用户名: 密码: 验证码:
太平洋磷虾(Euphausia pacifica Hansen)胰蛋白酶样酶酶学性质及基因片段研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过分离纯化太平洋磷虾胰蛋白酶样酶,对其相关的酶学性质进行研究。并克隆其基因进行序列分析,探讨其酶学性质的分子机理。以期为胰蛋白酶样酶的理论研究及其医学、工业应用提供理论基础。
     采用双向电泳及生物大分子质谱技术,在太平洋磷虾粗酶液内鉴定到至少两种胰蛋白酶样酶。太平洋磷虾粗酶液经35~65 %饱和度硫酸铵分级沉淀,DEAE Sepharose Fast Flow离子交换层析, Sephadex G100凝胶过滤层析以及Benzamidine Sepharose 4B亲和层析得到两种胰蛋白酶样酶,TLE I和TLE II,相对分子量分别为32.9和32.3 kDa。TLE I比活力为91.4 BApNA单位每毫克蛋白,纯化倍数为177;TLE II比活力为113 BApNA单位每毫克蛋白,纯化倍数为218。两种胰蛋白酶样酶促反应的速率受pH、温度影响。在37°C,以BApNA为底物的反应体系中,两种酶在较广泛的pH范围(6.0~11.0)内具有较高活性,反应最适宜pH在9.0~10.0之间;在pH 9.0,以BApNA为底物的反应体系中,两种酶在较广泛的温度范围(20~70°C)内具有较高活性,反应最适宜温度为40 ~50°C。两种胰蛋白酶样酶在低于40°C温度范围内保持稳定,在高于40°C时稳定性降低。
     Mg2+(≥0.3 mmol L-1)和Ca2+(≥0.2 mmol L-1)对两种胰蛋白酶样酶有一定的激活作用,Zn2+(≥0.1 mmol L-1)、Cu2+(≥0.2 mmol L-1)、Pb2+(≥0.1 mmol L-1)、Hg2+(≥0.1 mmol L-1)对两种酶均有一定抑制作用,其中Pb2+和Hg2+对两种酶表现出强烈的抑制。
     乙醇(≤10 %)、丙三醇(≤5 %)和二甲亚砜(≤5 %)在低浓度时对两种胰蛋白酶样酶活性无明显影响,高浓度(分别为≥15 %、≥10 %、≥10 %)下表现为强烈抑制作用;丙酮(≥5 %)对两种酶有较强烈的抑制作用。
     丝氨酸蛋白酶专一性抑制剂苯甲基磺酰氟(PMSF)、大豆胰蛋白酶抑制剂(STI)以及胰蛋白酶专一性抑制剂对氨基苯甲脒(p-amionbenzamidine)、鸡卵类粘蛋白(CEOM)、苯甲脒(benzamidine)、N-对甲苯磺酰-L-赖氨酸氯甲酮(TLCK)对两种胰蛋白酶样酶具不同程度抑制作用,胰凝乳蛋白酶专一性抑制剂N-对甲苯磺酰-L-苯丙氨酸氯甲酮(TPCK)对两种胰蛋白酶样酶无抑制作用。证明这两种酶是胰蛋白酶,属于丝氨酸蛋白酶家族。
     TLE I的米氏常数Km= 0.088 mmol L-1;催化常数(转换数)Kcat=0.84 S-1;表观二级速率常数(专一性常数,转换效率)Kcat / Km =9.54 mmol L-1 S-1;TLE II的Km=0.064 mmol L-1;催化常数(转换数)Kcat=0.98 S-1;表观二级速率常数(专一性常数,转换效率)Kcat / Km =15.3 mmol L-1 S-1。TLE的Kcat/Km较某些生物胰蛋白酶高1.6~6.7倍。
     Benzamidine对TLE I抑制类型为非竞争性抑制,抑制剂常数Ki=0.07 mmol L-1。
     组氨酸残基、色氨酸残基是构成TLE I酶活性中心的必需基团。精氨酸残基可能是该酶活性中心结合部位的关键基团。赖氨酸的游离ε-氨基与酶活性有关,巯基可能与酶活性相关。游离羧基不是TLE I活性中心的必需功能基团。
     太平洋磷虾、南极大磷虾、中国毛虾、中国明对虾、刀额新对虾、脊尾白虾、日本蟳、三疣梭子蟹、中华绒螯蟹等九种甲壳动物胰蛋白酶基因基因结构基本一致。在同一物种内,至少有三个基因家族,各家族间第二个内含子有13.2~66.1 %相似度,基因间有65.9~90 %相似度;各家族内部的第二个内含子有1.9~6.2 %的变异,基因间有2.5~6.7 %变异。
     动物胰蛋白酶接触反应三联体是保守的,底物结合位点Asp、盐键形成位点Asp以及二硫键形成位点(昆虫缺失两个)在绝大多数物种中也较保守,形成4个二硫键(昆虫只有3个)。
     系统进化树分析表明物种进化过程中,胰蛋白酶基因分化与演进过程可能与物种分化与演进的过程并不完全一致。
     甲壳动物胰蛋白酶极性氨基酸如精氨酸含量较低,Arg/(Arg+Lys)比值较低,天冬氨酸、谷氨酸含量较高;非极性氨基酸如异亮氨酸含量较高,而甲硫氨酸、脯氨酸含量较低。这些可能也是甲壳动物对环境理化因子及饵料成分、丰度多变的一种适应。在上述条件下甲壳动物演化出pH、温度稳定性较低但是柔性较高、降解效率较高的胰蛋白酶。
In this paper, trypsin-like enzymes (TLEs) were purified from North Pacific krill (Euphausia pacifica Hansen) and characterized. Trypsin genes were cloned, sequenced and analysised. This is aimed to provide primary data and theory support for future commercial utilization of E. pacifica TLEs in science, medicine and industry.
