussone-Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal [J]. Microscopy Research and Technique,1999,47(4):248-266
    [119]Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of cajal [J]. Archives of Histology and Cytology,1999,62(4):295-316
    [120]Komuro T, Tokui K, Zhou DS. Identification of the interstitial cells of Cajal [J]. Histology and Histopathology,1996,11(3):769-786
    [121]Thuneberg L. Interstitial-cells of cajal-intestinal pacemaker cells [J]. Advances in Anatomy Embryology and Cell Biology,1982,71:1-130
    [122]Wang XY, Sanders KM, Ward SM. Intimate relationship between interstitial cells of Cajal and enteric nerves in the guinea-pig small intestine [J]. Cell and Tissue Research,1999,295(2): 247-256
    [123]Sanders K. Role of interstitial cells of Cajal in health and disease of the GI tract [J]. Neurogastroenterology and Motility,2007,19(1):4-9
    [124]Aranishi H, Kunisawa Y, Komuro T. Characterization of interstitial cells of Cajal in the subserosal layer of the guinea-pig colon [J]. Cell and Tissue Research,2009,335(2):323-329
    [125]Pieri L, Vannucchi MG, Faussone-Pellegrini MS. Histochemical and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut [J]. Journal of Cellular and Molecular Medicine,2008,12(5):1944-1955
    [126]Beckett EAH, McGeough CA, Sanders KM, et al. Pacing of interstitial cells of Cajal in the murine gastric antrum:neurally mediated and direct stimulation [J]. Journal of Physiology-London,2003,553(2):545-559
    [127]Ward SM, McLaren GJ, Sanders KM. Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine [J]. Journal of Physiology-London,2006,573(1):147-159
    [128]Ward SM, Sanders KM. Interstitial cells of Cajal:Primary targets of enteric motor innervation [J]. Anatomical Record,2001,262(1):125-135
    [129]Zhang RX, Wang XY, Chen D, et al. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach [J]. Neurogastroenterology and Motility,2011,23(9):356-371
    [130]Kilic A, Luketich JD, Landreneau RJ, et al. Alterations in the density of interstitial cells of Cajal in achalasia [J]. Digestive Diseases and Sciences,2008,53(6):1488-1492
    [131]Gockel I, Bohl JRE, Eckardt VF, et al. Reduction of interstitial cells of Cajal (ICC) associated with neuronal nitric oxide synthase (n-NOS) in patients with achalasia [J]. American Journal of Gastroenterology,2008,103(4):856-864
    [132]Vannucchi MG. Receptors in interstitial cells of Cajal:Identification and possible physiological roles [J]. Microscopy Research and Technique,1999,47(5):325-335
    [133]Stern CD. The chick:a great model system becomes even greater [J]. Developmental cell,2005, 8(1):9-17
    [134]Fontaine-Perus J, Chanconie M, Polak J, et al. Origin and development of VIP and substance P containing neurons in the embryonic avian gut [J]. Histochemistry and Cell Biology,1981, 71(3):313-323
    [135]Epstein ML, Hudis J, Dahl JL. The development of peptidergic neurons in the foregut of the chick [J]. The Journal of neuroscience,1983,3(12):2431-2447
    [136]Balaskas C, Saffrey MJ, Burnstock G Distribution of NADPH-diaphorase activity in the embryonic chicken gut [J]. Anatomy and Embryology,1995,192(3):239-245
    [137]柳金雄,冯亚玫,张晖等.鸡血管活性肠肽RNA探针制备及其在鸡肠Remak神经的原位杂交反应[J].南京农业大学学报,2007,30(2):111-115
    [138]柳金雄,冯亚梅,张莉等.鸡肠神经胆碱乙酰转换酶和多巴胺羟化酶细胞的免疫组织化学[J].中国兽医学报,2007,27(5):707-709
    [139]Janig W, McLachlan E. Organization of lumbar spinal outflow to distal colon and pelvic organs [J]. Physiological reviews,1987,67(4):1332-1404
    [1]Thuneberg L. Interstitial-cells of cajal-intestinal pacemaker cells [J]. Advances in Anatomy Embryology and Cell Biology,1982,71(2):126-130
    [2]Faussone-Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal [J]. Microscopy Research and Technique,1999,47(4):248-266
    [3]Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of cajal [J]. Archives of Histology and Cytology,1999,62(4):295-316
    [4]Ward SM, Beckett EAH, Wang XY, et al. Interstitial cells of cajal mediate cholinergic neurotransmission from enteric motor neurons [J]. Journal of Neuroscience,2000,20(4): 1393-1403
    [5]Daniel EE. Physiology and pathophysiology of the interstitial cell of Cajal:From bench to bedside-Ⅲ. Interaction of interstitial cells of Cajal with neuromediators:an interim assessment [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2001,281(6): 1329-1332
    [6]Junquera C, Martinez-Ciriano C, Castiella T, et al. Enteric plexus and interstitial cells of Cajal: Interrelationship in the stomach of Podarcis hispanica (Reptilia). An ultrastructural study [J]. Histology and Histopathology,2001,16(3):869-881
    [7]Oberritter Z, Rolle U, Juhasz Z, et al. Altered expression of c-kit-positive cells in the ureterovesical junction after surgically created vesicoureteral reflux [J]. Pediatric Surgery International,2009,25(12):1103-1107
    [8]Popescu LM, Ciontea SM, Cretoiu D. Interstitial Cajal-Iike cells in human uterus and Fallopian tube. In:Elad D, Young RC eds., Reproductive Biomechanics Maiden:Wiley-Blackwell 2007: 139-165
    [9]Hashitani H, Suzuki H. Identification of interstitial cells of Cajal in corporal tissues of the guinea-pig penis [J]. British Journal of Pharmacology,2004,141(2):199-204
    [10]Reynhout JK, Duke GE. Identification of interstitial cells of Cajal in the digestive tract of turkeys (Meleagris gallopavo) [J]. Journal of Experimental Zoology,1999,283(4-5):426-440
    [11]Miyamoto-Kikuta S, Komuro T. Ultrastructural observations of the tunica muscularis in the small intestine of Xenopus laevis, with special reference to the interstitial cells of Cajal [J]. Cell and Tissue Research,2007,328(2):271-279
    [12]Lyford GL, He CL, Soffer E, et al. Pan-colonic decrease in interstitial cells of Cajal in patients with slow transit constipation [J]. Gut,2002,51(4):496-501
