用户名: 密码: 验证码:
羌活提取物减轻乙草胺对水稻药害的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙草胺是一种活性高、价格低,应用非常广泛的除草剂,但是因为其易对水稻产生药害的原因而在稻田受到了限制。开发乙草胺的安全剂是解决药害扩大应用范围的一条有效途径。
     中药材羌活(Rhizoma et Radix Notopterygii),为常用的中药之一。笔者所在的课题组曾对上百种植物材料进行筛选,发现羌活具有减轻乙草胺对水稻幼苗伤害的作用。本论文在前期研究的基础上采用索氏提取法提取羌活获得粗提物,先通过硅胶柱层析初步分离富集活性成分,经过活性追踪确定活性组分,然后用高速逆流色谱法(HSCCC)对确定的活性组分进行进一步的分离得到单体化合物,通过核磁共振等方法对单体化合物进行结构鉴定;确定其活性,初步研究其作用机理。主要研究结果如下:
     1羌活粗提物解除乙草胺对水稻药害作用的效果
     室内生测试验表明,水稻幼苗对乙草胺非常敏感,0.025mg/kg的乙草胺能够显著的抑制水稻幼苗的生长。在乙草胺质量浓度为0.025mg/kg条件下,当羌活提取物质量浓度为1.25、2.50、6.25和12.50mg/kg时,对水稻幼苗有较好的保护效果,株高分别为对照的78.5%、95.1%、96.6%、88.5%:株鲜重分别为对照的83.4%、98.6%、95.5%、96.9%;但是随着剂量进一步升高,羌活提取物对水稻的保护作用开始减弱。
     室外盆栽试验表明,7.5g/hm2和15g/hm2的乙草胺对水稻株高和分蘖都有抑制作用,影响到水稻整个生育期;添加羌活提取物能明显的减轻乙草胺对水稻的伤害。3750g/hm2的羌活提取物和乙草胺的组合处理能使水稻的株高和分蘖数完全恢复到对照水平:不同处理间水稻剑叶长、剑叶宽和穗长均没有明显差别;羌活提取物和乙草胺的组合使用能明显减少产量的损失;单用羌活提取物的水稻与对照相比各生理指标没有显著差异。
     2羌活主要功能成分的分离纯化
     采用硅胶柱层析和高速逆流色谱相结合的方法分离纯化羌活提取物。粗提物先经硅胶柱层析分离,以石油醚和乙酸乙酯作为淋洗剂进行梯度洗脱,经点薄层板合并后共得到21个流分。组分Q5再经过HSCCC分离,以正己烷-醋酸乙酯-甲醇-水(5:5:4:5)为溶剂系统,上相为固定相,下相为流动相:结果经过HSCCC分离后,从300mg Q5样品中一次性分离得到三个组分Ⅰ(25.6mg),Ⅱ (36.1mg),Ⅲ(37.6mg):经HPLC初步检测,组分Ⅰ为两种化合物的混合物,组分Ⅱ,Ⅲ为单体。
     3活性成分的结构鉴定
     经HPLC检测,发现两种单体化合物的纯度分别达到98.7%和99.1%,符合进一步鉴定的条件,经显色反应初步判定均为香豆素类化合物。经气-质及核磁共振氢谱、碳谱鉴定化合物的结构,确认化合物1和化合物2分别为异茴芹内酯(Isopimpinellin)和佛手柑内酯(Bergapten),分子量分别为246和216,两者结构相似,都属于呋喃香豆素类化合物。
     4不同分离阶段组分的活性追踪试验
     通过室内解毒生物测定对不同分离阶段羌活提取物进行了活性追踪,主要测定了硅胶柱层析分离物Q1~Q21,高速逆流色谱分离产物组分Ⅰ、Ⅱ、Ⅲ、和单体化合物Bergapten对水稻上乙草胺的解毒效果。
     通过对硅胶柱层析获得的21个组分进行室内解毒生测试验,发现一个能明显缓解乙草胺对水稻药害作用的组分Q5,因此选择Q5作为进一步分离纯化的原材料。
     经过HSCCC分离得到3个组分Ⅰ、Ⅱ、Ⅲ,将这3个组分进行室内解毒试验发现,当分离物的浓度为5mg/L时,组分Ⅰ、组分Ⅱ和组分Ⅲ对水稻上乙草胺均有一定的解毒效果,且以组分Ⅲ的解毒效果最佳。
     单体化合物Bergapten对水稻上的乙草胺具有明显的解毒效果。在土壤基质,1.25-10mg/L的Bergapten与乙草胺混合处理的水稻幼苗株高与乙草胺对照相比均有显著差异,以5mg/L的Bergapten解毒效果较佳。进一步在琼脂基质中试验发现,0.1-5mg/L范围内的Bergapten对水稻上乙草胺均有一定的解毒作用,但是解毒效果随着安全剂的浓度降低而减弱。同时,通过室内生测试验表明,Bergapten对乙草胺的除草效果没有影响。
     5羌活提取物减轻乙草胺对水稻药害的机理研究
     羌活提取物能提高水稻GSTs活性,增强对除草剂的解毒能力。当羌活粗提物浓度在2.5~25mg/L的范围内时,水稻幼苗地上部分的GSTs活性能够被显著地诱导增强,并且随着浓度的升高而提高。与此对应的是,在此剂量范围内,羌活粗提物对乙草胺有较好的解毒效果。而从羌活中分离的单体化合物Bergapten,在其解毒剂量1.25~5mg/L范围内,也能够诱导水稻体内GSTs的活性显著增强。进一步通过离体试验证明,水稻GSTs能促进对乙草胺的降解作用。
The herbicide actochlor is commonly used all over the world because of its high activity and low cost, but it is limited in rice field because its phytotoxicity to rice. It is an effective way for sovling the phytotoxicity and expanding application areas of acetochlor to develop antidote of acetochlor.
