用户名: 密码: 验证码:
不同混交比例马尾松林生态功能比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松(Pinus massoniana Lamb)是我国亚热带分布最广、资源最多的针叶树种,也是我国南方林区主要的工业用材树种。林业实践证明,长期进行马尾松纯林经营,导致林分生产力下降、生态功能差、松毛虫害猖獗、地力衰退、防火能力弱等一系列问题。马尾松针阔混交林能有效利用光能和全面利用土壤肥力,改善林分状况,提高林分生产力。本研究自2007年起,在安徽省枞阳县大山村采用固定样地调查法,以不同混交比例马尾松林为研究对象,按照马尾松胸高断面积所占比例将调查林分划分为0-20%,20-40%,40-60%,60-80%和80-100%类型,研究混交比例对林分生物量、植物碳量、土壤有机碳、物种多样性、林下植被生产力、根系以及土壤理化性质的影响。主要结果如下:
     1.乔木层
     (1)主要乔木树种树木解析结果表明,马尾松各器官和地上部分及全株生物量与生长指标的关系模型为w干=53.69704+0.01025×(D2H)、1nW皮=-16.24899+9.89795·lnD-0.58846·D、lnW枝=6.18119-1.60294.1nD-0.75932.ln(H/D)、w地上=-14.63286+40.72698·lnD、W全株=6.1435+39.05153·ln D:而化香(P1atycarya strobilacea Sieb.et Zucc)各器官和地上部分及全株生物量模型为1nW干:0.55883+0.70839·lnD-1.98923·ln(H/D).W皮=1.6635·D0.07566、lnW枝=6.87613-0.703524·lnD+3.40175·ln(H/D)、1nW叶=4.58771+0.20155·1nD+5.19331·ln(H/D).1nW地上=9.99853-3.73503·lnD+0.28907.D、lnW全株=10.48087-3.85889· lnD+0.29122·D。为乔木树种生物量及森林碳的计量提供捷径。
     (2)随着马尾松混交比例的增加,乔木层总生物量不断变化,其由大到小排序所在林分混交比例分别为:40-60%>20-40%>60-80%>80-100%>0-20%。当马尾松所占比例为40-60%时,林分总生物量最大,为123.36t·hm-2当混交比例为0-20%时,林分总生物量最低,仅有81.79t·hm-2。乔木层生物量一定程度上决定了林分总生物量的分布趋势。
     2.草灌层
     (3)随混交比例的变化,灌木层生物量差异显著(P<0.01)。林分灌木层生物量由大到小的混交比例分别为:40-60%>20-40%>0-20%>80-100%>60-80%。其中混交比例为40-60%的林分和60-80%的林分,最高1.36t.hm-2,最低0.98t.hm-2。
     (4)混交比例对林分中的灌木层与草本层植物种类组成结构具有差异性。灌木层物种丰富度随着马尾松所占比例的增加呈现先增加后减少的趋势(丰富度最大值出现在混交比例为40-60%的林分中),而草本层物种丰富度几乎不随马尾松所占比例的变化而变化;草本层盖度相对稳定,而灌木层盖度呈现逐渐降低趋势;草本层高度缓慢降低,而灌木层高度波动性变化。混交比例对林下植被多样性指数影响较为显著,灌木层植物的Shannon-Wiener指数和Margalef指数大小顺序排列皆为:80-100%<0-20%<20-40%<60-80%<40-60%。
     (5)林下总生物量与灌木层生物量、灌木层多样性指数和丰富度指数具有显著正相关关系,部分达到极显著正相关关系;草本层生物量与灌木层生物量呈显著负相关关系;草本层生物量与草本植物多样性及丰富度均显著正相关。不同比例的混交林中,草层生物量只占林下生物量比例的5-18%,而灌本层占较大部分,林下植被生物量随着混交比例的增加呈现先增大后降低的趋势。在5种混交比例林分中,灌木层生物量占林下总生物量比例从小到大的排序为:60-80%<80-100%<0-20%<20-40%<40-60%。
     3.地下部分
     (6)研究地区马尾松混交林根系(d<10mm)生物量均值为1.693t·hm-2。随混交比例的变化,细根生物量不断变化,林分内细根生物量大小梯度为:40-60%>0-20%>20-40%>80-100%>60-80%。细根生物量占根系总生物量大小依次为:40-60%>20-40%>0-20%>80-100%>60-80%。说明马尾松混交比例为40-60%的林分,土壤结构良好,有机质含量较高,进而增加了细根的生物量,提高了群落物种丰富度。
     (7)林下总生物量、灌木层生物量以及草木层生物量与上壤孔隙度呈正相关关系,与土壤容重呈负相关关系,其中林下总生物量与两者分别有显著的正相关和显著的负相关。土壤含水量对灌木层生物量有一定的影响,但并未达到显著水平,土壤容重对草本层、灌木层生物量有较弱的负效应。林下草本层、灌木层的Shannon-Wiener指数和Margalef指数与土壤的含水量、有机质、pH、全钾、全氮、全磷以及速效钾、速效磷则呈现出不同程度的正相关性,但都未达到显著水平。灌木层的Shannon-Wiener指数、Margalef指数与上壤的容重呈现负相关关系,而且相关系数较高,分别达到0.432和0.456。
     (8)在0-10cm上层中,细根生物量与全磷、速效磷、有机质及上壤孔隙度关系呈极显著正相关(P<0.01),与含水量呈显著正相关(P<0.05)。比根长对土壤全钾和全氮呈显著负相关(P<0.05),细根根密度和土壤孔隙度呈显著正相关(P<0.05);在10-20cm上层中,细根生物量与全磷、有机质、含水量及土壤孔隙度均呈极显著正相关(P<0.01),与速效钾呈显著正相关(P<0.05)。比根长与速效钾和全钾呈显著负相关(P<0.05);在20-30cm土层中,细根生物量与速效钾、有机质、含水量及上壤孔隙度均呈极显著正相关(P<0.01),与全钾呈显著正相关(P<0.05)。根密度与全钾呈显著正相关(P<0.05),比根长与全磷呈负相关。
     4.混交林生态系统
     (9)马尾松单株各营养器官生物量分配差异较大,各器官生物量的分配规律为树干>树根>树枝>树皮>树叶。马尾松标准木单株、地上部分和树干的生物量最大值分别为114.69kg、98.48kg、77.83kg,都出现在马尾松混交比例为40-60%的林分中;最小值都出现在0-20%混交比例的林分中,分别为102.8kg、86.01kg、63.57kg。马尾松单株及其各营养器官的生物量与胸径和树高呈现正相关关系,在同一树龄下随胸径和树高的增大而增大。马尾松根的生物量占单株生物量15%左右,是各器官生物量所占全株生物量的比例变化幅度最小的。化香单株生物量与胸径和树高呈正相关关系,随胸径和树高的增大而增大。化香单株和地上部分生物量最大值分别为97.03Kg、82.56kg,出现在混交比例为20-40%的混交林中;单株和地上部分生物量最小值分别为79.97Kg、65.21kg,出现在混交比例为60-80%的林分中。化香树干生物量所占的比例是最大的,其次是枝,且枝与干的变化趋势呈现负相关,枝与叶的变化趋势则呈现出正相关性。
     (10)马尾松不同混交比例林分的碳贮量差异较为明显。林分碳贮量大小梯度为:40-60%>20-40%>60-80%>80-100%>0-20%。混交比例为40-60%的林分的碳贮量最高的,可达61.92t·hm-2。枯落物及粗死木碳贮量最大值出现在马尾松所占比例为40-60%的林分,高达2.15t·hm-2,远远高于其它混交比例林分。各混交比例林分的枯落物及粗死木碳量远远大于灌木层碳贮量,可见枯落物及粗死木是碳汇的重要部分。实验结果表明,研究区域内随混交比例的增加,土壤碳密度按从大到小排列依次为:40-60%>60-80%>20-40%>80-100%>0-20%。