    [13]Jain D, Moussa K, Tandon M, et al. Role of interstitial cells of cajal in motility disorders of the bowel [J]. American Journal of Gastroenterology,2003,98(3):618-624
    [14]Imaizumi M, Hama K. An electron microscopic study on interstitial cells of gizzard in love-bird [J]. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie,1969,97(3):351-353
    [15]Lecoin L, Gabella G, LeDouarin N. Origin of the c-kit-positive interstitial cells in the avian bowel [J]. Development,1996,122(3):725-733
    [16]Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract [J]. Gastroenterology,1996,111(2):492-515
    [17]Cunningham RMJ, Larkin P, McCloskey KD. Ultrastructural Properties of Interstitial Cells of Cajal in the Guinea Pig Bladder [J]. Journal of Urology,2011,185(3):1123-1131
    [18]Horiguchi K, Sanders KM, Ward SM. Enteric motor neurons form synaptic-like junctions with interstitial cells of Cajal in the canine gastric antrum [J]. Cell and Tissue Research,2003,311(3): 299-313
    [19]Cserni T, Paran S, Kanyari Z, et al. New insights into the neuromuscular anatomy of the ileocecal valve [J]. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology,2009,292(2):254-261
    [20]lino S, Horiguchi K, Nojyo Y, et al. Interstitial cells of Cajal contain signalling molecules for transduction of nitrergic stimulation in guinea pig caecum [J]. Neurogastroenterology and Motility,2009,21(5):553-563
    [21]Kunisawa Y, Komuro T. Interstitial cells of Cajal associated with the submucosal plexus of the Guinea-pig stomach [J]. Neuroscience Letters,2008,434(3):273-276
    [22]Daniel EE, Wang YF, Cayabyab FS. Role of gap junctions in structural arrangements of interstitial cells of Cajal and canine ileal smooth muscle [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,1998,274(6):1125-1141
    [23]Brooks JCW, Zambreanu L, Godinez A, et al. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging [J]. Neuroimage,2005,27(1): 201-209
    [24]Rumessen JJ, Vanderwinden J-M, Rasmussen H, et al. Ultrastructure of interstitial cells of Cajal in myenteric plexus of human colon [J]. Cell and Tissue Research,2009,337(2):197-212
    [25]Wang XY, Sanders KM, Ward SM. Intimate relationship between interstitial cells of Cajal and enteric nerves in the guinea-pig small intestine [J]. Cell and Tissue Research,1999,295(2): 247-256
    [26]Mikkelsen HB. Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions [J]. Journal of Cellular and Molecular Medicine,2010,14(4):818-832
    [27]Goyal RK, Chaudhury A. Mounting evidence against the role of ICC in neurotransmission to smooth muscle in the gut [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2010,298(1):10-13
    [28]Bassotti G, Battaglia E, Bellone G, et al. Interstitial cells of Cajal, enteric nerves, and glial cells in colonic diverticular disease [J]. Journal of Clinical Pathology,2005,58(9):973-977
    [29]Epperson A, Hatton WJ, Callaghan B, et al. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal [J]. American Journal of Physiology-Cell Physiology, 2000,279(2):529-539
    [30]Thuneberg L, Peters S. Toward a concept of stretch-coupling in smooth muscle. Ⅰ. Anatomy of intestinal segmentation and sleeve contractions [J]. Anatomical Record,2001,262(1):110-124
    [1]Huizinga JD, Thuneberg L, Kluppel M, et al. W/Kit gene required for interstitial-cells of cajal and for intestinal pacemaker activity [J]. Nature,1995,373(2):347-349
    [2]Isozaki K, Hirota S, Nakama A, et al. Disturbed intestinal movement, bile reflux to the stomach, and deficiency of c-kit-expressing cells in ws/ws mutant rats [J]. Gastroenterology,1995,109(2): 456-464
    [3]Han J, Shen WH, Jiang YZ, et al. Distribution, development and proliferation of interstitial cells of Cajal in murine colon:an immunohistochemical study from neonatal to adult life [J]. Histochemistry and Cell Biology,2010,133(2):163-175
    [4]Yun HY, Sung R, Kim YC, et al. Regional Distribution of Interstitial Cells of Cajal (ICC) in Human Stomach [J]. Korean Journal of Physiology & Pharmacology,2010,14(5):317-324
    [5]Kitamura Y, Hirota S, Nishida T. A loss-of-function mutation of c-kit results in depletion of mast cells and interstitial cells of Cajal, while its gain-of-function mutation results in their oncogenesis [J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 2001,477(1-2):165-171
    [6]Sanders KM, Ordog T, Ward SM. Physiology and Pathophysiology of the Interstitial Cells of Cajal:From Bench to Bedside IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2002,282(5):747-756
    [7]Lyford GL, He CL, Soffer E, et al. Pan-colonic decrease in interstitial cells of Cajal in patients with slow transit constipation [J]. Gut,2002,51(4):496-501
    [8]Jain D, Moussa K, Tandon M, et al. Role of interstitial cells of cajal in motility disorders of the bowel [J]. American Journal of Gastroenterology,2003,98(3):618-624
    [9]Vanderwinden JM, Verslijpe M, Gillard K, et al. Distribution of interstitial cells of Cajal in normal human intestine, duodenum and in megaduodenum [J]. Gastroenterology,1999,116(4): 1507-1511
    [10]Romert P, Mikkelsen HB. c-kit immunoreactive interstitial cells of Cajal in the human small and large intestine [J]. Histochemistry and Cell Biology,1998,109(3):195-202
    [11]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method [J]. methods,2001,25(4):402-408
    [12]Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system [J]. Development,1992,116(2):369-375
    [13]Ward SM, Burns AJ, Torihashi S, et al. Mutation of the protooncogene c-kit blocks development of interstitial-cells and electrical rhythmicity in murine intestine [J]. Journal of Physiology-London,1994,480(1):91-97