     The traditional Chinese medicine Rhizoma et Radix Notopterygii refers to the dried rhizome and root of Notopterygium incisum Ting ex H. T. Chang or N. forbesii Boiss or the mixture of both plants, which is one of the commonly used Chinese Herbal Medicine. Our research group found that the extract isolated from Rhizoma et Radix Notopterygii could reducing the phytotoxicity of acetochlor (2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)-acetamide) to rice by screening97plant materials. Based on the previous study, the Rhizoma et Radix Notopterygii was extracted with ethanol in a Soxhlet extractor, the crude extract of Rhizoma et Radix Notopterygii was preliminarily separated by silica gel chromatography (CC) and the target compounds was enriched, the active constituent was fixed by bioassay-guided investigation, then high-speed count-current chromatography (HSCCC) was used to isolate and purify the monomeric compounds; the structure was identified and the acivity was determined; Finally, mechanism of action of active compounds as safeners was preliminarily studied. The main research results obtained are as follows:
     1Protective effect of crude extract of Rhizoma et Radix Notopterygii to rice
     Laboratory bioassay showed that rice seedlings grown under controlled environmental conditions were very sensitive to acetochlor, the growth of rice seedling was significantly inhibited by acetochlor at dose of0.025mg/kg. On the premise that the acetochlor dose was0.025mg/kg, crude extract at the dose of1.25,2.50,6.25, and12.5mg/kg showed preferable protection effect to rice, the shoot heights of rice seeding were78.5%,95.1%,96.6%,88.5%that of the control, respectively; and the plant fresh weight were83.4%,98.6%,95.5%,96.9%that of the control, respectively. However, the protection effect decreased as the dosage further increased.
     Outdoor pot experiments verified that acetochlor at ratio of7.5g/hm or15g/hm2obviously inhibited the plant height and tiller number during entire period of rice growth. Crude extract of Rhizoma et Radix Notopterygii could obviously reduce the injury of acetochlor to rice. The plant height and tiller number of rice could totally recover by adding crude extract at a dose of3750g/hm2. There no significant difference between different treatments on the lenth of flag leaf, the width of flag leaf and the ear lenth of rice; the combination of crude extract and acetochlor could mitigate the loss of production of rice; Besides, the physiological indices had no significant difference between the application of crude extract alone and control.
     2Separation and purification of active compounds from extract of Rhizoma et Radix Notopterygii
     Column chromatography (CC) combined with high-speed count-current chromatography (HSCCC) were used to isolate and purify the extract of Rhizoma et Radix Notopterygii. The crude extract of Rhizoma et Radix Notopterygii was preliminarily separated by silica gel chromatography and and successively eluted with petroleum ether: ethyl acetate. Column fractions were analyzed by TLC and fractions with similar TLC patterns were pooled, twenty one fractions were obtained. Then the fraction Q5was further separated by HSCCC with two phase solvent systems composed of N-hexane-ethyl acetate-methanol-water (5:5:4:5). The upper phase was used as the stationary phase and the lower phase as the mobile phase. After separated by HSCCC, three compositions I (25.6mg),11(36.1mg) and Ⅲ(37.6mg) were obtained from300mg of the Q5sample. The purities determined by HPLC showed that fration I was a mixture of two compounds, fraction Ⅱ and Ⅲ were purity compounds.