Masson pine (Pinus massoniana Lamb.) is a main coniferous tree species in subtropical area. It is the major industrial timber species in China. Forestry practice has been proved that pure pine forest couse series of problems such as decline in forest productivity, weak ecological function, rampant of pine moth, soil fertility decline, and weak fire prevention ability. Mixedwood can effectively utilize light energy and soil, to improve forest productivity. ZongYang County, Anhui province belongs to subtropical monsoon climate zone and the four season's climate changes obviously. The mixedwood of conifer with deciduous broad leaved tree is the main vegetation types in the area. This paper researched different proportion of Masson pine mixed forest since2007. The forest biomass, plant carbon, soil organic carbon, biodiversity, undergrowth, root and soil had been studied. The results showed as follows:
     1. Tree layer
     (1) The main arbor tree trunk analytical results show that Masson pine aerial parts of each organ and whole plant biomass and growth indicators and the relationship between model for Wtrunk=53.69704+0.01025×(D2H)、lnW skin=-16.24899+9.89795·lnD-0.58846·D、 lnWbranch=6.18119-1.60294·lnD-0.75932·ln(H/D)、Waboveground=-14.63286+40.72698·lnD、 Wplant=6.1435+39.05153·lnD; And each organ and aboveground part and whole plant biomass model for lnWtrunk=0.55883+0.70839·lnD-1.98923·ln(H/D)、Wsin=1.6635·D0.07566、 lnWbranch==6.87613-0.703524·lnD+3.40175·ln(H/D)、lnWleaf=4.58771+0.20155·lnD+5.19331·ln(H/D)、 lnWaboveground=9.99853-3.73503·lnD+0.28907·D、lnWplant=10.48087-3.85889·lnD+0.29122·D. Tree species for biomass and forest carbon measurement provide shortcuts.
     (2) With the increase of Masson pine mixed proportion, the stand total above ground biomass changes unceasingly. The stand total above ground biomass gradient and mixed proportion relations as follows:40-60%>20-40%>60-80%>80-100%>0-20%.When the proportion of Massion pine is40-60%, the total above ground biomass is biggest with about123.36t-hm-2. While pine mixing proportion is80-100%, the total above ground biomass is lowest with only81.79t·hm-2. Tree layer biomass to a certain extent determines the distribution trend of the total stand above ground biomass.
     2. Herbs and shrubs layer
     (3) With the change of Masson pine mixed proportion, the shrub layer biomass is significant different (P<0.01). The biggest is0.97t.hm-2in the forest with Masson pine60-80%, followes by40-60%,20-40%,80-100%and0-20%successively. The mixed ratio of60-80%has lowest shrub biomass of0.98t. hm-2. The mixed ratio of20-40%has highest shrub biomass of1.36t.hm-2.
     (4) Different mixed proportion leads to different shrub and herb structures. The study showes a trend of decrease after the first increase that the shrub layer species richness increased with the increase of proportion of Masson pine; herb layer species richness almost not change along with the change of proportion of Masson pine; the shrub layer coverage showed a trend of gradually reduce; herb layer's height down slowly, shrub layer's hight volatility changes. Mixed proportion significantly effect on undergrowth biodiversity index. The Shannon-Wiener index and Margalef index of shrub layer plants is:80-100%<0-20%<20-40%<60-80%<40-60%successively.
     (5) Total biomass with shrub layer biomass and shrub layer diversity index with richness index has significant positive correlation, partial reached extremely significant positive correlation. Shrub layer biomass has significant negative correlation with herb layer biomass. Herb layer biomass is significantly positive correlation with plant diversity and richness. In different proportions of mixed forests, shrub layer biomass of understory biomass proportion is higher, the herb layer only accounts for less, with the increase of mix ratio, undergrowth biomass showed a trend of decrease after increase. In different proportion of forest, shrub layer biomass take up of the total biomass of the understory order as:60-80%<80-100%<0-20%<20-40%<40-60%, with80-100%and60-80%of the very significant (P<0.01) lower than other three kinds of proportion.