    [14]Lecoin L, Gabella G, LeDouarin N. Origin of the c-kit-positive interstitial cells in the avian bowel [J]. Development,1996,122(3):725-733
    [15]Kluppel M, Huizinga JD, Malysz J, et al. Developmental origin and kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine [J]. Developmental Dynamics, 1998,211(1):60-71
    [16]Reynhout JK, Duke GE. Identification of interstitial cells of Cajal in the digestive tract of turkeys (Meleagris gallopavo) [J]. Journal of Experimental Zoology,1999,283(4-5):426-440
    [17]Burns AJ, Herbert TM, Ward SM, et al. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry [J]. Cell and Tissue Research, 1997,290(1):11-20
    [18]Hudson NPH, Pearson GT, Kitamura N, et al. An immunohistochemical study of interstitial cells of Cajal (ICC) in the equine gastrointestinal tract [J]. Research in Veterinary Science,1999, 66(3):265-271
    [19]Fintl C, Hudson NPH, Mayhew G, et al. Interstitial cells of Cajal (ICC) in equine colic:an immunohistochemical study of horses with obstructive disorders of the small and large intestines [J]. Equine Veterinary Journal,2004,36(6):474-479
    [20]Fintl C, Pearson GT, Ricketts SW, et al. The development and distribution of the interstitial cells of Cajal in the intestine of the equine fetus and neonate [J]. Journal of Anatomy,2004,205(1): 35-44
    [21]Hudson NPH, Mayhew IG, Kitamura N, et al. Immunohistochemical identification of interstitial cells of Cajal in the equine gastrointestinal tract [J]. Journal of Physiology (Cambridge),1999, 52(1):67-68
    [22]Sanders KM, Koh SD, Ward SM. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annual Review of Physiology 2006(3):307-343
    [23]Sanders KM, Ward SM. Interstitial cells of Cajal:a new perspective on smooth muscle function [J]. Journal of Physiology-London,2006,576(3):721-726
    [24]Mikkelsen HB. Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions [J]. Journal of Cellular and Molecular Medicine,2010,14(4):818-832
    [25]Torihashi S, Horisawa M, Watanabe Y. c-Kit immunoreactive interstitial cells in the human gastrointestinal tract [J]. Journal of the Autonomic Nervous System,1999,75(1):38-50
    [26]Imaizumi M, Hama K. An electron microscopic study on interstitial cells of gizzard in love-bird [J]. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie,1969,97(3):351-354
    [27]Bischoff SC, Kramer S. Human mast cells, bacteria, and intestinal immunity [J]. Immunological Reviews,2007,217:329-337
    [28]Van Nassauw L, Adriaensen D, Timmermans J-P. The bidirectional communication between neurons and mast cells within the gastrointestinal tract [J]. Autonomic Neuroscience-Basic & Clinical,2007,133(1):91-103
    [29]Zarate N, Wang XY, Tougas G, et al. Intramuscular interstitial cells of Cajal associated with mast cells survive nitrergic nerves in achalasia [J]. Neurogastroenterology and Motility,2006, 18(7):556-568
    [30]Rasmussen H, Hansen A, Smedts F, et al. CD34-positive miterstiatial cells of the human detrusor [J]. Apmis,2007,115(11):1260-1266
    [31]Sanders KM, Ordog T, Koh SD, et al. Development and plasticity of interstitial cells of Cajal [J]. Neurogastroenterology and Motility,1999,11(5):311-338
    [32]Ward SM, Gershon MD, Keef K, et al. Interstitial cells of Cajal and electrical activity in ganglionic and aganglionic colons of mice [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2002,283(2):445-456
    [33]Li F, Zhang L, Li CX, et al. Adenovirus-mediated stem cell leukemia gene transfer induces rescue of interstitial cells of Cajal in ICC-Ioss mice [J]. International Journal of Colorectal Disease,2010,25(5):557-566
    [34]Lin L, Xu LM, Zhang W, et al. Roles of stem cell factor on the depletion of interstitial cells of Cajal in the colon of diabetic mice [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2010,298(2):241-247
    [35]Fintl C, Pearson GT, Mayhew IG, et al. Comparative analysis of c-kit gene expression and c-Kit immunoreactivity in horses with and without obstructive intestinal disease [J]. Veterinary Journal,2010,186(1):64-69
    [1]Ashman LK. The biology of stem cell factor and its receptor C-kit [J]. International Journal of Biochemistry & Cell Biology,1999,31(10):1037-1051
    [2]Beckett EAH, Ro S, Bayguinov Y, et al. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract [J]. Developmental Dynamics,2007,236(1):60-72
    [3]龙庆林,房殿春,史洪涛等.糖尿病大鼠胃窦SCF-Kit信号改变及其对Cajal间质细胞的影响[J].第三军医大学学报,2007,29(2):141-143
    [4]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method [J]. methods,2001,25(4):402-408
    [5]Reynhout JK, Duke GE. Identification of interstitial cells of Cajal in the digestive tract of turkeys (Meleagris gallopavo) [J]. Journal of Experimental Zoology,1999,283(4-5):426-440
    [6]Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract [J]. Gastroenterology,1996,111(2):492-515
    [7]Torihashi S, Ward SM, Sanders KM. Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine [J]. Gastroenterology,1997,112(1):144-155
    [8]Kapur RP. Hirschsprung disease and other enteric dysganglionoses [J]. Critical Reviews in Clinical Laboratory Sciences,1999,36(3):225-273
    [9]Piotrowska AP, Solari V, Puri P. Distribution of interstitial cells of Cajal in the internal anal sphincter of patients with internal anal sphincter achalasia and Hirschsprung disease [J]. Archives of Pathology & Laboratory Medicine,2003,127(9):1192-1195
    [10]Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal in human gut and gastrointestinal disease [J]. Microscopy Research and Technique,1999,47(5):344-360
    [11]Rasmussen H, Hansen A, Smedts F, et al. CD34-positive miterstiatial cells of the human detrusor [J]. Apmis,2007,115(11):1260-1266