     3Identification of active compounds
     The content was detected with HPLC method, results showed that the relative content of the compound1and compound2were99.1%and98.7, respectively; they are eligible to further identification. Color reaction preliminarily established them belong to coumarins. Their structures were further identified by1H-NMR,13C-NMR spectra and GC-MS. Finally, the compound1and compound2were established as Bergapten and Isopimpinellin, corresponding to the molecule weight of216and246, respectively. The two compounds have similar structures and both belong to furocoumarin.
     4Activity tracing test of fraction from different saparation period
     The detoxication activities of fractions on each isolation stage were analysized by laboratory bioassay. Twenty one fractions obtained by CC, three fractions obtained by HSCCC and the compound Bergapten were tested for their detoxication activities to acetochlor on rice.
     Laboratory bioassay showed that the fraction Q5which was one of the twenty one fractions obtained by CC could significantly reduce the injury of acetochlor to rice, so the fraction Q5was selected for further isolation and purification.
     The fraction Q5was applied to HSCCC and yield three fractions Ⅰ,Ⅱ, Ⅲ. Laboratory detoxication activity bioassay showed that all the three fractions had detoxication capacity to acetochlor on rice at the concentration of5mg/L, but fraction Ⅲ exhibited the best detoxication effect.
     Bergapten could obviously reduce the injury of acetochlor to rice. In soil culture, the plant height of rice shoots treated with Bergapten in the range from1.25mg/L to10mg/L combined with acetochlor had significantly difference compared with acetochlor control; Bergapten at the concentration of5mg/L exhibited the best detoxication effect. In agar culture, the Bergapten concentration in the range from0.1mg/L to5mg/L all had protection effect to rice, but the detoxcation effect decreased with the reducing of the concentration. At the same time, laboratory bioassay showed that Bergapten had no influence on the effect of weed control of acetochlor.
     5Study on mechanism of extract of Rhizoma et Radix Notopterygii protecting rice against acetochlor
     Extract of Rhizoma et Radix Notopterygii could increase the ability for rice plants to detoxify acetochlor by raising GST activities. When the concentration of crude extract was ranging from2.5to25mg/L, GST activities in rice shoots were significantly increased with increasing concentration, positively correlated to the protection effect of rice shoots. When the concentration of Bergapten was ranging from1.25to5mg/L, GST activities in rice shoots were increased significantly too. Further study in vitro showed that the CSTs isolated form rice shoots could promote the degration of acetochlor.
引文
[1]徐会娟,何红波,武叶叶,等.氯乙酰胺类除草剂的环境行为和生态效应研究[J].土壤通报,2009,40(5):1226-1232.
    [2]Huang H, Xiong ZT. Toxic effects of cadmium, acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth in rice seedlings. Pesticide Biochemistry and Physiology,2009,94(2-3):64-67.
    [3]Abu-Qare A W, Duncan H J. Herbicide safeners:Uses, limitation, metabolism and mechanism of action[J]. Chemosphere,2002,48(9):965-974.
    [4]刘承兰.水田除草剂乙草胺的植物性安全剂材料筛选及机理研究[D].湖南农业大学硕士学位论文,2002
    [5]张一宾,张怿.农药[M].北京:中国物资出版社,1997:403.
    [6]Nemeth-Konda L, Fuleky G Y, Mororjan G Y, et al. Sorption behavior of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil[J]. Chem J,2002,48:545-552.
    [7]段又生.乙草胺产能过剩出口预期不容乐观[J].农药市场信息,2013.3:30[8]柳梅等.我国乙草胺市场现状及技术进展[J].化工技术经济,2005,23(3):1.
    [9]蒋善军.乙草胺持续低迷[J].2011,20:31
    [10]过戍吉.乙草胺除草剂骨干品种竞争动态概要[J].山东农药信息,2005:27-29.
    [11]王军,许培援,邹文援,等.绿色农药剂型——微乳剂型[J].精细与专用化学品,2004,12(21):4-6.
    [12]陈福良,尹明明.农药微乳剂概念及其生产应用中存在问题辨析[J].农药学学报,2007,9(2):110-116.
    [13]程敬丽,黄雅丽,朱国念.30%毒死蜱水乳剂的研究和开发[J].农药,2002,43(8):15.
    [14]高翠丽,路福绥.40%乙草胺水乳剂的制备及研究[J].山东大学学报(自然科学版),2007,38(4):578-581.
    [15]刘建.50%乙草胺水乳剂的研制和开发[J].农药,2006,45(12):823-824.
    [16]齐崇广,张景华,李艳芬,等.20%乙草胺微乳剂的研究[J].山东化工,2003,32(4):39-41.
    [17]ALLA MMN. Glutathione regulation of GST and POD activity in herbicide-treated zea mays [J]. Plant Physiology Biochemistry,1995,33(2):185-192.