     3. Underground
     (6) The average fine root (d<10mm) biomas of Masson pine mixed is1.693t·hm-2.With the changing of mixed ratio, fine root biomass changes unceasingly. The order of fine root biomass is60-80%<80-100%<0-20%<20-40%<40-60%. The ratio of fine root biomass with total root biomass is in the order:40-60%>20-40%>0-20%>80-100%>60-80%. The highest fine root ratio is in the stand with Masson pine40-60%. Fine root has the function of improve forest soil structure, increasing soil organic matter content, improves the community species richness, also increased the fine root biomass.
     (7) Soil bulk density is negatively correlated with total biomass, shrub layer biomass of undergrowth and herb layer biomass, soil porosity were positively correlated with them, which places in total biomass has significant negative correlation with soil bulk density and the significant positive correlation with soil porosity. Bulk density has a weak negative effect with the shrub layer's and herb layer's biomass; moisture content has certain positive effect with the shrub layer biomass, but did not reach significant level. The index, which content Margalef and Shannon, of understory shrub layer and herb layer showed different degrees of positive correlation with soil water content, pH, organic matter, total nitrogen, total phosphorus, total potassium and available phosphorus and available potassium, but none of them reach significant level. Margalef index and Shannon Wiener index of shrub layer showed a hegher negative correlation with soil bulk density, at0.456and0.432respectively.
     (8) The fine root biomass is extremely significant positive correlation (P<0.01) with porosity, organic materior. Total phosphorus and available phosphorus are significantly positive correlation (P<0.05) with water content in the0-10cm soil layer. Specific root length is significantly negative correlation (P<0.05) with soil total potassium and total nitrogen. The density of fine root is significantly positively related to density and soil porosity (P<0.05). In10-20cm soil layer, the fine root biomass is very significant positive correlation (P<0.01) with porosity, moisture content, organic matter and total phosphorus, and is significantly positive correlation (P<0.05) with available k. Specific root length was significantly negative correlated (P<0.05) with available potassium and total potassium. In20-30cm soil layer, the fine root biomass is very significant positive correlation (P<0.01) with porosity, water content, available potassium and organic matter are significantly positively related (P<0.05) to total potassium. Root length negatively correlated with total phosphorus. And the root density is significantly positive correlation (P<0.05) with total potassium.
     4. Forest colosystem
     (9) The biomass in dirrefent organ difference. The distribution of biomass in the tree is the trunk>root> branch>skin>leaf. Standard of Masson pine wood maximum per plant, and trunk biomass above ground were114.69kg,98.48kg,77.83kg, have appeared in the Masson pine mixed proportion of40-60%of the forest; Minimum value in0-20%mixed in the proportion of forest, respectively is102.8kg,86.01kg,63.57kg. The relationship between biomass of vegetative organs and diameter at breast height and tree height present positive correlation is same as under the tree with diameter at breast height and tree height increases. Masson pine root biomass per plant biomass accounted for about15%, is each organ biomass accounted for the proportion of the total plant biomass change in the smallest. As for Platycarya strobilacea, the relationship between biomass and diameter at breast height and tree height is positively correlated. And the maximum biomass above ground is82.56kg per plant, and appeared in the mixed ratio of20-40%of the forest. The minimum value is65.21kg, and appeared in the mixed ratio of60-80%of the forest. The proportion of trunk biomass is the largest too, followed by the branch and stem.
     (10) The mixwood with different proportion of Masson pine has different capacity of carbon. Gradient of forest carbon is40-60%>60-80%>0-20%>20-40%>80-100%. The maximum of the litter and coarse wood carbon reserves is2.15t.hm-2, and appeared in the mixed ratio of40-60%of the forest, it is far higher than many other proportion of mixed forest. The mixed proportion of forest litter and coarse wood carbon carbon capacity is far greater than the shrub layer, thus it can be seen, and litter and coarse wood is an important part of carbon sinks. Experimental shows that with the increase of the mixed proportion the0-30cm soil carbon reserves in the study area as follows:40-60%>60-80%>20-40%>80-100%>0-20%.
引文
[1]任宪威,树木学:北方本,中国林业出版社,1997.
    [2]莫江明,彭少麟,et al.林下层植物在退化马尾松林恢复初期养分循环中的作用[J].生态学报,2002,22(9):1407-1413.
    [3]徐小牛,李宏开.马尾松枫香混交林生长及其效应研究[J].林业科学,1997,33(5):385-393.
    [4]V. Lieffers, J. Beck Jr.A semi-natural approach to mixedwood management in the prairie provinces[J].The Forestry Chronicle,1994,70(3):260-264.
    [5]梁建平.马尾松,红锥混交林林冠结构的研究[J].广西林业科技,1992,21(1):11-16.
    [6]R. Scholes, R. Biggs.A biodiversity intactness index[J].Nature,2005,434(7029):45-49.
    [7]H.Y. Chen, R.V. Popadiouk.Dynamics of North American boreal mixedwoods[J].Environmental Reviews,2002,10(3):137-166.
    [8]M.J. Kelty, B.C. Larson,et al., The Ecology and Silviculture of Mixed-species Forests:A Festschrift for David M. Smith, Kluwer Academic Pub,1992.
    [9]P.B. Reich, P. Bakken,et al. Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests[J].Ecology,2001,82(10):2731-2748.
    [10]D. Tihnan, K.G. Cassman,et al.Agricultural sustainability and intensive production practices[J].Nature,2002,418(6898):671-677.
    [11]S. Fu, F.W. Bell,et al. Long-term effects of intensive silvicultural practices on productivity, composition, and structure of northern temperate and boreal plantations in Ontario, Canada[J].Forest ecology and management,2007,241(1):115-126.