     At least two TLEs were identified from the crude exact of E. pacifica by 2 dimensional electrophoresis (2-DE) and mass spectrometry (MS). By solid ammonium sulfate fractional precipitation with saturation between 35 % and 65 %, DEAE sepharose Fast Flow ion exchange chromatography, sephadex G100 gel chromatography and Benzamidine Sepharose 4B affinity chromatography, two TLEs, TLE I and TLE II were purified. They had molecular masses of 32.9 and 32.3 kDa respectively. The specific activity and purification fold of TLE I were 91.4 BApNA Unit per mg protein and 177. And those of TLE II were 113 BApNA Unit per mg protein and 218 respectively.
     The purified TLE I and TLE II were active in extremely wide pH range of 6.0~11.0 and the optimum values were between pH 9.0 and 10.0 at 37°C with BApNA as subtrate. And they were active in temperature range of 20~70°C, extremely wide, with optimum values between 40 and 50°C at pH 9.0, BApNA as subtrate. TLE I and TLE II were stable at 40°C or lower, which were deactivated with temperature over 40°C。
     With metal ions, Mg2+(≥0.3 mmol L-1)and Ca2+(≥0.2 mmol L-1) had activation on TLE I and TLE II, while Zn2+(≥0.1 mmol L-1), Cu2+(≥0.2 mmol L-1), Hg2+(≥0.1 mmol L-1) and Pb2+(≥0.1 mmol L-1)showed different degree of inhibition on them, especially obvious at the presence of Hg2+ and Pb2+.
     The activities of TLE I and TLE II were relative stable with ethanol (≤10 %), glycerin (≤5 %) and Dimethyl sulphoxide (DMSO) (≤5 %) and deactivated with concentration over≥15 %,≥10 %,≥10 %10 % (v/v) respectively. Inhibitions of acetone (≥5 %) were significantly.
     Serine specific inhibitors, such as phenylmethylsulfonyl fluoride (PMSF) and soybean trypsin inhibotor (STI), and trypsin specific inhibitors, such as p-amionbenzamidine, chicken egg ovomucoid (CEOM), benzamidine and N-α-tysol-L-lysine chloromethyl ketone (TLCK) had different degree of inhibition on TLE I and TLE II; chymotrypsin specific inhibitor, N-α-tysol-L-phenylalanine chloromethyl ketone had no inhibition on TLE I and TLE II. It confirmed that TLE I and TLE II were of trypsins and belonged to serine proteinase families. The Km, Kcat and Kcat / Km of TLE I was 0.088 mmol L-1, 0.84 S-1 and 9.54 mmol L-1 S-1. And those of TLE II was 0.064 mmol L-1, 0.98 S-1and 15.3 mmol L-1 S-1 respectively。The Kcat / Km of the TLEs were 1.6~6.7 times higher than other organism.
     The inhibition type of Benzamidine on TLE I is noncompetitive inhibition, and the inhibitor constant of Benzamidine is 0.07 mmol L-1.
     The functional group study of TLE I showed that, tryptophan residue and histidine residue is essential group to active center. And it was speculated the arginine residue might be an essential group to active center. The freeε-amino group of lysinethe residue had relation with enzyme activity and the free hydroxyl group might have relation with it. According to the result, sulfhydryl group had no relation with enzyme active centre.
     Study on trypsin gene of 9 kinds of crustaceans revealed the consistence of gene structure in them. There are at least three trypsin gene families, with 13.2~66.1 % identity between introns and 65.9~90 % identity between genes of different families; and 1.9~6.2 % mutation between introns and 2.5~6.7 % mutation between genes of the same families.
     Analysis on the sequence of deduced protein showed that the essential active center, such as the catalytic triad residues, substrate binding group and disulfide bridge were conservative in crustaceans.
     The evolution rule revealed by polygenetic analysis on trypsin amino acids sequence might do not consistent with evolution theory nowadays completely.
     It was speculated that, because of low content of polar amino acid, such as Arg, Lys and Arg/(Arg+Lys) ratio, high Asp, Glu and Ile content, low Met and Pro content in crustacean trypsins, they had lower pH-thermal stability, but higher flexibility, especially higher physiological efficiency with them.
引文
[1]白虹,刘德富,张家华等。蛋白酶水解法在蚕蛹蛋白食品加工中的应用。食品科学,1994,5:25-27。
    [2]陈清西,颜思旭。文昌鱼碱磷酸酶的必需基团研究。厦门大学学报(自然科学版),1986,25(5):568-573。
    [3]陈清西,陈祥仁,颜思旭。鲨鱼肠蛋白酶活性必需基团的研究。厦门大学学报(自然科学版),1995,34(2):267-270。
    [4]董育新,刘慧霞。昆虫胰蛋白酶及其基因表达。昆虫知识,1998 35(4):249-251。
    [5]冯志彪,李冬梅,张伟。螺旋藻蛋白质的胰蛋白酶促水解。食品与机械,2002,1:11-13。
    [6]龚丽芬,郑志福,陈碧娥。胰蛋白酶酶解文蛤的工艺条件。氨基酸和生物资源,2003,25(2):45-47。
    [7]胡银英,袁铿,戴志芳等。胰蛋白酶在原代细胞制备中的灵活应用。江西医学院学报,2002,42,(1):43-44。
    [8]郭尧君编著。蛋白质电泳实验技术(第一版)。科学出版社,2001。
    [9]姜泓海,邹汉法,汪海林等。复合纤维素膜固定化胰蛋白酶反应器及其应用于蛋白质酶解。高等学校化学学报,2000,21(5):702-706。
    [10]李少菁,汤鸿,王桂忠。锯缘青蟹幼体消化酶活力昼夜节律的实验研究。厦门大学学报(自),2000,39(6):831-836。
    [11]刘玉梅、朱谨钊:对虾消化酶的研究。海洋科学,1984(5):46-50。
    [12]聂向庭,戚正武。猪肾酰化酶作用机理的研究Ⅰ.酶蛋白中巯基、咪唑基与酶活力的关系。生物化学与生物物理学报,1962,2(4): 170-175。
    [13]倪逸声,张龙翔。胰蛋白酶工程研究进展。生物工程进展,1992,12(1):2-8。
    [14]潘鲁青,王伟。日本对虾幼体几种消化酶活力的研究。海洋湖沼通报,1997, 2:15-18。
    [15]潘鲁青,王奎琪。三疣梭子蟹幼体消化酶活力及其氨基酸组成的研究。水产学报,1997,21(3):246-251.