    [18]刘井兰,于建飞,印建莉,等.化学农药对植物生理生化影响的研究进展[J].农药,2006,45(8):511-514.
    [19]郭玉莲,陶波,高希武.玉米谷胱甘肽转移酶(GSTs)特性及除草剂的诱导作用[J].玉米科学,2008,16(1):122-125.
    [20]刘宝生,高俊凤,刘亦学,等.乙草胺对小麦出苗及幼苗生长的安全性评价[J].天津农业科学,2006,12(2):34-36.
    [21]谢玉华,钟玉辉,唐正义.乙草胺对小麦过氧化氢酶活性的影响[J].内江师范学院学报,2012,27(12):48-50.
    [22]王金信,宋庆涛,张新,等.4种酰胺类除草剂对玉米的安全性及药效[J].农药科学与管理,2001,增刊:46-47.
    [23]程新胜,任勇.乙草胺对烟草生长的影响[J].安徽农业科学,2004,32(6):1192-1194.
    [24]仝增儒.容易产生药害的农药[J].河北农业,2012,5:36.
    [25]黄春艳,陈铁保,王宇,等.土壤湿度对乙草胺药害的影响[J].中国农学通报,2006,22(8):393-396.
    [26]黄春艳,陈铁保,王宇.土壤温度和降水量对乙草胺药效及药害的影响[J].黑龙江农业科学.2004,1:13-15.
    [27]冉梦莲,陈友荣,肖敬平.乙草胺对不同品种水稻萌发生长期间呼吸代谢的影响[J],华南农业大学学报,1999,20(1):68-72.
    [28]Zimdahl RL, Clark SK. Degration of three acetanilide herbicides in soil. Weed Sci,1982,30:545-548.
    [29]倪盈盈,郑金伟,张隽,等.氯代酰胺类除草剂降解菌的分离及降解性能[J].应用与环境生物学报,2011,17(5):711-716.
    [30]董滨,王凤花,林爱军.乙草胺降解菌A-3的筛选及其降解特性[J].环境科 学,2011,32(2):542-547.
    [31]倪俊,沈维亮,闫新.乙草胺降解菌Y-4的分离鉴定及降解特性研究.农业环境科学学报,2011,30(5):946-951.
    [32]朱九生,乔雄梧,王静,等.乙草胺在土壤环境中的降解及其影响因子的研究[J].农业环境科学学报,2004,23(5):1025-1029.
    [33]Souissi Y, Bouchonnet S, Bourcier S, et al. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water [J]. Sci Total Environ,2013,1:527-534.
    [34]Joanna D, John C C. Herbicide safeners:a review [J]. Pesti Sci,1999,55: 1043-1058.
    [35]Hatzios KK, Burgos N. Metabolism-based herbicide resistance:regulation by safeners. Weed Sci,2004,52:454-467.
    [36]李绍峰,付颖,叶非.除草剂安全剂R-29148对乙草胺解毒的生测研究[J].农药,2000,39(10):35-37.
    [37]孔凡彬,徐瑞富,刘起丽,等.两种安全剂对小麦上乙草胺的解毒作用[J].湖北农业科学,2008,47(1):42-44.
    [38]毕洪梅,张金艳,叶非,等.除草剂安全剂的研究发展现状及商用前景[J].世界农药,2007,29(2):15-18.
    [39]王利,王险峰,赵长山.康凯对乙草胺造成大豆药害的缓解效果[J].农药,2005,44(11):521-522,527.
    [40]邵明雪,付颖,叶非.YF-12保护玉米免受乙草胺药害的活性研究[J].农药科学与管理,2011,32(6):22-25.
    [41]岳明丽,曲丹丹,丁丽,等.化合物YF-206防除乙草胺药害研究[J].农药科学与管理,2012,33(10):22-26.
    [42]曲丹丹,岳明丽,丁丽.除草剂安全剂YF-208生物活性研究[J].现代农药,2012,11(4):28-30.
    [43]叶惠,刘伟,陈建勋,等.乙草胺对水稻的伤害及CGA123407对其伤害的保护作用[J].华南农业大学学报,2000,21(2):61-63.
    [44]晓岚.除草剂安全剂的评述(上、下)[J].世界农药,2000,23(3),(4):29-33.
    [45]Riechers DE, Kreuz K, Zhang Q. Detoxification without intoxication:herbicide safeners activate plant defense gene expression. Plant Physiol,2010,153:3-13.
    [46]Zhang Q, Xu F X, Lamber K N, et al. Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification in Triticum tauschii seedling tissues[J]. Proteomics,2007, 7:1261-1278.