    [12]S. Fu, H.Y. Chen,et al.Effects of timing of glyphosate application on jack pine, black spruce, and white spruce plantations in northern Manitoba[J].The Forestry Chronicle,2008,84(1):37-45.
    [13]B.W. Brassard, H.Y. Chen,et al.Differences in fine root productivity between mixed- and single-species stands[J].Functional Ecology,2011,25(1):238-246.
    [14]王华,黄宇,et al.中亚热带几种典型森林生态系统碳,氮储存功能研究[J].中国生态农业学报,2010,18(3):576-580.
    [15]方运霆,莫江明,et al.森林演替在南亚热带森林生态系统碳吸存中的作用[J].生态学报,2003,23(9):1685-1694.
    [16]M. Loreau.Biodiversity and ecosystem functioning:recent theoretical advances[J].Oikos,2000,91(1):3-17.
    [17]M. Loreau, A. Hector.Partitioning selection and complementarity in biodiversity experiments[J].Nature,2001,412(6842):72-76.
    [18]M. Loreau, S. Naeem,et al.Biodiversity and ecosystem functioning:current knowledge and future challenges[J].science,2001,294(5543):804-808.
    [19]肖寒,欧阳志云,et al.森林生态系统服务功能及其生态经济价值评估初探--以海南岛尖峰岭热带森林为例[J].2000,11(4):481-484.
    [20]汪永文,王力,et al.马尾松混交林林下植被结构及生物量特征研究[J].安徽农业大学学报,2010,002):312-316.
    [21]赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态学 报,2004,15(8):1468-1472.
    [22]冯仲科,罗旭,et al.森林生物量研究的若干问题及究善途径[J].世界林业研究,2005,18(3):25-28.
    [23]罗天祥,李文华,et al.青藏高原自然植被总生物量的估算与净初级生产量的潜在分布[J].地理研究,1998,17(4):337-344.
    [24]王效科,冯宗炜,et al.中国森林生态系统的植物碳储最和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [25]丁增发,安徽肖坑森林植物群落与生物量及生产力研究,安徽农业大学,2005.
    [26]S. Wang, C. Zhou,et al.Carbon storage in northeast China as estimated from vegetation and soil inventories[J].Environmental Pollution,2002,116(S157-S165.
    [27]L.B. Flanagan, B.G. Johnson.Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland[J].Agricultural and Forest Meteorology,2005,130(3):237-253.
    [28]P. Evangelista, S. Kumar, et al. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River basin of southeastern Colorado, USA[J].Western North American Naturalist,2007,67(4):503-509.
    [29]冯宗炜,下效科,et al.,苦国森林生态系统的生物量和生产力,科学出版社,1999.
    [30]R.K. Dixon, S. Brown,et al.Carbon pools and flux of global forest ecosystems[J].Science(Washington),1994,263(5144):185-189.
    [31]C. Kammann, L. Grunhage,et al. Response of aboveground grassland biomass and soil moisture to moderate long-term CO< sub> 2 enrichment[J].Basic and Applied Ecology,2005,6(4):351-365.
    [32]J.W. Schiefelbein, P.N. Benfey.The development of plant roots:new approaches to underground problems[J].The Plant Cell,1991,3(11):1147.
    [33]B. Berg, C. McClaugherty, Plant litter:decomposition, humus formation, carbon sequestration, Springer,2008.
    [34]S. USMAN, S. Singh,et al.Fine root productivity and turnover in two evergreen central Himalayan forests[J].Annals of Botany,1999,84(1):87-94.
    [35]J. Marshall, R. Waring.Predicting fine root production and turnover by monitoring root starch and soil temperature[J].Canadian Journal of Forest Research,1985,15(5):791-800.
    [36]第一版.20-227马元喜[J].小麦的根.苦国农业出版社,1999,35-36.
    [37]下力,枞阳马尾松混交林细根生物量及其养分研究,安徽农业大学,2010.
    [38]K.S. Pregitzer, J.L. DeForest,et al.Fine root architecture of nine North American trees[J].Ecological Monographs,2002,72(2):293-309.
    [39]R. Fogel, G. Hunt.Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and tumover[J].Canadian Journal of Forest Research,1979,9(2):245-256.
    [40]H. Persson.Root dynamics in a young Scots pine stand in central Sweden[J].Oikos,1978,508-519.
    [41]张小全,吴可红.森林细根生产和周转研究[J].林业科学,2001,37(3):
    [42]单建平,陶大立.国外对树木细根研究动态[J].生态学杂志,1992,11(4):46-49.
    [43]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):239-250.
    [44]黄建辉,韩兴国,et al森林生态系统根系生物最研究进展[J].生态学报,1999,19(2):270-277.
    [45]张立华,海岸沙地木麻黄人工林细根生态学研究,福州:福建农林大学硕士学位论文,2006.
    [46]温达志,魏平,et al.鼎湖山南亚热带森林细根生产力与周转[J].植物生态学报,1999,23(4):361-369.
    [47]廖利平,陈楚莹,et al.杉木,火力楠纯林及混交林细根周转的研究[J].应用生态学报,1995,6(1):7-10.
    [48]翟明普,蒋三乃,et al沙地杨树刺槐混交林细根动态[J].北京林业大学学报,2002,24(5):39-44.
    [49]李凌浩,林鹏et al.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报,1998,9(4):337-340.
    [50]P. Hogberg, A. Nordgren,et al.Carbon allocation between tree root growth and root respiration in boreal pine forest[J].Oecologia,2002,132(4):579-581.
    [51]单建平,陶大立,etal.长白山阔叶红松林细根周转的研究[J].应用生态学报,1993,4(3):241-245.
    [52]杨玉盛,林鹏.格氏栲天然林与人工林细根生物量,季节动态及净生产力[J].2003,
    [53]张小全.环境因子对树木细根生物量,生产与周转的影响[J].林业科学研究,2001,14(5):566-573.