    [16]潘鲁青。四种虾蟹类幼体消化酶活力的比较研究。青岛海洋大学学报(自),1997,27(3):313-318。
    [17]孙松、严小军。南极大磷虾的生物活性物质及其用途研究进展。极地研究,2001,13(3):213-216。
    [18]宋扬,赵辉,侯司。壳聚糖固定化胰蛋白酶亲和层析抑肽酶的条件及影响因素。中国生化药物杂志,1998,19(6):359-361。
    [19]孙玉昆,邹承鲁。木瓜蛋白酶的研究:活性中心组氨酸残基的羧基化。生物物理学报,1963,3(1):35-39。
    [20]汤鸿,李少菁,王桂忠。锯缘青蟹幼体消化酶活力。厦门大学学报(自),1995,34(1):88-93。
    [21]唐玥玓,张瑞林,鲜均明。应用胰蛋白酶分离豚鼠耳蜗外毛细胞系。华西医学,2003,18(1):73-74。
    [22]唐梓进,陈金良。固定化胰蛋白酶水解酪蛋白及亲和吸附提取磷肽。南京师大学报(自然科学版),1995,18(3):63-65。
    [23]魏华,赵维信:罗氏沼虾幼体及成虾消化酶活性。水产学报,1996,20(1):61-64。
    [24]王军,唐建国,张庭芳等。胰蛋白酶分子中二硫键Cysl29—Cys232的定位改造研究。生物化学杂志,1996,12(5):583-587。
    [25]王克,王荣,高尚武。东海浮游动物昼夜垂直移动的初步研究。海洋与湖沼, 2001,9 (32):532-539。
    [26]吴克左,戚正武。牛羊猪结晶胰蛋白酶的一些性质的比较研究。生物化学与生物物理学报,1966,6:32-41。
    [27]温燕梅,邱彩虹。吸附一交联法固定胰蛋白酶及在澄清啤酒中的应用。湛江海洋大学学报,2001,21(4):42-46。
    [28]武彦文,欧阳杰,张燕等。水解植物蛋白(HVP)的酶法制备及应用。中国调味品, 2002,279(5):19-22。
    [29]肖凯军,郭祀远,李琳等。胰蛋白酶水解鲨鱼鳍软骨提取粘多糖的研究。食品科学1999,7:18-21。
    [30]徐松琴等。蛇肌醛缩酶中巯基研究。生物化学与生物物理学报,1982,14(6):599-603。
    [31]熊正文,苏红,安赵栓等。胰蛋白酶—尿素联合消化增强石蜡切片免疫组化敏感性。医学研究通讯,2001,30,(8):37-38。
    [32]颜春洪,田方,肖风君等。黏附诱导卵巢细胞基质金属蛋白酶29基因的表达。中华肿瘤杂志,2002,24(1):17。
    [33]杨德渐,王永良编著。中国北部海洋无脊椎动物。北京:高等教育出版社,1996:324-325。
    [34]应国清,杨汉强。胰蛋白酶的固定化及其在玻璃酸制备中的应用。中国医药工业杂志,1999,30(6):243-246。
    [35]杨文鸽,张芝芬。胰蛋白酶对蚌肉蛋白水解条件的研究。食品工业科技,2001,22(2):38-39。
    [36]杨鹏云,程稚琴,袁汉成。应用胰蛋白酶裂解反相HPLC法分析rHuEPO肽图。中国生物制品学杂志,1997,10(4):214-217。
    [37]余瑞元,倪逸声,王林等。大鼠小鼠胰蛋白酶的分离纯化及动力学性质。生物化学杂志,1993,9(6):659-663。
    [38]袁永俊,高健。水解鱼肉蛋白的酶法制备。食品与机械,2002,89(3):13-16。
    [39]周桂,谭学才,黄在银。胰蛋白酶对壳聚糖的降解研究。广西农业生物科学,2002,21(1):50-53。
    [40]张龙翔,张庭芳,李令媛主编。生物化学实验方法与技术(第二版)。高等教育出版社,1997。
    [41]周育,郭宇立,倪逸声等。胰蛋白酶分子中二硫键的定位改造对活性的影响。生物化学与生物物理学报,1993,25(4):355-360。
    [42]张彧,农绍庄,徐龙权等?2蔚鞍酌附夤ひ仗跫挠呕4罅峁ひ笛г貉Пǎ?001,20(2):105-108。
    [43] Ahsan N., Watabe S.. Kinetic and structural properties of two isoforms of trypsin isolated from the viscera of Japanese anchovy, Engralis japonicus. J. Protein Chem., 2001, 20: 49-58.
    [44] Aittaleb M., Hubner R., Lamootte-Brasseur J.Gerday C.. Cold adaptation parameters derived from cDNA sequencing and molecular modeling of elastase from Antarctic fish Notothenia neglecta. Protein Eng.,1997, 10:475-477.
    [45] Akimoto H., Wu C., Kinumi T., Ohmiyaa Y.. Biological rhythmicity in expressed proteins of the marine dinoflagellate Lingulodinium polyedrum demonstrated by chronological proteomics. Biochemical and Biophysical Research Communications, 2004, 315: 306-312.