    [47]Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era:past, present and future[J]. Plant J,2010,61:1041-1052.
    [48]Kreuz K, Tommasini R, Martinoia E. Old enzymes for a new job:herbicide detoxification in plants [J]. Plant Physiol.1996,111:349-353.
    [49]Romano M L, Stephenson GR, Tal A, ea al. The effect of monooxygenase and glutathione S-transferase inhibitors on the metabolism of diclofop-methyl and fenoxaprop-methyl in barley and wheat [J]. Pestic Biochem Physiol,1993,46: 181-189.
    [50]Hatios K. K. Regulation of enzymatic systems detoxifying xenobiotics in plants:a brief overview and directions for future research, in:Hatios KK (ed), Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plant[M], Kluwer Academic Publishers, Dordrecht, The Netherlands,1997:1-5.
    [51]Davies J, Caseley JC. Herbicide safeners:a review. Pestic Sci,1999,55: 1043-1058.
    [52]Cole DJ, Detoxification and activation of agrochemicals in plants. Pesticide Sci, 1994,42:209-222.
    [53]McKinnon R A. Cytochrome P450(1)——Multiplicity and function[J]. Aust J Hosp Pharm,2000,30:54-56.
    [54]Nelson D R, Kaymans L, Kamataki T, et al. P450 superfamily:update on new sequence, gene mapping, accession numbers and nomenclature[J]. Pharmacogenetics, 1996,6:1-42.
    [55]Cou WM, Kutchan. Enzymatic oxidations in the biosynthesis of complex alkaloids. Plant J,1998,15:289-300.
    [56]Frear D S, Swanson H R, Tanaka F S. N-demethylastion of substituted 3-(phenyl)-1-methylureas:isolation and characterization of a microsomal mixed function oxidase from cotton[J]. phytochemistry,1969,8:2157-2169.
    [57]Durst F. Biochemistry and physiology of plant cytochrome P-450. In:Ruckpaul K, Rein (ed), Microbial and Plant Cytochrome P-450:Biochemical Characteristics, Genetic Engineering and Practical Implications, Frontiers in Biotransformation [M], vol 4. Taylor and Francis, New York,1991,191-232.
    [58]Hatzios K K, Biotransformations of herbicides in higher plants, in:Grover R, Cessna(ed), Environmental Chemistry of herbicides[M], vol 2. CRC Press, Boca Raton, FL,1991,141-184.
    [59]陈浩,林拥军,张启发.转基因水稻研究的回顾与展望[J].科学通报,2009,54(18):2699-2717.
    [60]Siminszky B. Plant cytochrome P450-mediated herbicide metabolism[J]. Phytochem Rev,2006,5:445-458.
    [61]Jablonkai I, Hatzios K K. Microsomal oxidation of the herbicides EPTC and acetochlor and of the safener MG-191 in maize[J]. Pwstic Biochem Physiol,1994,48: 98-109.
    [62]刘惠君,田宝莲,熊明瑜.除草剂及安全剂诱导下植物细胞色素P450酶的光谱分析[G]//中国化学会环境化学专业委员会.第五届全国环境化学大会摘要集.大连:2009.5.
    [63]Hirose S, Tagiri A, Ohkawa H. Tissue-specific expression of rice CYP72A21 induced by auxins and herbicides[J]. Plant Biotechnol Rep,2007,1:27-36.
    [64]Yun MS, Yogo Y, Miura R, et al. Cytochrome P-450 monooxygenase activity in herbicide-risistant and-susceptible late watergrass (Echinochloa phyllopogon) [J]. Pesticide Biochemistry and physiology,2005,83:107-114.
    [65]Moreland D E, Corbin F T, Fleischmann T J, et al. Partial characterization of microsomes isolated from mung bean cotyledons [J]. Pestic Biochem Physiol,1995, 52:98-108.
    [66]高宗军,蒋家珍,李学锋等.吡唑解草酯对小麦细胞色素P450的诱导作用及其光谱特征[J].植物保护,2005,31(4):40-44.
    [67]Nelson D R, Schuler M A, Paguette S M, et al. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot[J]. Plant physiol,2004,135:756-772.
    [68]钟兰,王凯,谭军,等.籼稻细胞色素P450超基因家族成员及其EST证据[J].中国科学(C辑),2002,32(6):500-504.
    [69]Pang G, Zhang X Y, Liu K D, et al. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides[J]. Pant Mol Biol,2006,61:933-943.
    [70]Pierrel M A, Batard Y, Kazmaier M, et al. Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hy droxylase[J]. Eur J Biochem,1994,224:835-844.