    [54]郭忠玲,郑金萍,et al.长白山几种主要森林群落木本植物细根生物量及其动态[J].生态学报,2006,26(9):2855-2862.
    [55]孙志虎,牟长城et al.采用地统计学方法对落叶松人工纯林表层细根生物量的估计[J].植物生態学报,2006,30(5):771-779.
    [56]王力,汪永文et al.不同混交比例马尾松林细根生物量及其养分研究[J].安徽农业大学学报,2010,002):317-323.
    [57]董慧霞,李贤伟et al.退耕地三倍体毛白杨林地细根生物量及其与土壤水稳性团聚体的关系[J].林业科学,2007,43(5):24-29.
    [58]赵忠,李鹏et al.渭北主要造林树种细根生长及分布与土壤密度关系[J].林业科学,2004,40(5):50-55.
    [59]周世强,黄金燕.四川红杉人工林分生物量和生产力的研究[J].植物生态学与地植物学学报,1991,15(1):9-16.
    [60]K.A. Vogt, D.A. Publicover.et al.Belowground responses as indicators of environmental change[J].Environmental and Experimental Botany,1993,33(1):189-205.
    [61]C. Uh1.Recovery Following Disturbances of Different Intensities in the Amazon Rain Forest of Venezuela[J].Interciencia. Caracas,1982,7(1):19-24.
    [62]A. Arunachalam, K. Maithani,et al.The impact of disturbance on detrital dynamics and soil microbial biomass of a< i> Pinus kesiya forest in north-east India[J].Forest Ecology and Management,1996,88(3):273-282.
    [63]C.C. Grier, K.A. Vogt,et al.Biomass distribution and above-and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades[J].Canadian Journal of Forest Research,1981,11(1):155-167.
    [64]C.W. Beris.Root biomass and surface area in three successional tropical forests[J].Canadian Journal of Forest Research,1982,12(3):699-704.
    [65]刘波,亚热带常绿阔叶林细根生物量及根系呼吸的研究,安徽农业大学,2008.
    [66]V. Biittner, C. Leuschner.Spatial and temporal patterns of fine root abundance in a mixed oak-beech forest[J].Forest Ecology and Management,1994,70(1):11-21.
    [67]H.A. Persson, in, Tree root systems and their mycorrhizas, Springer,1983, pp.87-101.
    [68]K.A. Vogt, D.J. Vogt,et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J].Plant and soil,1995,187(2):159-219.
    [69]R.L. Hendrick, K.S. Pregitzer.Temporal and depth-related patterns of fine root dynamics in northern hardwood forests[J].Journal of Ecology,1996,167-176.
    [70]C.A. McClaugherty, J.D. Aber,et al.The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems[J].Ecology,1982,1481-1490.
    [71]E.S. Nambiar.Do nutrients retranslocate from fine roots?[J].Canadian Journal of Forest Research,1987,17(8):913-918.
    [72]D. Santantonio, J. Grace.Estimating fine-root production and turnover from biomass and decomposition data:a compartment-flow model[J]. Canadian Journal of Forest Research,1987,17(8):900-908.
    [73]鲁少波,刘秀萍,et al.林木根系形态分布及其影响因素[J].林业调查规划,2006,31(3):105-108.
    [74]孙多.苏南丘陵天然次生栎林根系分布特征和生物最结构的研究[J].中国森林生态系统定位研究,1994,5(23):23-25.
    [75]李鹏,赵忠,et al.植被根系与生态环境相互作用机制研究进展[J].两北林学院学报,2002,17(2):26-32.
    [76]郑金萍,郭忠玲,et al.长白山5种主要森林群落细根现存生物量研究[J].北华大学学报(白然科学版),2004,5(5):458-461.
    [77]谌小勇,彭元英,et al.亚热带两类森林群落产量结构及生产力的比较研究[J].中南林学院学报,1996,16(1):1-7.
    [78]谌小勇,潘维俦.杉木人工林生态系统苦氮素的动态特征[J].生态学报,1989,9(3):201-206.
    [79]谌小勇,彭元英.亚热带常绿阔叶林涵养水源效能的研究[J].中南林学院学报,1995,15(2):128-135.
    [80]谌小勇,项文化,et al.,湿地松人工林生物产最的街度效应[C],1993.
    [81]谌小勇,项文化,et al.,不同密度湿地松林分生物量的研究,林业部科技司.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994.
    [82]项文化,谌小勇,et al.湿地松人工林生物最的时变特征[J].森林生态系统定位研究北京:苦国林业出版社,1993.
    [83]李振问,杨玉盛.et al.杉木火力楠混交林根系的研究[J].生态学杂志,1993,12(1):20-24.
    [84]巨天珍,任海峰,et al.土壤微生物生物量的研究进展[J].广东农业科学,2011,38(16):45-47.
    [85]B. Rogers, R. Tate.Temporal analysis of the soil microbial community along a toposequence in Pineland soils[J].Soil Biology and Biochemistry,2001,33(10):1389-1401.
    [86]C. Hamel, K. Hanson,et al.Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie[J].Soil Biology and Biochemistry,2006,38(8):2104-2116.
    [87]何振立.土壤微生物最及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    [88]陈国潮,何振立,et al.红壤微生物生物量C周转及其研究[J].土壤学报,2002,39(2):152-160.
    [89]何振立.土壤微生物量的测定方法、现状和展望[J].土壤学进展,1994,22(4):36-43
    [90]杨成德,龙瑞军,et al.东祁连山高寒草甸土壤微生物最及其与土壤物理因子相关性特征[J].草业学报,2007,16(4):62-68.
    [91]朴河春,洪业汤,,et al.贵州喀斯特地区土壤中微生物量碳的季节性变化[J].环境科学学报,2000,20(1):106-110.