    [12]Fantl WJ, Johnson DE, Williams LT. Signaling by receptor tyrosine kinases [J]. Annual Review of Biochemistry,1993,62(4):453-481
    [13]Lemmon MA, Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases [J]. Cell,2010, 141(7):1117-1134
    [14]Schlessinger J. Signal-transduction by receptors with protein-tyrosine kinase-activity [M]. 1993:39-48
    [15]Satake M, Hamada T, Eibl G, et al. Pancreatic transdifferentiation induced by signal transduction system of c-kit receptor tyrosine kinase and its ligand stem cell factor [J]. Gastroenterology,2008,134(4):287-287
    [16]Kubota Y, Kawa Y, Ono H, et al. The role of stem cell factor in the c-Kit expression and melanogenesis of cultured mouse neural crest cells. In:Hori YHVJNJ ed., International Congress Series; Melanogenesis and malignant melanoma:Biochemistry, cell biology, molecular biology, pathophysiology, diagnosis and treatment 1996:17-24
    [17]Smith MA, Pallister CJ, Smith JG. Stem cell factor:Biology and relevance to clinical practice [J].Acta Haematologica,2001,105(3):143-150
    [18]Ward SM, Burns AJ, Torihashi S, et al. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants [J]. American Journal of Physiology-Cell Physiology, 1995,269(6):1577-1585
    [19]Mikkelsen HB, Malysz J, Huizinga JD, et al. Action potential generation, Kit receptor immunohistochemistry and morphology of steel-Dickie (S1/S1(d)) mutant mouse small intestine [J]. Neurogastroenterology and Motility,1998,10(1):11-26
    [20]Brannan CI, Lyman SD, Williams DE, et al. Steel-dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains [J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(11):4671-4674
    [21]Flanagan JG, Chan DC, Leder P. Transmembrane form of the kit ligand growth-factor is determined by alternative splicing and is missing in the si(d) mutant [J]. Cell,1991,64(5): 1025-1035
    [22]Mei F, Han J, Huang Y, et al. Plasticity of Interstitial Cells of Cajal:A Study in the Small Intestine of Adult Guinea Pigs [J]. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology,2009,292(7):985-993
    [23]Biers SM, Reynard JM, Doore T, et al. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor [J]. Bju International,2006,97(3):612-616
    [24]Nakahara M, Isozaki K, Vanderwinden JM, et al. Dose-dependent and time-limited proliferation of cultured murine interstitial cells of Cajal in response to stem cell factor [J]. Life Sciences, 2002,70(20):2367-2376
    [25]蔡志强,丁国富,李云飞等.体外Cajal样细胞c-kit基因mRNA在高糖环境下表达变化及意义[J].农垦医学,2010,(1):1-4
    [26]Ward SM, Ordog T, Bayguinov JR, et al. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves [J]. Gastroenterology,1999,117(3):584-594
    [27]Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of cajal:Origin, kit dependence and neuronal and nonneuronal sources of kit ligand [J]. Journal of Neuroscience Research,2000,59(3):384-401
    [28]Kluppel M, Huizinga JD, Malysz J, et al. Developmental origin and kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine [J]. Developmental Dynamics, 1998,211(1):60-71
    [29]Ward SM, Harney SC, Bayguinov JR, et al. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis [J]. Journal of Physiology-London,1997,505(1):241-258
    [30]Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract [J]. Cell and Tissue Research,2005, 319(3):367-382
    [31]Torihashi S, Nishi K, Tokutomi Y, et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of Cajal to a smooth muscle phenotype [J]. Gastroenterology,1999,117(1): 140-148
    [32]Torihashi S, Ward SM, Nishikawa SI, et al. C-kit-dependent development of interstitial-cells and electrical-activity in the murine gastrointestinal-tract [J]. Cell and Tissue Research,1995, 280(1):97-111
    [33]Ward SM, Hwang SJ, Bayguinov Y, et al. Development and maintenance of interstitial cells of Cajal networks in health and disease [J]. Neurogastroenterology and Motility,2009,21(2): 154-158
    [1]Newgreen D, Young HM. Enteric nervous system:Development and developmental disturbances-Part 1 [J]. Pediatric and Developmental Pathology,2002,5(3):224-247
    [2]Hagger R, Finlayson C, Jeffrey I, et al. Role of the interstitial cells of Cajal in the control of gut motility [J]. British Journal of Surgery,1997,84(4):445-450
    [3]Faussone-Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal [J]. Microscopy Research and Technique,1999,47(4):248-266
    [4]Burns AJ, Lomax AEJ, Torihashi S, et al. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach [J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(21):12008-12013
    [5]Ward SM, McLaren GJ, Sanders KM. Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine [J]. Journal of Physiology-London,2006,573(1):147-159
    [6]Bates MD. Development of the enteric nervous system [J]. Clinics in Perinatology,2002,29(1): 97-101
    [7]Burns AJ, Le Douarin NM. Enteric nervous system development:Analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras [J]. Anatomical Record,2001,262(1):16-28
    [8]Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine [J]. Journal of the Autonomic Nervous System, 1996,61(2):169-174
    [9]Popescu LM, Ciontea SM, Cretoiu D, et al. Novel type of interstitial cell (Cajal-like) in human fallopian tube [J]. Journal of Cellular and Molecular Medicine,2005,9(2):479-523
    [10]Sanders KM, Ordog T, Ward SM. Physiology and Pathophysiology of the Interstitial Cells of Cajal:From Bench to Bedside IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2002,282(5):747-756
    [11]Beckett EAH, McGeough CA, Sanders KM, et al. Pacing of interstitial cells of Cajal in the murine gastric antrum:neurally mediated and direct stimulation [J]. Journal of Physiology-London,2003,553(2):545-559