    [46] Allahpichay I., Shimizu C.. Separation of growth promoting factors from non-muscle krill meal of Euphausia superba. Bull. Japanese Soc. Sci. Fish, 1985, 51: 945-951.
    [47] Anheller J. E. Hellgren Lars G.I., Karlstam B., Vincent J. Biochemical and biological profile of a new enzyme preparation from Antarctic krill (E. superba) suitable for debridement of ulcerative lesions. Arch. Dermatol. Res. 1989, 281: 105-110.
    [48] Asgeirsson B., Fox J.W., Bjarnason J.B.. Purification and characterization of trypsin from thepoikilotherm Gadus morhua. Eur. J. Biochem., 1989, 180: 85-94.
    [49] Bangyeekhun E., Cerenius L., Soderhall K.. Molecular cloning and characterization of two serine proteinase genes from the crayfish plague fungus, Aphanomyces astaci. J. Invertebr Pathol, 2001, 77(3): 206-216.
    [50] Barrick D., Hughson F.M., and Baldwin, R.L.. Molecular mechanisms of acid denaturation: the role of histidine residues in the partial unfolding of apomyoglobin. J. Mol. Biol., 1994, 237: 588-601.
    [51] Bassompierre M., Ostenfled T.H., McLean E.. In vitro protein digestion and growth of Atlantic salmon with different trypsin isoenzymes. Aquaculture International, 1998, 6: 47-56.
    [52] Berg C.H., Kalfas S., Malmasten M., Arnebrant T.. Proteolytic degradation of oral biofilms in vitro and in vivio: potential of proteases originating from Euphausia superba for plaque control. Eur. J. Oral Sci 2001, 109(5): 316-324.
    [53] Biesiot P.M., McDowell-Capuzzo J.. Digestive protease,lipase and amylase activities in stageⅠlarvae of the American lobser Hpmarus americanus. Comp. Biochem. Physiol., 1990a, 95A: 47-54.
    [54] Blackstock W.P., Weir M.P.. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol, 1999, 17(3): 121-127.
    [55] Borovsky D., Janssen I., Vanden Broeck J., et al. Molecular sequencing and modeling of Neobellieria bullata trypsin. Evidence for translational control by Neobellieria trypsin-modulating oostatic factor. Eur J. Biochem, 1996, 237(1): 279-287.
    [56] Bradford M.M.. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 1976, 72, 248-254.
    [57] Brenez C., Gerkens P., Mazzucchelli G., Jauniaux T., Eppe G., De Pauw E., De Pauw-Gillet M.C.. A strategy to identify specific biomarkers related to the effects of a PCDD/F mixture on the immune system of marine mammals. Talanta, 2004 63, 1225-1230.
    [58] Brinton E.. Population biology of Euphausia pacifica off southern California. Fisheries Bulletin 1976, 74: 733-762.
    [59] Britton K.L., Baker P.J., Borges K.M., Engel P.C., Pasquo A., Rice D.W., Robb F.T., Scandurra R., Stillman T.J., Yi K.S.. Insights into thermal stability from a comparison of theglutamate dehydro-genases from Pyrococcus furiosus and Thernococcus litoralis. Eur J Biochem, 1995, 229:688-695.
    [60] Bustos R.O., Romo C.R., Healy M.G.. Purification of Trypsin-like enzymes from Antarctic krill processing wastewater.Process Biochemistry, 1999, 35: 327-333.
    [61] Cao M.J., Osatomi K., Suzuki M., et al. Purification and characterization of two anionic trypsins from the hepatopancreas of carp. Fish Sci., 2000, 66: 1172-1179.
    [62] Chen Q.X.,Zhang W.,Zheng W.Z.,et al. Kinetics of inhibition of alkaline phosphatase from green crab (Scylla serrata) by N-Bromosuccinimide. J. Protein Chem., 1996, 15(4): 345-350.
    [63] Candiano G., Bruschi M., Musante L., Santucci L., Ghiggeri G.M., Carnemolla B., Orecchia P., Zardi L., Righetti P.G.. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis,2004, 25: 1327-1333.
    [64] Chiou S.J., Vanden Broeck J., Janssen I. Borovsky D, Vandenbussche F,, Simonet G,, De Loof A.. Cloning of the cDNA encoding Scg-SPRP, an unusual Ser-protease-related protein from vitellogenic female desert locusts (Schistocerca gregaria). Insect Biochemistry and Molecular Biology, 1998, 28: 801-808.
    [65] Cohen T., Gertler A., Birk Y.. Pancreatic p roteolytic enzymes from carp (Cyprinus carpio) I. Purification and physical p roperties of trypsin, chymotryp sin, elastase and carboxypeptidase B. Comp. Biochem. Physiol., 1981, 69 (B): 639-646.
    [66] Corthals G.L., Molloy M.P., Herbert B.R., et al. Prefractionation of protein samples prior to two-dimensional electrophoresis. Electrophoresis, 1997, 18(34): 317323.
    [67] Coumans J.V., Humphery S.I., dos Remedios C.G., et al. Two dimensional gel electrophoresis of actin-binding proteins isolated by affinity chromatography from human skeletal muscle. Electrophoresis, 1997, 18(7): 1 0791 085.
    [68] Craik C.S., Largman C., Fletcher T., et a1.Redesigning trypsin: alteration of substrate specificity. Science, 1985, 228(4697): 291-297.
    [69] De Faire J.R., Franklin R.L., Kay J. Lindblom R. Acne treatment with multifunctional enzyme. United States Patent 5958406, 28 Sep., 1999.
    [70] De Faire J.R., Franklin R.L., Kay J. Lindblom R. Crustacean and fish derived multifunctional enzyme. United States Patent 5945102, 31 Aug., 1999.
    [71] Delboni L.F., Mande S.C., Rentier-Delrue F., Mainfroid V., Turley S., Vellieux FMD., MartialJ.A., Hol WGJ.. Crystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions. Protein Science, 1995, 4(12):2594-2604.