    [71]Liu C, Liu SQ, Wang F, et al. Expression of a rice CYP81A6 gene confers tolerance to bentazon and sulfonylurea herbicides in both Arabidopsis and tobaccofJ]. Plant Cell Tiss Organ Cult[2012,109:419-428.
    [72]Robineau T, Batard Y, Nedelkina S, et al. The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics[J]. Plant Physiol,1998,118:1049-1056.
    [73]Yamada T, Kambara Y, Imaishi H, et al. Molecular cloning of novel cytochrome P450 species induced by chemical treatments in cultured tobacco cells[J]. Pestic Biochem Physiol,2000,68:11-25.
    [74]Siminszky B, Corbin FT, Ward ER, et al. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides[J]. Proc Natl Acad Sci USA,1999,96:1750-1755.
    [75]Xiang WS, Wang XJ, Ren TR, et al. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides[J]. Pestic Biochem Physiol 2006,85:1-6.
    [76]Mansuy D. The great diversity of reactions catalyzed by cytochromes P450 [J]. Comp Biochem and Physiol,1998,121:5-14.
    [77]Deng F, Hatzios KK. Characterization of cytochrome P450-mediated bensulfuron-methyl O-demethylation in rice[J]. Pestic Biochem Physiol,2003, 74:102-115.
    [78]Shuler. Plant cytochrome P-450 monooxygenases[J]. Crit Rev Plant Sci,1996,15: 235-284.
    [79]Shiota N, Inui H, Ohkawa H. Metabolism of the herbicide chlortoluron in transgenic tobacco plants expressing the fused enzyme between rat cytochrome P4501A1 and yeast NADPH-cytochrome P450 oxidoreductase[J]. Pestic Biochem Physiol.1996,54:190-198.
    [80]Coleman S, Linderman R, Hodgson E, et al. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes [J]. Envir Health Perspect,2000,108(12):1151-1157.
    [81]Ferhatoglu Y, Avdiushko S, Barrett M. The basis for the safening of clomazone by phorate insecticide in cotton and inhibitors of cytochrome P450s[J]. Pestic Biochem Physiol,2005,81:59-70.
    [82]Preston C. Herbicide resistance in weeds endowed by enhanced detoxication: complications for management J]. Weed Sci,2004,52:448-453.
    [83]Fischer TC, Klattig JT, Gierl A. A general cloning stategy for divergent plant cytochrome P450 genes and its application in Lolium rigidum and Ocimum baszilicum[J].Theor Appl Genet,2001,103:1014-1021.
    [84]Hinz JRR, Owen MDK. Nicosulfuron and primisulfuron selectivity in corn(Zea mays) and two annual grass weeds[J]. Weed Sci,1996,44:219-223.
    [85]Werck-Reichhart, Hehn A, Didierjean L, et al. Cytochromes P450 for engineering herbicide tolerance[J]. Trends Plant Sci,2000,5:116-223.
    [86]Yun MS, Shim IS, Usui K. Involvement of cytochromes P450 enzyme activity in the selectivity and safening action of pyrazosulfuron-ethyl[J]. Pest Manage Sci,2000, 57:283-288.
    [87]Fischer AJ, Bayer DE, Carriere MD. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession[J]. Pestic Biochem Physiol,2000,68:156-165.
    [88]Lamoureux GLm, Shimabukuro RH, Swanson HR, et al. Metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in excised sorghum leaf sections[J]. J Agric Food Chem,1970,18:81-86.
    [89]Chronopoulou EG, Labrou NE. Glutathione transferaes:emerging multi-disciplinary tools in red and green biotechnology [J]. Recent patents on Biotechnology, 2009,3:211-233.
    [90]McGonigle B, Keeler SJ, Lau S-MC, et al. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize[J]. Plant Physiol,2000,124:1105-1120.
    [91]Dixon DP, Lapthorn A, Edward R. Plant glutathione transferases[EB/OL]. Genome Biol 3:review3004.1-3004.10. http://genomebiology.com/2002/3/3/ reviews/3004.1.
    [92]Guddewar MB, Dauterman WC. Purification and properties of a glutathione-S-transferase from corn which conjugates S-triazine herbicides[J]. Phytochemistry,1979, 18:735-740.
    [93]Marrs KA.The function and regulation of glutathione S-transferase in plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:127-158.
    [94]Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R. Multiple roles for plant glutathione transferases in xenobiotic detoxification[J]. Drug Metab Rev.2011, 43:266-280.
    [95]Jepson I, Lay VJ, Holt DC, et al. Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms Ⅰ,Ⅱ, Ⅳ [J]. Plant Mol Biol,1994,26:1855-1866.
    [96]Thom R, Cummins I, Dixon DP, et al. Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification[J]. Biochemistry,2002,41: 8-20.