    [12]Ward SM, Sanders KM. Interstitial cells of Cajal:Primary targets of enteric motor innervation [J]. Anatomical Record,2001,262(1):125-135
    [13]Zhang RX, Wang XY, Chen D, et al. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach [J]. Neurogastroenterology and Motility,2011,23(9):356-371
    [14]Aranishi H, Kunisawa Y, Komuro T. Characterization of interstitial cells of Cajal in the subserosal layer of the guinea-pig colon [J]. Cell and Tissue Research,2009,335(2):323-329
    [15]Pieri L, Vannucchi MG, Faussone-Pellegrini MS. Histochemical and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut [J]. Journal of Cellular and Molecular Medicine,2008,12(5):1944-1955
    [16]Seki K, Komuro T. Distribution of interstitial cells of Cajal and gap junction protein, Cx 43 in the stomach of wild-type and W/W-v mutant mice [J]. Anatomy and Embryology,2002, 206(1-2):57-65
    [17]Lee SE, Wi JS, Min YI, et al. Distribution and Three-Dimensional Appearance of the Interstitial Cells of Cajal in the Rat Stomach and Duodenum [J]. Microscopy Research and Technique, 2009,72(12):951-956
    [18]Toma H, Nakamura K, Emson PC, et al. Immunohistochemical distribution of c-Kit-positive cells and nitric oxide synthase-positive nerves in the guinea-pig small intestine [J]. Journal of the Autonomic Nervous System,1999,75(2-3):93-99
    [19]Vannucchi MQ Corsani L, Bani D, et al. Myenteric neurons and interstitial cells of Cajal of mouse colon express several nitric oxide synthase isoforms [J]. Neuroscience Letters,2002, 326(3):191-195
    [20]Iino S, Horiguchi K. Interstitial cells of Cajal are involved in neurotransmission in the gastrointestinal tract [J]. Acta Histochemica Et Cytochemica,2006,39(6):145-153
    [21]Ward SM, Beckett EAH, Wang XY, et al. Interstitial cells of cajal mediate cholinergic neurotransmission from enteric motor neurons [J]. Journal of Neuroscience,2000,20(4): 1393-1403
    [22]Wang XY, Sanders KM, Ward SM. Intimate relationship between interstitial cells of Cajal and enteric nerves in the guinea-pig small intestine [J]. Cell and Tissue Research,1999,295(2): 247-256
    [1]Hanani M, Louzon V, Udassin R, et al. Nitric oxide-containing nerves in bowel segments of patients with Hirschsprung's disease [J]. Journal of Pediatric Surgery,1995,30(6):818-822
    [2]Vanderwinden JM, Mailleux P, Schiffmann SN, et al. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis [J]. New England Journal of Medicine,1992,327(8):511-515
    [3]Hirakawa H, Kobayashi H, Obriain DS, et al. Absence of NADPH-diaphorase activity in internal anal sphincter (IAS) achalasia [J]. Journal of Pediatric Gastroenterology and Nutrition, 1995,20(1):54-58
    [4]Bagyanszki M, Roman V, Fekete E. Quantitative Distribution of NADPH-diaphorase-positive Myenteric Neurons in Different Segments of the Developing Chicken Small Intestine and Colon [J]. The Histochemical Journal,2000,32(11):679-684
    [5]Sri Paran T, Rolle U, Puri P. Age-related changes in the myenteric plexus of the porcine bowel [J]. Journal of Pediatric Surgery,2009,44(9):1771-1777
    [6]O'Donnell AM, Bannigan J, Puri P. Differences in nitrergic innervation of the developing chick cloaca and colorectum [J]. Pediatric Surgery International,2006,22(1):90-94
    [7]Bult H, Boeckxstaens GE, Pelckmans PA, et al. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter [J]. Nature,1990,345(3):346-347
    [8]Boeckxstaens GE, Pelckmans PA, Bult H, et al. Non-adrenergic non-cholinergic relaxation mediated by nitric oxide in the canine ileocolonic junction [J]. European Journal of Pharmacology,1990,190(1-2):239-246
    [9]Stark ME, Bauer AJ, Sarr MG, et al. Nitric oxide mediates inhibitory nerve input in human and canine jejunum [J]. Gastroenterology,1993,104(2):398-409
    [10]Burleigh DE. Ng-nitro-L-arginine reduces nonadrenergic, noncholinergic relaxations of human gut [J]. Gastroenterology,1992,102(2):679-683
    [11]Belai A, Schmidt H, Hoyle CHV, et al. Colocalization of nitric-oxide synthase and nadph-diaphorase in the myenteric plexus of the rat gut [J]. Neuroscience Letters,1992, 143(1-2):60-64
    [12]Young HM, Furness JB, Shuttleworth CWR, et al. Colocalization of nitric-oxide synthase immunoreactivity and nadph diaphorase staining in neurons of the guinea-pig intestine [J]. Histochemistry,1992,97(4):375-378
    [13]Tay SSW, Moules EW, Burnstock G. Colocalization of nadph-diaphorase with nitric-oxide synthase and vasoactive intestinal polypeptide in newborn pancreatic neurons [J]. Journal of anatomy,1994,184(4):545-552
    [14]Azzena GB, Mancinelli R. Nitric oxide regenerates the normal colonic peristaltic activity in mdx dystrophic mouse [J]. Neuroscience Letters,1999,261(1-2):9-12
    [15]Sandgren K, Lin Z, Svenningsen AF, et al. Vasoactive intestinal peptide and nitric oxide promote survival of adult rat myenteric neurons in culture [J]. Journal of Neuroscience Research,2003,72(5):595-602
    [16]Wade PR, Gulbransen B, Lieb J. Age-related changes in motility and in nitrergic myenteric neurons in guinea pig distal colon [J]. Gastroenterology,2003,124(4):545-545
    [17]Lalatta-Costerbosa G, Mazzoni M, Clavenzani P, et al. Nitric oxide synthase immunoreactivity and NADPH-d histochemistry in the enteric nervous system of sarda breed sheep with different PrP genotypes in whole-mount and cryostat preparations [J]. Journal of Histochemistry & Cytochemistry,2007,55(4):387-401
    [18]Junquera C, Martinez-Ciriano C, Blasco J, et al. Distribution of NADPH diaphorase-positive neurons in the enteric nervous system of the rabbit intestine [J]. Neurochemical Research,1998, 23(10):1233-1240