    [72] Dionysius D.A., Hoek K.S., Milne J.M., Slattery S.L.. Trypsin-like enzyme from sand crab (Portunus pelagicus): purification and characterization. J. Food Sci., 1993, 58, 780–792.
    [73] Dittrich B.U.. Life under extreme condition: aspect of evolutionary adaptation to temperature in crustacean proteases. Polar Biology, 1992, 12: 269-274.
    [74] Donachie S.P., Saborowski R., Peters G., et al. Bacterial digestive enzyme activity in the stomach and hepatopancreas of Meganyctiphanes norvegica(M. Sars,1857).J. Exp. Mar. Biol. & Ecol., 1995, 188: 151-165.
    [75] Eggerer J., 1984. Hysteretic behaviour of citrate synthase: site-directed limited proteolysis. Eur. J. Biochem. 143, 205-212.
    [76] Ellingsen T.E., Mohr V.. Biochemistry of the autolytic processes in Antarctic krill post mortem. Autoproteolysis. Biochem. J., 1987, 246(2): 295-305.
    [77] Endo Y. Ecological Studies on the Euphausiids Occurring in the Sanriku Waters with Special Reference to Their Life History and Aggregated Distribution. Sendai: Tohoku University. (in Japanese), 1981: 166.
    [78] Erlanger B.F., Kokousky N., Cohen W.. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys., 1961, 95:271-278.
    [79] Fang L.Sh., Lee B.N.. Ontogenic change of digestive enzymes in Penaeus monodon. Comp. Biochem. Physiol., 1992, 103B(4), 1033-1037.
    [80] Fenn J.B., Mann M., Meng C.K., Wong S.F., Whitehouse C.M.. Electrospray ionization for mass spectrometry of large biomoleculars. Science, 1989, 246(4296): 64-71.
    [81] Fernández Gimenez A.V., García-Carreňo F.L., Navarrete del Toro M.A.,et al.Digestive proteonases of red shrimp Pleoticus muelleri(Decapoda, penaeoidea):partial characterization and relationship with molting. Comp. Biochem. Physiol., 2001, 130B: 331-338.
    [82] Flores I., Mora C., Rivera E., et al. Cloning and molecular characteriza -tion of a cDNA from Blomia tropicalis homologous to dust mite group 3 allergens (trypsin-like proteases). Int. Arch. Allergy. Immunol., 2003, 130(1): 12-16.
    [83] Fountoulakis M., Langen H., Evers S.. Two-dimensional map of Haemophilus influenzae following protein enrichment by heparin chromatography. Electrophoresis, 1997, 18(7): 1193-1202.
    [84] Franklin R.L.. Treating viral infections with krill enzymes. United States Patent 20060134641, 22 June, 2006.
    [85] Freisheim J.H.,Huemmekens F.M.. Effect of N-Bromosuccinimide on Dihydrofolate Reductase. Biochemistry, 1969,8: 2271-2276.
    [86] Galgani F., Benyamin F., Van Wormhoudt A.. Purification, properties and immunoassay of trypsin from the shrimp (penaeus japonicus). Comp. Biochem. Physiol., 1985, 81B, 447-452.
    [87] Gassner N.C., Baase W.A., Matthews B.W.. A test of the "jigsaw puzzle" model for protein folding by multiple methionine substitutions within the core of T4 lysozyme. Proc. Natl. Acad. Sci .U S A, 1996, 93(22): 12155-12158.
    [88] Gates B, Travis J.. Isolation and comparative properties of shrimp trypsin. Biochemistry 1969, 8: 4483-4489.
    [89] Genicot S., Feller G., Gerday C.. Trypsin from antarctic fish (Paranotothenia magellanica forster) as compared with trout (Salmo gairdneri) trypsin. Comp. Biochem. Physiol. B, 1988, 90(3): 601-609.
    [90] Girard C., Jouanin L.. Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaeton cochleariae. Insect Biochemistry and Molecular Biology, 1999, 20:1129-1142.
    [91] Grant GA., Kenneth O. Henderson, Arthur Z. Eisen, and Ralph A. Bradshaw. Amino Acid Sequence of a Collagenolytic Protease from the Hepatopancreas of the Fiddler Crab, Uca pugilatod. Biochemistry, 1980, 19, 4653-4659.
    [92] Grg A., Bougth G., Obermaier C.. Two dimensional polyacrylamide gel electrophoresis immobilized pH gradients in the first dimensional the state of the art and the controversy of vertical and horizontal systems. Electrophoresis, 1995, 16(7): 1 0791 086.
    [93] Gudmundsdóttír E., Spilliaert R, Yang Q., Craik C.S., Bjarnason J.B., Gudmundsdóttír A. Isolation and characterization of cDNAs from Atlantic cod encoding two distinctpsychrophilic elastases. Comp. Biochem Physiol. B, 1996, 113: 795-801.
    [94] Guyonnet V., Tluscik F., Long P.L., Polanowski A., Travis J.. Purification and partialcharacterization of the pancreatic proteolytic enzymes trypsin, chymotrypsin and lastase from the chicken .Journal of Chromatography, 1999, 852 A: 217-225.
    [95] Gygi S.P., Corthals G.L., Zhang Y., et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA, 2000, 97(17):9390-9395.
    [96] Haig-Brown A. Going for the krill. In National Fisherman, 1994, 5: 18-19.
    [97] Haney P., Konisky J., Koretke K.K., Luthey-Schulten A., Wolynes P.G.. Strucural basis for thermostability and identification of potential active site residues for adenylate kinases from thr archaeal genus Metharvococcus. Proteins, 1997, 28: 117-130.
    [98] Harms J.,Anger K.,Klaus S.,Seeger B.. Nutritional effects on ingestion rate,digestive enzyme activity,growth and biochemical composition of Hyas araneus (Decapoda: Majidae) Larvae. J. Exp. Mar. Biol. Ecol.,1991,145(2 ):233~265.