    [97]Edwards R, Dixon DP. The role of glutathione transferases in herbicide metabolism. In:Herbicides and their mechanisms of action[M]. In:Cobb AH, Kirkwood RC, Eds. Sheffield Academic Press, UK 2000; pp38-71.
    [98]Cho HY, Kong KH. Study on the biochemical characterization of herbicide detoxification enzyme, glutathione S-transferase[J]. Biofators,2007,30:281-287.
    [99]Axarli IA, Dhavala P, Papageorgiou AC, et al. Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals and active site topography suited for diphenylether herbicides and a novel L-site[J]. J Mol Biol,2009,385:984-1002.
    [100]Rossini LL, Frova C, Mario EP, et al. Alachlor regulation of corn glutathione S-transferases genes[J]. Pestic Biochmistry and Physiol,1998,60:205-211.
    [101]Hu TZ, He S, Zeng H. et al. Isolation and characterization of a rice glutathione S-transferase gene promoter regulated by herbicides and hormones[J]. Plant cell Rep, 2010,30(4):539-549.
    [102]Farago S, Brunold C, Kreuz K. Herbicide safeners and glutathione metabolism [J]. Physiol Plant,1994,91:537-542.
    [103]Hatzios KK, Burgos N. Metabolism-based herbicide resistance:regulation by safeners[J]. Weed Sci,2004,52:454-467.
    [104]Gronwald JW, Fuerst EP, Eberlein CX, et al. Effect of herbicide antidotes on glutathione content and glutathione S-transferase activity of sorghum shoots[J]. Pestic Biochem Physiol,1987,29:66-76.
    [105]Wu JR, Cramer CL, Hatzios KK. Characterization of two cDNAs encoding glutathione S-transferases in rice and induction of their transcripts by the herbicide safener fenclorim[J]. Physiologia Plantarum,1999,105:102-108.
    [106]Scarponi L.Buono D.D, Vischetti C. Effect of pretilachlor and fenclorim on carbohydrate and protein formation in relation to their persistence in rice[J]. Pest Management Science,2005,61(4):371-376.
    [107]Scarponi L, Quagliarini E, Buono DD. Induction of wheat and maize glutathione S-transferase by some herbicide safeners and their effect an enzyme activity against butachlor and terbuthylazine[J]. Pest Management Science,2006, 62(10):927-932.
    [108]Cummins I, O'Hagan D, Jablonkai I, et al, Werck-Reichhart D, Edwards R. Cloning, characterization and regulation of a family of phi class glutathione transferases from wheat[J]. Plant Mol Biol.2003,52(3):591-603.
    [109]Taylor VL, Cummins Ⅰ, Brazier-Hicks, et al. Protective responses induced by herbicide safeners in wheat [J]. Environ Exp Bot,2013,88:93-99.
    [110]DeRidder BP, Dixon DP, Beussman DJ. et al. Induction of glutathione S-transferases in Arabidopsis by herbicide safeners[J]. Plant Physiolohy,2002,130: 1497-1505.
    [111]Cummins I, Cole DJ, Edwards R. A role for glutathione transferaes functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass [J]. The Plant Journal,1999,18(3):285-292.
    [112]Cho HY, Kong KH. Molecular cloning, expression, and characterization of a phi-type glutathione S-transferase from Oryza sativa[J]. Pestic Biochem Physiol,2005, 29-36
    [113]Cho HY, Lee HJ, Kong KH. A phi class glutathione S-transferase from Oryza sativa (OsGSTF5):molecular cloning, expression and biochemical characteristics[J]. J Biochem Mol Biol.2007,40(4):511-516.
    [114]Cho HY, Yoo SY, Kong KH. Cloning of a rice tau class GST isozyme and characterization of its substrate specificity[J]. Pestic Biochem Physiol,2006,86(2): 110-115.
    [115]Jo HJ, Lee JJ,Kong KH. A plant-specific tau class glutathione S-transferase from Oryza sativa with very high activity against 1-chloro-2,4-dinitrobenzene and chloroacetanilide herbicides[J]. Pestic Biochem and Physiol,2011,101:265-269.
    [116]Hu TZ, Qv XX, Xiao GS, et al. Enhanced tolerance to herbicide of rice plants by over-expression of a glutathione S-transferase[J]. Mol Breeding,2009,24: 409-418.
    [117]Jepson I, Holt DC, Roussel V, et al. Transgenic plant analysis as a tool for the study of maize glutathione S-transgenic. In Hatzios KK, ed, Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants[M], Ed 1, No 3, Vol 37. Kluwer Academic publishers, Dordrecht, The Nethlands 1997, pp 313-323.