    [19]Ward SM, Xue C, Shuttleworth CW, et al. NADPH-diaphorase and nitric oxide synthase colocalization in enteric neurons of canine proximal colon [J]. American Journal of Physiology, 1992,263(2):277-284
    [20]Cserni T, Paran S, Kanyari Z, et al. New insights into the neuromuscular anatomy of the ileocecal valve [J]. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology,2009,292(2):254-261
    [21]Feher E, Montagnese C. Distribution and morphological features of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity in intrinsic neurons of the oddi sphincter the cat [J]. Neuroscience Letters,1994,170(1):114-116
    [22]Degiorgio R, Parodi JE, Brecha NC, et al. Nitric oxide producing neurons in the monkey and human digestive system [J]. Journal of Comparative Neurology,1994,342(4):619-627
    [23]Bodi N, Battonyai Ⅰ, Talapka P, et al. Spatial pattern analysis of nitrergic neurons in the myenteric plexus of the duodenum of different mammalian species [J]. Acta Biologica Hungarica,2009,60(4):347-358
    [24]Wittmeyer V, Merrot T, Mazet B. Tonic inhibition of human small intestinal motility by nitric oxide in children but not in adults [J]. Neurogastroenterology and Motility,2010,22(10): 1078-1081
    [25]Belai A, Burnstock G. Distribution and colocalization of nitric oxide synthase and calretinin in myenteric neurons of developing, aging, and Crohn's disease human small intestine [J]. Digestive Diseases and Sciences,1999,44(8):1579-1587
    [26]Gabella G Fall in the number of myenteric neurons in aging guinea-pigs [J]. Gastroenterology, 1989,96(6):1487-1493
    [27]Hirai K, Kurihara K, Katayama Y. Regionally different noradrenergic innervation and receptor distribution in submucous plexus of guinea-pig intestine [J]. Proceedings of the Japan Academy Series B-Physical and Biological Sciences,1998,74(6):136-141
    [28]Balaskas C, Saffrey MJ, Burnstock G. Distribution of NADPH-diaphorase activity in the embryonic chicken gut [J]. Anatomy and Embryology,1995,192(3):239-245
    [29]Nichols K, Krantis A, Staines W. Histochemical localization of nitric oxide-synthxizing neurons and vascular sites in the guinea-pig intestine [J]. Neuroscience,1992,51(4):791-799
    [30]Cracco C, Filogamo G Quantitative study of the NADPH-diaphorase positive myenteric neuron of the rat ileum [J]. Neuroscience,1994,61(2):351-359
    [31]Roman V, Bagyanszki M, Krecsmarik M, et al. Spatial pattern analysis of nitrergic neurons in the developing myenteric plexus of the human fetal intestine [J]. Cytometry Part A,2004,57(2): 108-112
    [32]Cserni T, O'Donnel A, Paran S, et al. Correlation of Enteric NADPH-d Positive Cell Counts with the Duration of Incubation Period in NADPH-d Histochemistry [J]. Pathology & Oncology Research,2009,15(1):103-107
    [33]Llewellynsmith IJ, Song ZM, Costa M, et al. Ultrastructural-localization of nitric-oxide synthase immunoreactivity in guinea-pig enteric neurons [J]. Brain Research,1992,577(2): 337-342
    [34]Xiao L, Cai WQ, Sun Y. A light and electron microscope observation of NADPH-diaphorase in the jejumun myenteric plexus of rats [J]. Acta anatomica sinica,1996, 27(10):85-87
    [35]Gabella G. The number of neurons in the small intestine of mice, guinea pigs and sheep [J]. Neuroscience,1987,22(2):737-752
    [36]Gabella G. Neuron size and number in the myenteric plexus of the newborn and adult rat [J]. Journal of Anatomy,1971,109(1):81-95
    [37]Young HM, Furness JB, Sewell P, et al. Total numbers of neurons in myenteric ganglia of the guinea-pig small intestine [J]. Cell and Tissue Research,1993,272(1):197-200
    [38]Zhang Y, Teng K, Zhang H, et al. The morphological features of NADPH-diaphorase positive myenteric neurons of the postnatal piglets small Intestine [J]. Acta Veterinaria et Zootechnica Sinica,2004,35(6):705-710
    [39]Doxey DL, Pearson GT, Milne EM, et al. The equine enteric nervous system-neuron characterization and disribution in adults and juveniles [J]. Veterinary Research Communications,1995,19(6):433-449
    [40]Csemi T, Paran S, Puri P. New hypothesis on the pathogenesis of ileocecal intussusception [J]. Journal of Pediatric Surgery,2007,42(9):1515-1519
    [41]Tay S, Burnstock G Localization of age-related changes in NADPH-diaphorase activity in pancreatic neurons [J]. Neuroscience,1994,61(3):597-602
    [42]Liu Y, Chen Y, Wang Z. Differences of AchE and NOS-positive neuron number and distribution in goat small intestine [J]. Journal of China Agricultural University,2007,12(2):10-17
    [43]An S, Xu C, Xu J, et al. Comparison of NOS distribution in myenteric plexus of various segments of gatrointestinal tract of the mandarin vole, Microtus mandarinus [J]. Chinese Journal of Neuroscience,2003,19(6):313-317
    [44]Gabella G, Trigg P. Size of neurons and glial cells in the enteric ganglia of mice, guinea-pigs, rabbits and sheep [J]. Journal of neurocytology,1984,13(1):49-71
    [45]Bacci S, Faussonepellegrini MS, Mayer B, et al. Distribution of mast cells in human ileocecal region [J]. Digestive Diseases and Sciences,1995,40(2):357-365
    [46]Pearson GT. Structural organization and neuropeptide distributions in the equine enteric nervous system:an immunohistochemical study using whole-mount preparations from the small intestine [J]. Cell and Tissue Research,1994,276(3):523-534
    [47]Rand MJ. Nitrergic transmission:Nitric oxide as a mediator of non-adrenergic, non-cholinergic neuroeffector transmission [J]. Clinical and Experimental Pharmacology and Physiology,1992, 19(3):147-169
    [1]Martucciello G, Favre A, Torre M, et al. A new rapid acetylcholinesterase histochemical method for the intraoperative diagnosis of Hirschsprung's disease and intestinal neuronal dysplasia [J]. European Journal of Pediatric Surgery,2001,11(5):300-304