    [99] Harms J. A.,Meyer-Harms B,Anger K..Growth and physiology of Carcinus maenus (Decapoda, Portunidae) larvae in the field and in laboratory experiments. Mar. Ecol. Prog. Ser.,1994, 108:107-118.
    [100] Harris R.P., Samain J.F., Moal J., Martin-Jezequel V., Poulet S.A.. Effects of algal diet on digestive activity in Calanus helgolandicus.Mar. Biol., 1986, 90:353-361.
    [101] Heath W.A. The Ecology and Harvesting of Euphausiids in the Strait of Georgia. Vancouver: University of British Columbia. 1977: 187.
    [102] Hellgren Lars G.I., Mohr V., Vincent Jan G., Proteases of Antarctic krill-a new system for effective enzymatic debridement of necrotic ulcerations. Experientia. 1986, 42(4): 403-404.
    [103] Hellgren Lars G.I., Mohr V., Vincent Jan G.. Cleaning with enzymes from krill. United States Patent 4801451, 31 Jan.,1986.
    [104] Hellgren Lars G.I., Mohr V., Vincent Jan G.. Process of removing biological contaminants with enzymes from krill. United States Patent 4963491, 16 oct.1990.
    [105] Hellgren Lars G.I., Karlstam B., Mohr V., Vincent Jan G. Krill enzymes. A new concept for efficient debridement of necrotic ulcers. Int. J. Dermatol. 1991, 30(2): 102-103.
    [106] Herbert B. Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis, 1999, 20(45): 660-663.
    [107] Hernandez-Cortes P., Cerenius L., García-Carre?o F. and Soderhall K.. Trypsin from Pacifastacus leniusculus hepatopancreas: purification and cDNA cloning of the synthesized zymogen. Biol. Chem. 1999, 380 (4), 499-501.
    [108] Hirche H.J., Anger K.. Digestive enzyme activities during larval development of Hyasaraneus. Comp. Biochem. Physiol., 1987,87B(2): 297-302
    [109] Honjo I., Kimura S., Nonaka M.. Purification and characterization of trypsin-like enzyme from shrimp Penaeus indicus. Bull Jap. Soc. Scient. Fish, 1990, 56: 1627-1634.
    [110] Iguchi N., Ikeda T., Imamura A.. Growth and life cycle of a euphausiid crustacean (Euphausia pacifica Hansen) in Toyama Bay, southern Japan Sea. Bull. Japan Sea Nat. Fish. Res. Inst. 1993, 43: 69-81.
    [111] Jaenicke R.. Protein structure and function at low temperatures. Phil. Trans. Roy. Soc. Lond. B, 1990, 326: 535-553.
    [112] Jiang S.T., Moody M. W., Chen H.C.. Purification and characterization of protease from digestive tract of grass shrimp (Penaeus monodon). J. Food Sci.,1991,56,322-326.
    [113] Jones D.A., Kumlu M., Vay L. Le, Fletcher D.J. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: a review. Aquaculture 1997,155:285-295.
    [114] Jones V., Ruddell J., Wainwright G., et al. One-dimensional and two-dimensional polyacrylamide gel electrophoresis: a tool for protein characterization in aquatic samples. Marine Chemistry, 2004, 85: 63-73.
    [115] Johnston D., Hermans J.M. and Yellowlees D.. Isolation and characteriz -ation of a trypsin from the slipper lobster, Thenus orientalis (Lund). Arch. Biochem. Biophys. 1995, 324 (1), 35-40.
    [116] Juliane G., Matthias A., Wolfgang V.. Krill-Enzyme Ein viel versprechendes Therapieprinzip in der Behandlung chronischer Wunden. Ars Medici,2002, 7: 310-313.
    [117] Kamo M., Kawakami T., Miyatake N., et al. Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis, 1995, 16: 423-430.
    [118] Karas M., Hillenkamp F.. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem., 1988, 60 (20): 2299-2301.
    [119] Karine G., Claudette J., Steven P.C., et al. Proteomic analysis of Axabidopsis seed germination and priming. Plant Physiology, 2001, 126: 835-848.
    [120] Kim J.C., Cha S.H., Jeong S.T., et al. Molecular cloning and nucleotide sequence of Streptomyces griseus trypsin gene. Biochem Biophys Res Commun, 1991, 181(2): 707-713.
    [121] Kimmel D.G., Bradley B.P.. Specific protein responses in the calanoid copepod Eurytemora affinis Poppe, 1880 to salinity and temperature variation. Journal of Experimental Marine Biology and Ecology, 2001, 266: 135-149.
    [122] Klein B., Le Moullac G., Sellos D., et al. Molecular Cloning and Sequence of Trypsin cDNAs from Penaeus vannamei (Crustacea, Decapoda): Use in Assessing Gene Expression during the Moult Cycle. Int. J. Biochem. Cell Biol., 1996, 28(5): 551-563.
    [123] Klein B., Sellos D. and Van Wormhoudt A.. Genomic organisation and polymorphism of a crustacean trypsin. multi-gene family. Gene, 1998, 216: 123-129.
    [124] Kulumaly K., Yule A.B., Jones D.A.. An energy budget for the larvae of Penaeus monodon(Fabricius). Aquaculture, 1989, 81: 13-25.
    [125] Kulumaly K., Jones D.A., Yule A.B.. Acceptability and digestion of diets fed to larval stages of Homarus fammarus and the role of dietary conditioning behavior. Mar. Biol., 1990,106:181-190.
    [126] Kuroda M., Sakai K., Autolysis of Antarctic krill protein and its inactivation by combined effects of temperature and pH. Trans. Tokyo Univ. Fish. 1978, 2: 53-63.