    [92]朴河春,洪业汤,et al.贵州山区土壤中微生物生物量是能源物质碳流动的源与汇[J].生态学杂志,2001,20(1):33-37.
    [93]朴河春,朱建明,et al.贵州山区土壤微生物生物量的碳同位素组成与有机碳同位素效应[J].第四纪研究,2003,23(5):546-556.
    [94]王国兵,阮宏华,et al.北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J].应用生态学报,2008,19(1):37-42.
    [95]杨芳,吴家森,et al.不同施肥雷竹林土壤微生物量碳的动态变化[J].浙江林学院学报,2006,23(1):70-74.
    [96]汪殿蓓,暨淑仪,et al.植物群落物种多样性研究综述[J].生态学杂志,2001,20(4):55-60.
    [97]史作民,程瑞梅.et al.宝天曼植物群落物种多样性研究[J].林业科学,2002,38(6):17-23
    [98]贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征[J].生态学报,1997,17(1):91-99.
    [99]雷相东,唐守正.林分结构多样性指标研究综述[J].林业科学,2002,5(3):140-146.
    [100]尚文艳,吴钢,et al.陆地植物群落物种多样性维持机制[J].应用生态学报,2005,16(3):573-578.
    [101]林娜.浅议生物多样性与森林生态系统生产力的关系[J].世界林业研究,2006,19(2):34-38.
    [102]赵燕,李文祥.云南生物多样性浅议[J].云南农业大学学报,2000,15(2):151-152.
    [103]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [104]邱波,王刚.生产力与生物多样性关系研究进展[J].生态科学,2003,22(3):265-270.
    [105]钱迎倩,马克平,et al,生物多样性研究的原理方法,中国科学技术出版社,1994.
    [106]张全国,张大勇.生物多样性与生态系统功能:进展与争论[J].生物多样性,2002,10(1):49-60.
    [107]王国宏.再论生物多样性与生态系统的稳定性[J].生物多样性,2002,10(1):126-134.
    [108]严承高,陈建伟.从生物多样性保护浅谈我国森林经营与管理对策[J].中南林业调查规划,1995,14(1):37-41.
    [109]方海东,段昌群,et al.环境污染对生态系统多样性和复杂性的影响[J].三峡环境与生态,2009,2(3):1-4.
    [110]胡永建,任琴,et al.虫害马尾松(Pinus massoniana Lamb)邻枝针叶挥发物及其内源茉莉酸甲酯的快速变化[J].生态学报,2008,28(11):5331-5337.
    [111]陈顺,王玲萍,et al.松墨天牛幼虫在马尾松树上垂直分布的研究[J].福建林学院学报,2001,(4):297-300.
    [112]黄政龙.马尾松松毛虫危害与气象因子的关系初探[J].中南林学院学报,2004,24(1):106-109.
    [113]武红智,陈改英.基于GIS的马尾松毛虫灾害空间扩散规律分析[J][J].遥感学
    报,2004,8(5):475-480.
    [114]黄丽莉,刘兴平,et al.松毛虫赤眼蜂对被害与未被害马尾松的趋性选择[J].昆虫知
    识,2006,43(2):215-219.
    [115]刘兴平,王国红,et al.不同林相的松针对马尾松毛虫生长发育的影响[J].昆虫学
    报,2003,46(6):720-726.
    [116]王国红,刘兴平,et al.不同松林内马尾松毛虫种群动态的特征[J].生态学杂志,2005,24(4):355-359.
    [117]施再喜.马尾松毛虫寄生性天敌调查初报[J].安徽林业科技,2006,1):28-29.
    [118]S.L. Shrestha, F.X. Casey,et al.Radioassay-Based Approach to Investigate Fate and Transformation of Conjugated and Free Estrogens in an Agricultural Soil[J].Environ Eng Sci,2013,30(2):89-96.
    [119]徐向华,丁贵杰.马尾松适应低磷胁迫的生理生化响应[J].林业科学,2006,42(9):24-28.
    [120]邢建宏,刘希华,et al.基于GIS的马尾松种源地理变异趋势面分析[J].江西林业科技,2010,005):7-10.
    [121]邱欢,安徽省大山马尾松混交林地上部分生物量及生物多样性研究,安徽农业大学,2009.
    [122]程金年.马尾松与枫香混交造林技术的研究[J].安徽农业科学,2004,32(1):109-110.
    [123]杨枝林,刘君昂,et al.衡山马尾松人工林林分活力与健康状况评价[J].中国农学通报,2012,28(19):42-47.
    [124]周长海.皖东马尾松纯林更新改造技术研究[J].安徽农业科学,2005,33(6):1039-1040.
    [125]韩锦春,李宏开.马尾松混交林混交模式的多层夹综合评判[J].植物生态学报,2000,4(4):498-501.
    [126]方运霆,莫江明,et al.鼎湖山马尾松,荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报,2003,11(1):47-52.
    [127]袁传武,张华et al.武汉市江夏区碳汇造林基线碳储量的计量[J].中南林业科技大学学报:自然科学版,2010,002):10-15.
    [128]沈文清,刘允芬,et al千烟洲人工针叶林碳素分布、碳贮量及碳汇功能研究[J].林业实用技术,2006,8(5):5-8.
    [129]肖英,刘思华,et al.湖南4种森林生态系统碳汇功能研究[J].湖南师范大学自然科学学报,2010,33(001):124-128.
    [130]史军,刘纪远,et al.造林对陆地碳汇影响的研究进展[J].地理科学进展,2004,23(2):58-67.
    [131]曹吉鑫,田赞,et al.森林碳汇的估算方法及其发展趋势[J].生态环境学报,2009,18(5):2001-2005.
    [132]张治军,张小全,et al.清洁发展机制(CDM)造林再造林项目碳汇成本研究——以CDM广两珠江流域治理再造林项目为例[J].2009,5(6):348-355.