    [2]Piaseczna-Piotrowska A. Intestinal neuronal dysplasia [J]. Advances in Clinical and Experimental Medicine,2007,16(2):309-315
    [3]Seo JK. Intestinal neuronal dysplasia [J]. The Korean journal of gastroenterology= Taehan Sohwagi Hakhoe chi,2007,50(3):145-156
    [4]Skaba R, Frantlova M, Horak J. Intestinal neuronal dysplasia [J]. European Journal of Gastroenterology & Hepatology,2006,18(7):699-701
    [5]Koletzko S, Jesch I, Faus-Kessler T, et al. Rectal biopsy for diagnosis of intestinal neuronal dysplasia in children:a prospective multicentre study on interobserver variation and clinical outcome [J]. Gut,1999,44(6):853-861
    [6]Kapur RP. Neuronal dysplasia:A controversial pathological correlate of intestinal pseudo-obstruction [J]. American Journal of Medical Genetics Part A,2003,122A(4):287-293
    [7]Kapur RP. Hirschsprung disease and other enteric dysganglionoses [J]. Critical Reviews in Clinical Laboratory Sciences,1999,36(3):225-273
    [8]Meierruge W, Gambazzi F, Kaufeler RE, et al. The neuropathological diagnosis of neuronal intestinal dysplasia (NID-b) [J]. European Journal of Pediatric Surgery,1994,4(5):267-273
    [9]Meierruge WA, Bronnimann PB, Gambazzi F, et al. Histopathological criteria for intestinal neuronal dysplasia of the submucosal plexus (type-b) [J]. Virchows Archiv,1995,426(6): 549-556
    [10]Bates MD. Development of the enteric nervous system [J]. Clinics in Perinatology,2002,29(1): 97-101
    [11]Hirota CL, McKay DM. Cholinergic regulation of epithelial ion transport in the mammalian intestine [J]. British Journal of Pharmacology,2006,149(5):463-479
    [12]吴瑞炜,方圣云,刘威琴.人小肠粘膜内神经元的组织学与组织化学观察[J].中国组织化学与细胞化学杂志,1993,2(4):291
    [13]Tanaka K, Ohshiro K, Puri P. Morphological changes in the enteric nervous system of the transplanted fetal rat intestine [J]. Journal of Pediatric Surgery,1997,32(6):897-901
    [14]Maifrino LBM, Liberti EA, Watanabe IS, et al. Morphometry and acetylcholinesterase activity of the myenteric neurons of the mouse colon in the chronic phase of experimental Trypanosoma cruzi infection [J]. American Journal of Tropical Medicine and Hygiene,1999,60(5):721-725
    [15]Maifrino LBM, Prates JC, DeSouza RR, et al. Morphometry and acetylcholinesterase activity of the myenteric plexus of the wild mouse Calomys callosus [J]. Brazilian Journal of Medical and Biological Research,1997,30(5):627-632
    [16]Pauza DH, Pauziene N, Pakeltyte G, et al. Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetyleholinesterase [J]. Annals of Anatomy-Anatomischer Anzeiger,2002,184(2): 125-136
    [17]Wester T, O'Briain DS, Puri P. Notable postnatal alterations in the myenteric plexus of normal human bowel [J]. Gut,1999,44(5):666-674
    [18]Coerdt W, Michel JS, Rippin G, et al. Quantitative morphometric analysis of the submucous plexus in age-related control groups [J]. Virchows Archiv,2004,444(3):239-246
    [19]Wester T, O'Briain S, Puri P. Morphometric aspects of the submucous plexus in whole-mount preparations of normal human distal colon [J]. Journal of Pediatric Surgery,1998,33(4): 619-622
    [20]Roman V, Krecsmarik M, Bagyanszki M, et al. Evaluation of the total number of myenteric neurons in the developing chicken gut using cuprolinic blue histochemical staining and neurofilament immunocytochemistry [J]. Histochemistry and Cell Biology,2001,116(3): 241-246
    [21]Bagyanszki M, Roman V, Fekete E. Quantitative Distribution of NADPH-diaphorase-positive Myenteric Neurons in Different Segments of the Developing Chicken Small Intestine and Colon [J]. The Histochemical Journal,2000,32(11):679-684
    [22]Montedonico S, Paran TS, Pirker M, et al. Developmental changes in submucosal nitrergic neurons in the porcine distal colon [J]. Journal of Pediatric Surgery,2006,41(5):1029-1035
    [23]McKeown SJ, Chow CW, Young HM. Development of the submucous plexus in the large intestine of the mouse [J]. Cell and Tissue Research,2001,303(2):301-305
    [24]Smith VV. Intestinal neuronal density in childhood-a base-line for the objective assessment of hypoganglionosis and hyperganglionosis [J]. Pediatric Pathology,1993,13(2):225-237
    [25]Brehmer A. Advances in Anatomy Embryology and Cell Biology 186-Structure of Enteric Neurons. Structure of Enteric Neurons 2006:1-91
    [26]Mizuno MS, Pompeu E, Castelucci P, et al. Age-related changes in urinary bladder intramural neurons [J]. International Journal of Developmental Neuroscience,2007,25(3):141-148
    [27]Pirker ME, Montedonico S, Rolle U, et al. Regional differences in nitrergic neuronal density in the developing porcine urinary bladder [J]. Pediatric Surgery International,2005,21(3): 161-168
    [28]Pearson GT, Thomsen L, Skadhauge E. Electrophysiological profiles and differentiation of function in the submucous plexuses of the newborn pig small intestine [J]. Journal of Physiology-London,1996,495(1):87-101
    [29]Thomsen L, Pearson GT, Larsen EH, et al. Electrophysiological properties of neurones in the internal and external submucous plexuses of newborn pig small intestine [J]. Journal of Physiology-London,1997,498(3):773-785
    [30]Cracco C, Filogamo G. Quantitative study of the NADPH-diaphorase positive myenteric neuron of the rat ileum [J]. Neuroscience,1994,61(2):351-359
    [31]Barbiers M, Timmermans JP, Scheuermann DW, et al. Distribution and morphological features of nitrergic neurons in the porcine large-intestine [J]. Histochemistry,1993,100(1):27-34
    [32]Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies [J]. Nature Reviews Neuroscience,2007,8(6): 466-479
    [1]VeeremanWauters G Neonatal gut development and postnatal adaptation [J]. European Journal of Pediatrics,1996,155(8):627-632
    [2]Wood JD, Alpers DH, Andrews PLR. Fundamentals of neurogastroenterology [J]. Gut,1999, 45(1):6-16