    [127] Kurtovic I., Marshall S.N., Simpson B.K.. Isolation and characterization of a trypsin fraction from the pyloric ceca of chinook salmon (Oncorhynchus tshawytscha) Comp. Biochem. Physio. B, 2006, 143: 432-440.
    [128] Kvamme B.O., Frost P. and Nilsen F.. The cloning and characterization of full-length trypsins from the salmon louse Lepeophtheirus salmonis. Mol. Biochem. Parasitol. 2004, 136(2), 303-307.
    [129] Kvamme B.O., Kongshaug H. and Nilsen F.. Organization of trypsin genes in the salmon louse (Lepeophtheirus salmonis, Crustacea, copepoda). genome. Gene, 2005, 352: 63-74.
    [130] Lehane S.M., Assinder S.J., Lehane M.J.. Cloning, sequencing, temporal expression and tissue-specificity of two serine proteases from the midgut of the blood-feeding fly Stomoxyscalcitrans. Eur. J. Biochem, 1998, 254(2): 290- 296
    [131] Le Huerou I., Wicker C., Guilloteau P., et al. Isolation and nucleotide sequence of cDNA clone for bovine pancreatic anionic trypsinogen. Structural identity within the trypsin family. Eur. J. Biochem., 1990, 193(3): 767-773.
    [132] Leiros H.-K.S., Willassen N.P., Smalas A.O.. Residue determinants and sequence analysis of cold-adapted trypsins. Extremophiles, 1999, 3: 205-219.
    [133] Leth-Larsen R.,ásgeirsson B., Thorolfsson M., Norregaard-Madsen M., Hojrunp P.. Structure of chymotrypsin variant B. from Atlantic cod, Gadus morhua. Biochem Biophys Acta, 1996, 1297:49-56.
    [134] Lemos D., Rodríguez A.. Nutritional effects on body composition, energy content and trypsin activity of Penaeus japonicus during early postlarval development. Aquaculture, Amsterdam, 1998, 160: 103-116.
    [135] Lemos D., García-Carre?o F.L., Hernandez P., Navarrete del Toro A.. Ontogenetic variation in digestive proteinase activity, RNA and DNA content of larval and postlarval white shrimp Litopenaeus schmitti. Aquaculture, 2002, 214(1): 363-380.
    [136] Le Vay L.,Rodriguez A.,Kamarudin M.S.,Jones D.A.. Influnce of live and artificial diets on tissue composition and trypsin activity in Penaeus japonicus larvae. Aquaculture,1993,118:287-297.
    [137] Le Vay L., Jones D.A., Pulleo-Cruz A.C., Sangha R.S., Ngamphongsai C.. Review: Digestion in relation to feeding strategies exhibited by crstacean larvae. Comp. Biochem. Physiol., 2001, 128A: 623-630.
    [138] L?pez J.L., Marina A., Vázquez J., Alvarez G.. A proteomic approach to the study of the marine mussels Mytilus edulis and M. galloprovinciali. Marine Biology., 2002, 141: 217-223.
    [139] Lottenberg R., Jackson C.M.. Biochimica et Biophysica Acta, 1983, 742: 558-564.
    [140] Lottenberg R., Hall J.A., Blinder M., Binder E.P., Jackson C.M.. The action of thrombin on peptide p-nitroanilide substrates. Substrate selectivity and examination of hydrolysis under different reaction conditions. Biochim Biophys Acta. 1983, 742(3): 539-57.
    [141] Lottenberg R., and Jackson C.M. Solution composition dependent variation in extinction coefficients for p-nitroaniline. Biochim. Biophys. Acta, 1983, 742, 558–564.
    [142] Lovett D.L., Felder D.L..Ontogenetic change in digestive enzyme activity of larval andpost-larval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidea). Biol. Bull. Mar. Biol. Lab Woods Hole, 1990, 178(2): 144-159.
    [143] Lu P.J., Liu H.C. and Tsai I.H.. The midgut trypsins of shrimp (Penaeus monodon). High efficiency toward native protein substrates including collagens. Biol. Chem. Hoppe-Seyler 1990, 371 (9), 851-859.
    [144] Macdonald N.L., Stark J.R., Keith M.. Digestion and nutrition of the prawn Penaeus monodon. J. World Aquacult. Soc.,1989, 20,53A.
    [145] MacDonald R.J., Stary S.J., Swift G.H.. Two similar but nonallelic rat pancreatic trypsinogens. Nucleotide sequences of the cloned cDNAs. J. Biol. Chem., 1982, 257 (16):9724 -9732.
    [146] Maeda-Martínez A.M., Obregón-Barboza V., Navarrete-Del Toro M.A., Obregón-Barboza H., García-Carre?o F.L.. Trypsin-like enzymes from two morphotypes of the‘living fossil’Triops (Crustacea: Branchiopoda: Notostraca). Comparative Biochemistry and Physiology, Part B, 2000, 126: 317–323.
    [147] Martínez A., Olsen R.L., Serra J.L.. Purification and characterization of two trypsin-like enzymes from the digestive tract of anchovy Engraulis encrasicholus. Comp. Biochem. Physiol. B, 1988, 91, 677– 684.
    [148] Mauchline J.. Feeding appendages of the Euphausiacea (Crustacea). J. Zool., 1967, 153, 1-43.
    [149] Mauchline J. and Fisher L.R.. The biology of euphausiids. Adv. Mar. Biol., 1969, 7, 1-454.
    [150] Mauchline J.. The biology of euphausiids. Adv. Mar. Biol., 1980, 18: 373-623.
    [151] Melrose J. Hall A, Macpherson C., Bellenger CR. and Ghosh P. Evaulatin of digestive proteinases rom the Antarctic krill Euphausis superba as potential chemonucleolytic agents, in vitro and vivo studies. Arch. Orhop. Trauma. Surg., 1995, 114: 145-152.