    [133]王春梅,下汝南,et al提高碳汇潜力:量化树种和造林模式对碳储量的影响[J].生态环境学报,2010,19(10):2501-2505.
    [134]谢锦升,杨玉盛,et al.植被恢复对侵蚀退化红壤碳吸存的影响[J].水土保持学报,2006,20(6):95-98.
    [135]李惠敏,陆帆,et al.城市化过程苦余杭市森林碳汇动态[J].复H.学报:白然科学版,2004,43(6):1044-1050.
    [136]李怒云,宋维明.气候变化与中国林业碳汇政策研究综述[J].林业经济,2006(5):60-64.
    [137]孙玉军,张俊,et al.兴安落叶松(Larix gmelini)幼苦龄林的生物量与碳汇功能[J].生态学报,2007,5
    [138]碳汇,罗怀良,et al.两南岩溶区农田生态系统岩溶作用及碳汇效应:以重庆南川市三泉镇为例[J].
    [139]吕景辉,任天忠,et al.国内森林碳汇研究概述[J].内蒙占林业科技,2008,34(002):43-47.
    [140]杜红梅,下超,et al.华北落叶松人工林碳汇功能的研究[J].中国生态农业学报,2009,17(4):756-759.
    [141]陈继红,宋维明.苦国CDM林业碳汇项目的评价指标体系[J].尔北林业大学学报,2006,34(1):87-88.
    [142]彭喜阳,左旦平.关于建立我国森林碳汇市场体系基本框架的设想[J].生态经济,2009,8(184-187.
    [143]程堂仁,冯菁,et al.甘肃小陇山森林植被碳库及其分配特征[J].生态学报,2008,28(1):33-44.
    [144]徐明岗,于荣et al.长期不同施肥下红壤活性有机质与碳库管理指数变化[J].土壤学报,2006,43(5):723-729.
    [145]下根绪,程国栋,et al.青藏高原草地土壤有机碳库及其全球意义[J].冰川冻土,2002,24(6):693-700.
    [146]下清奎,汪思龙,et al.杉木纯林与常绿阔叶林土壤活性有机碳库的比较[J].北京林业大学学报,2006,28(5):1-6.
    [147]方精云,陈安平.国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [148]龚伟,胡庭兴,et al.川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化[J].生态学报,2008,28(6):
    [149]闫恩荣,下希华,et al浙江天童地区常绿阔叶林退化对土壤养分库和碳库的影响[J].生态学报,2007,27(4):1646-1655
    [150]徐冰,郭兆迪,et al.2000~2050年中国森林生物量碳库:基于生物量密度与林龄关系的预测[J].苦国科学:生命科学,2010,7):587-594.
    [151]刘国华,傅伯杰,et al.苦国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [152]林清山,洪伟.中国森林碳储量研究综述[J][J].中国农学通报,2009,25(6):220-224.
    [153]R.D. Lasco.Forest carbon budgets in Southeast Asia following harvesting and land cover change[J].SCIENCE IN CHINA SERIES C LIFE SCIENCES-ENGLISH EDITION-,2002,45 (SUPP):55-64.
    [154]焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化[J].Forest,2005,2248(2252.
    [155]黄从德,张健,et al.四川森林土壤有机碳储量的空间分布特征[J].生态学报,2009,29(3):1217-1225.
    [156]M. Zhao, G. Zhou.[Forest Inventory Data (FID)-based biomass models and their prospects][J].Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban,2004,15(8):1468.
    [157]M. Battaglia, P. Sands.Process-based forest productivity models and their application in forest management[J].Forest Ecology and Management,1998,102(1):13-32.
    [158]M.A. De GRAAFF, K.J. Van GROENIGEN,et al.Interactions between plant growth and soil nutrient cycling under elevated CO2:A meta-analysis[J].Global Change Biology,2006,12(11):2077-2091.
    [159]J.G. Ehrenfeld.Effects of exotic plant invasions on soil nutrient cycling processes[J].Ecosystems,2003,6(6):503-523.
    [160]D.S. Baldwin, A. Mitchell.The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems:a synthesis[J].Regulated Rivers:Research & Management,2000,16(5):457-467.
    [161]P. Bindraban, J. Stoorvogel,et al.Land quality indicators for sustainable land management:proposed method for yield gap and soil nutrient balance[J]. Agriculture, ecosystems & environment,2000,81(2):103-112.
    [162]V. Allison, L. Condron,et al.Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand[J].Soil biology & biochemistry,2007,39(7):1770-1781.
    [163]K.K. Treseder, P.M. Vitousek.Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J].Ecology,2001,82(4):946-954.
    [164]A. Bhandari, J. Ladha,et al.Yield and soil nutrient changes in a long-term rice-wheat rotation in India[J].Soil Science Society of America Journal,2002,66(l):162-170.
    [165]B. Fransen, H. de Kroon,et al.Soil nutrient heterogeneity alters competition between two perennial grass species[J].Ecology,2001,82(9):2534-2546.
    [166]M. Entz, R. Guilford,et al.Crop yield and soil nutrient status on 14 organic farms in the eastern portion of the northern Great Plains[J].Canadian Journal of Plant Science,2001,81 (2):351-354.
    [167]M.D. Hunter.Insect population dynamics meets ecosystem ecology:effects of herbivory on soil nutrient dynamics[J].Agricultural and Forest Entomology,2001,3(2):77-84.
    [168]W.F. Sheldrick, J.K. Syers,et al.Soil nutrient audits for China to estimate nutrient balances and output/input relationships[J].Agriculture, ecosystems & environment,2003,94(3):341-354.
    [169]J. Li, G.S. Okin,et al.Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA[J].Biogeochemistry,2007,85(3):317-332.
    [170]D. Simard, J. Fyles.et al.Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest[J].Canadian Journal of Soil Science,2001,81(2):229-237.