    [3]Gershon MD. The enteric nervous system:a second brain [J]. Hospital practice (1995),1999, 34(7):31
    [4]Harrington AM, Hutson JM, Southwell BR. Cholinergic neurotransmission and muscarinic receptors in the enteric nervous system [J]. Progress in Histochemistry and Cytochemistry,2010, 44(4):173-202
    [5]Vincent SR. Nitric oxide neurons and neurotransmission [J]. Progress in Neurobiology,2010, 90(2):246-255
    [6]Toma H, Nakamura K, Emson PC, et al. Immunohistochemical distribution of c-Kit-positive cells and nitric oxide synthase-positive nerves in the guinea-pig small intestine [J]. Journal of the Autonomic Nervous System,1999,75(2-3):93-99
    [7]Grozdanovic Z, Baumgarten HG, Bruning G. Histochemistry of nadph-diaphorase, a marker for neuronal nitric-oxide synthase, in the peripheral autonomic nervous-system of the mouse [J]. Neuroscience,1992,48(1):225-235
    [8]Maifrino LBM, Prates JC, DeSouza RR, et al. Morphometry and acetylcholinesterase activity of the myenteric plexus of the wild mouse Calomys callosus [J]. Brazilian Journal of Medical and Biological Research,1997,30(5):627-632
    [9]Kinoshita K, Horiguchi K, Fujisawa M, et al. Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis [J]. Histochemistry and Cell Biology,2007,127(1):41-53
    [10]Ramachandran P, Vincent P, Ganesh S, et al. Morphological abnormalities in the innervation of the atretic segment of bowel in neonates with intestinal atresia [J]. Pediatric Surgery International,2007,23(12):1183-1186
    [11]Junquera C, Martinez-Ciriano C, Blasco J, et al. Distribution of NADPH diaphorase-positive neurons in the enteric nervous system of the rabbit intestine [J]. Neurochemical Research,1998, 23(10):1233-1240
    [12]Maifrino LBM, Liberti EA, Watanabe IS, et al. Morphometry and acetylcholinesterase activity of the myenteric neurons of the mouse colon in the chronic phase of experimental Trypanosoma cruzi infection [J]. American Journal of Tropical Medicine and Hygiene,1999,60(5):721-725
    [13]Kluchova D, Klimcik R, Kloc P. Neuronal nitric oxide synthase in the rabbit spinal cord visualised by histochemical NADPH-diaphorase and immunohistochemical NOS methods [J]. General Physiology and Biophysics,2002,21(2):163-174
    [14]Lalatta-Costerbosa G, Mazzoni M, Clavenzani P, et al. Nitric oxide synthase immunoreactivity and NADPH-d histochemistry in the enteric nervous system of sarda breed sheep with different PrP genotypes in whole-mount and cryostat preparations [J]. Journal of Histochemistry & Cytochemistry,2007,55(4):387-401
    [15]Balaskas C, Saffrey MJ, Burnstock G. Distribution of NADPH-diaphorase activity in the embryonic chicken gut [J]. Anatomy and Embryology,1995,192(3):239-245
    [16]Bagyanszki M, Roman V, Fekete E. Quantitative distribution of NADPH-diaphorase-positive myenteric neurons in different segments of the developing chicken small intestine and colon [J]. Histochemical Journal,2000,32(11):679-684
    [17]Bates MD. Development of the enteric nervous system [J]. Clinics in Perinatology,2002,29(1): 97-101
    [18]Gariepy CE. Developmental disorders of the enteric nervous system:Genetic and molecular bases [J]. Journal of Pediatric Gastroenterology and Nutrition,2004,39(1):5-11
    [19]Liu Y, Chen Y, Wang Z. Differences of AchE and NOS-positive neuron number and distribution in goat small intestine [J]. Journal of China Agricultural University,2007,12(2):10-15
    [20]Li L, Ru L. A Comparative Study on the Distribution and Relationship of Cholinergic,SP, VIP-Peptidergic and Nitroergic Nerves in Intestinal Tract of Rats [J]. Acta Medicinae Universitatis Scientiae et Technologiae Huazhong,2009,38(5):575-580
    [21]An S, Xu C, Xu J, et al. Comparison of NOS distribution in myenteric plexus of various segments of gatrointestinal tract of the mandarin vole, Microtus mandarinus [J]. Chinese Journal of Neuroscience,2003,19(6):313-317
    [22]Umehara K, Kataoka K, Ogura T, et al. Comparative distribution of nitric oxide synthase (NOS) in pancreas of the dog and rat:Immunocytochemistry of neuronal type NOS and histochemistry of NADPH-diaphorase [J]. Brain Research Bulletin,1997,42(6):469-478
    [23]肖岚,蔡文琴.大鼠小肠肌间神经丛中NOS神经元的发育研究[J].解剖学报,1998,(3):311-315
    [24]Bagyanszki M, Roman V, Fekete E. Quantitative Distribution of NADPH-diaphorase-positive Myenteric Neurons in Different Segments of the Developing Chicken Small Intestine and Colon [J]. The Histochemical Journal,2000,32(11):679-684
    [25]Van Ginneken C, Van Meir F, Sommereyns G, et al. Nitric oxide synthase expression in enteric neurons during development in the pig duodenum [J]. Anatomy and Embryology,1998,198(5): 399-408
    [26]Thippeswamy T, McKay JS. Neuronal nitric oxide synthase and nerve growth factor expression in the enteric nervous system [J]. Cellular and Molecular Biology,2005,51(3):293-298
    [27]Fiehn NE, Larsen T, Christiansen N, et al. Identification of periodontal pathogens in atherosclerotic vessels [J]. Journal of Periodontology,2005,76(5):731-736
    [28]Haraszthy VI, Zambon JJ, Trevisan M, et al. Identification of periodontal pathogens in atheromatous plaques [J]. Journal of Periodontology,2000,71(10):1554-1560
    [29]Lomax AE, Furness JB. Neurochemical classification of enteric neurons in the guinea-pig distal colon [J]. Cell and Tissue Research,2000,302(1):59-72
    [30]Piaseczna-Piotrowska A. Intestinal neuronal dysplasia [J]. Advances in Clinical and Experimental Medicine,2007,16(2):309-315
    [31]Rolle U, Nemeth L, Puri P. Nitrergic innervation of the normal gut and in motility disorders of childhood [J]. Journal of Pediatric Surgery,2002,37(4):551-567

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700