    [118]Karavageli M, Labrou NE, Clonis YD, et al. Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation[J]. Biomol Eng,2005,22:121-128.
    [119]Benekos K,Kissoudis C, Nianiou-Obeidat I, et al. Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants[J]. J Biotechnol.2010,150(1): 195-201.
    [120]Milligan AS, Daly A, Parry MAJ. et al.The expression of a maize glutathione S-transferase gene in transgenic wheat confers herbicide tolerance, both in planta and invitro[J]. Molecular Breeding,2001,3:301-315.
    [121]Anthony RG, Waldin TR, Ray JA, et al. Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tublin[J]. Nature,1998,393: 260-263.
    [122]Cummins I, Wortley DJ, Sabbadin F, et al. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds [J]. PNAS,2013,110(15):5812-5817
    [123]Cole DJ, Detoxification and activation of agrochemicals in plants[J]. Pesticide Sci,1994,42:209-222
    [124]Anderson MP, Gronwald JW. Atrazine resistance in a velvetleaf (Abutilon theophrasti) biotype due to enhanced glutathione S-transferase activity [J]. Plant Physiol,1991,96:104-109.
    [125]Del Buono D, Ioli G Glutathione S-transferases of italian ryegrass (Lolium multiflorum):activity toward some chemicals, safener modulation and persistence of atrazine and fluorodifen in the shoots [J]. J Agric Food Chem.2011,59(4): 1324-1329.
    [126]Cummins I, Bryant DN, Edwards R. Safener responsiveness and multiple herbicide resistance in the weed black-grass (Alopecurus myosuroides) [J]. Plant Biotechnology Journal,2009,7(8):807-820.
    [127]古丽娜·沙比尔,崔亚军,郭慧,等.羌活药材的色谱指纹图谱研究.中国中药杂志,2007,32(1):30-33.
    [128]李云霞,高春华,沙明.中药羌活化学成分及药理作用研究进展[J].辽宁中医学院学报,2004,6(1):22-23.
    [129]中华人民共和国卫生部.中国药典[S].北京:北京化学工业出版社,2005: 127.
    [130]Panno ML, Giordano F, Mastroianno F, et al. Breast cancer cell survival signal is affected by bergapten combined with an ultraviolet irradiation [J]. FWBS Lett, 2010,584:2321-2326.
    [131]Okuyama E, Nishimura S, Ohmoris, et al. Analgesic component of Notopterygium incisum Ting. Chem Pharm Bull,1993,41:926-929.
    [132]Kim DH, Kim DY, Kim YC, et al. Nodakenin, a coumarin compound, ameliorates scopolamine-induced memory disruption in mice [J]. Life Sci,2007, 80(21):1944.
    [133]Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromato-graphy [J]. J Chromatogr A,2005,1065(2):145-168.
    [134]Han S. Separation of salidroside from Rhodiola crenulata by high-speed counter-current chromatography [J]. J Chromatogr A,2002,971(1/2):237-241.
    [135]Liu RM, Feng L, Sun AL, Kong LY. Preparative isolation and purification of coumarins from Cnidium monnieri (L.) Cusson by high-speed counter-current chromatography. Journal of Chromatography A,2004,1055:71-76
    [136]董芳,刘汉柱,孙阳,等.北沙参中佛手柑内酯的分离鉴定及体外抗肿瘤活性的初步测定[J].植物资源与环境学报,2010,19(1):95-96.
    [137]徐希科,胡疆,柳润辉,等.无花果根化学成分研究[J].药学服务与研究,2005,5(2):138-140.
    [138]王志国,何德,金洪,等.无花果抗癌作用的研究进展[J].现代生物医学进展,2010,10(11):2183-2186.
    [139]王俏先,张香莲,高凌,等.无花果抗癌作用的研究[J].癌症,1999,9(3):223-225.
    [140]崔秋兵,张艺,兰莎.白芷镇痛作用物质基础研究[J].中国实验方剂学杂志,2010,16(12):102-104.
    [141]万树青,徐汉虹,蒋志胜,等.植物源光敏杀虫毒素研究进展[A].植物农药与药剂毒理学研究进展[C].北京:中国农业科学技术出版社,2002.71-76
    [142]华燕青,李广泽,陈安良,等.藁本中杀虫活性成分的分离与鉴定[J].西北农林科技大学学报:自然科学版,2004,32(增刊):54-56.
    [143]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001,128-131.
    [144]Deng F, Hatzios K K. Purification and characterization of two glutathione S-transferase isozymes from indica-type rice involved in herbicide detoxification[J]. Pesticide Biochemistry and Physiology,2002,72:10-23.
    [145]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976,72:143-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700