    [171]P. Motavalli, R. Kremer,et al.Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations[J]. Journal of Environmental Quality,2004,33(3):816-824.
    [172]P. Drechsel, L. Gyiele,et al.Population density, soil nutrient depletion, and economic growth in sub-Saharan Africa[J].Ecological Economics,2001,38(2):251-258.
    [173]D.A. McGrath, C.K. Smith,et al.Effects of land-use change on soil nutrient dynamics in Amazonia[J].Ecosystems,2001,4(7):625-645.
    [174]J.C. Ordonez, P.M. Van Bodegom,et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility[J].Global Ecology and Biogeography,2009,18(2):137-149.
    [175]E.J. Jokela, T.A. Martin.Effects of ontogeny and soil nutrient supply on production, allocation, and leaf area efficiency in loblolly and slash pine stands[J].Canadian Journal of Forest Research,2000,30(10):1511-1524.
    [176]刘世荣,孙鹏森,et al.长江上游森林植被水文功能研究[J].自然资源学报,2001,16(5):451-456.
    [177]李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(5):427-432.
    [178]刘向东,吴钦孝,et al森林植被垂直截留作用与水土保持[J].水土保持研究,1994,1(3):8-13.
    [179]王仁卿,尤海梅.森林植被恢复的理论和实践:用乡土树种重建当地森林--宫胁森林重建法介绍[J].植物生态学报,2002,z1):133-139.
    [180]邵月红,潘剑君,et al.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报,2005,19(3):24-28.
    [181]石培礼,吴波,et al.长江上游地区主要森林植被类型蓄水能力的初步研究[J].白然资源学报,2004,19(3):351-360.
    [182]沈泽昊,张新时.三峡大老岭地区森林植被的空间格局分析及其地形解释[J].植物学报,2000,42(10):1089-1095.
    [183]何永涛,李文华,et al.黄土高原地区森林植被生态需水研究[J].环境科学,2004,25(3):35-39.
    [184]任青山,杨小林,et al.3S技术在拉萨市森林植被调查中的应用[J].东北林业大学学报,2001,29(4):18-21.
    [185]王思远,张增祥,et al.遥感与GIS支持下的苦国森林植被动态变化分析[J].资源科学,2002,24(5):64-69.
    [186]黄明斌,刘贤赵.黄土高原森林植被对流域径流的调节作用[J].应用生态学报,2002,13(9):1057-1060.
    [187]赵鸿雁,吴钦孝,et al.黄土高原森林植被水土保持机理研究[J].林业科学,2001,37(5)140-144.
    [188]杨存建,刘纪远,et al.热带森林植被生物量遥感估算探讨[J].地理与地理信息科学,2004,20(6):22-25.
    [189]王宗明,宋开山,et al.1982-2003年尔北林区森林植被NDVI与水热条件的相关分析'[J].Ecology,2007,26(12):1930r1936.
    [190]王国宏,杨利民.祁连山北坡中段森林植被梯度分析及环境解释[J].植物生态学报,2001,25(6):733-740.
    [191]项文化,田大伦,et al.杉木林采伐迹地撂荒后植被恢复早期的生物最与养分积累[J].生态学报,2003,23(4):695-702.
    [192]林开敏,洪伟,et al.杉木人工林林下植物生物量的动态特征和预测模型[J].林业科学,2001,37(1):99-105.
    [193]陈建宇.杉木林下植被生物最与土壤容重关系的研究[J].福建林业科技,2000,27(4):56-60.
    [194]焦如珍,杨承栋,et al.杉木人工林不同发育阶段土壤微生物数量及其生物量的变化[J].林业科学,2005,41(6):163-165.
    [195]康冰,刘世荣et al.南亚热带人工马尾松林下植物组成特征及主要木本种群生态位研究[J].应用生态学报,2005,16(9):1786-1790.
    [196]余新晓,秦永胜,et al.北京山地森林生态系统服务功能及其价值初步研究[J].生态学报,2002,22(5):783-786.
    [197]J.I. Nassauer.Ecological function and the perception of suburban residential landscapes[J].Managing Urban and High Use Recreation Settings. General Technical Report, USDA Forest Service North Central Forest Experiment Station, St. Paul, MN,1993,
    [198]C.L.-m.L. Xiao-lin, Y. Kong-jian.The Ecological Function and Sustainable Utilization of Urban Wetland [J][J].Urban Problems,2003,3(002.
    [199]S.M. Prober, K.R. Thiele,et al.Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns[J] Journal of Applied Ecology,2005,42(6):1073-1085.
    [200]C.H. Sekercioglu.Increasing awareness of avian ecological function[J].Trends in Ecology & Evolution,2006,21 (8):464-471.
    [201]李文华,李芬,et al.森林生态效益补偿的研究现状与展望[J].自然资源学报,2006,21(5):676-688.
    [202]林开敏,洪伟,et al.杉木成熟林林下植物生物量及其取样技术研究[J].福建林学院学报,2001,21(1):28-31.
    [203]沈植国,丁鑫,et al.高速公路沿线环境本底调查及土壤理化性质测定——以焦桐高速泌阳段为例[J].北华大学学报(自然科学版),2011,1(024.
    [204]刘鸿雁,黄建国.缙云山森林群落次生演替中土壤理化性质的动态变化[J].应用生态学报,2005,16(11):2041-2046.
    [205]林德喜,樊后保,et al.马尾松林下套种阔叶树土壤理化性质的研究[J].土壤学报,2004,41(4):655-659.
    [206]张林,雀儿山西南坡植被碳贮量与土壤有机碳贮量估算,四川农业大学,2007.
    [207]何斌,温远光,et al.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,38(2):21-26.
    [208]吴彦,刘庆,et al亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J].2001,25(6):648-655.
    [209]康冰,刘世荣,et al.马尾松人工林林分密度对林下植被及土壤性质的影响[J].应用生态学报,2009,20(10):2323-2331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700