    [152] Mekkes J.R., Le Poole I.C., Das P. K.,Kammeyer A., Westerhof W.. In vitro tissue-digesting properties of krill enzymes compared with fifbrinolysin/ DNAse,papain and placebo.Int. J. Biochem. Cell Biol., 1997, 29(4): 703-707.
    [153] Mekkes J.R., Le Poole I.C., Das P.K., Bos J.D., Westerhof W.. Efficient debridement of necrotic wounds using proteolytic enzymes derived from Antarctic krill: a double-blind,placebo-controlled study in a standardized animal wound model.Wound Repair Regen,1998, Jan-Feb, 6(1):50-57.
    [154] Milne R., Kaplan H.. Purification and characterization of a trypsin- like digestive enzyme from spruce budworm (Choristoneura fumfeirana) responsible for the activation of d-endotoxin from Bacillus thuringiensis. Insect Biochem. Mol. Biol., 1993, 23, 663– 673.
    [155] Moullac GL, Klein B, Sellos D, et al. Adaptation of trypsin, chymotrypsin andα-amylase to casein level and protein source in Penaeus vannamei (Crustacea Decapoda). Journal of Experimental Marine Biology and Ecology, 1996, 208: 107-125.
    [156] Mrabet N.T.,Van Den Broeck A.,Van Den Brande I., et al. Arginine residues as stabilizing elements in proteins.Biochemistry, 1992, 31:2239-2253.
    [157] Muhlia-Almazan A., Garcia-Carreno F.L.. Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comp. Biochem. Physiol. B Biochem. Mol. Biol.,2002,133(3): 383-394.
    [158] Murakami K., Lagarde M., Yuki Y.. Identification of minor protein of human colotrum and mature milk by two-dimensional electrophoresis. Electrophoresis, 1998, 19(14): 2521-2527.
    [159] Nagamine-Natsuka Y., Norioka S., Sakiyama F.. Molecular cloning, nucleotide sequence, and expression of the gene encoding a trypsin-like protease from Streptomyces erythraeus. J. Biochem (Tokyo), 1995, 118(2): 338-346.
    [160] Nakagawa Y., Endo Y., Taki K.. Diet of Euphausia pacifica Hansen in Sanriku waters off northeastern Japan. Plankton Biol. Ecol. 2001, 48(1): 68-77.
    [161] Nakagawa Y., Endo Y., Taki K.. Contributions of heterotrophic and autotrophic prey to the diet of Euphausia pacifica Hansen in Sanriku waters off northeastern Japan. Polar Biosci 2002, 15: 52-65.
    [162] Nemoto T.. Foods of baleen whales in the northern Pacific. Scientific Repts. Whales Res. Inst. Tokyo. 1957, 12: 33-89.
    [163] Nemoto T.. Distribution of five main euphausiids in the Bering and the northern part of the North Pacific. J. Oceanogr. Soc. Jpn., 1962, 20th Anniv. Vol., 615-627.
    [164] Nicol S., Endo Y.. Krill fisheries of the world. FAO Fisheries Technical Paper, 1997, T367.
    [165] Odate K.. Fishery Biology of the Krill, Euphausia pacifica, in the Northeastern Coasts of Japan. Suisan Kenkyu Sosho. 1991, 40: 1-100.
    [166] O’Farrell P.H.. High resolution two dimensional electrophoresis of proteins. J. Biol. Chem., 1975, 250: 4007-4021.
    [167] Oh J.M., Brichory F., Puravs E., Kuick R., Wood C, Rouillarid JM et al., A database of protein expression in lung cancer. Proteomics, 2001, 1(10): 1303-1319.
    [168] Olalla A., Osuna C., Sebastian J., Sillero A., Sillero M.A.G., 1978. Purification and properties of three proteases from the larvae of the brine shrimp Artemia salina. Biochim. Biophys. Acta 523, 181-190.
    [169] Omondi J.G.. Digestive Endo-Proteases from the Midgut Glands of the Indian White Shrimp, Penaeus Indicus (Decapoda: Penaeidae) from Kenya. Western Indian Ocean J. Mar. Sci., 2005, 4(1): 109–121.
    [170] Osnes K.K., Mohr V.. Peptide hydrolases of Antarctic krill, Euphausia superba. Comparative Biochemistry and Physiology B,1985a, 82: 559-606.
    [171] Osnes K.K., Mohr V.. On the purification and characterization of three anionic serine-Type peptide hydrolyses from Antarctic krill, Euphausia superba. Comparative Biochemistry and Physiology B, 1985b, 82: 607–619.
    [172] Outzen H., Berglund G.I., Smalds A.O., Willassen N.P.. Temperature and pH sensitivity of trypsins from atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comp. Biochem. Physiol. B, 1996, 115(1): 33-45.
    [173] Parrington J., Coward K.. Use of emerging genomic and proteomic technologies in fish physiology. Aquat. Living Resour., 2002, 15, 193-196.
    [174] Parson T.R., Takahashi M., Hargrave B.. Biological Oceangraphic Processesnd edn. Pergamon Oxford,1977:332.
    [175] Pasquali C., Fialka I., Huber L.A.. Preparative two-electrophoresis of membrane proteins. Electro phoresis, 1997, 18(14): 2573-2581.
    [176] Perrincocon L.A., Marche P.N., Villiers C.L., et al. Purification of intracellular compartments involved in antigen processing: a new method based on magnetic storing. Biochem. J, 1999, 338(1): 123-130.
    [177] Pinsky S.D., LaForge K.S., Scheele G.. Differential regulation of trypsinogen mRNAtranslation: full-length mRNA sequences encoding two oppositely charged trypsinogen isoenzymes in the dog pancreas. Mol. Cell. Biol., 1985, 5 (10): 2669-2676.
    [178] Ponomareva L.A.. The euphausiids of the North Pacific, their distribution and ecology. Dokl. Akad. Nauk. SSSR, 1963: 1-142.
    [179] Rabilloud T. Solubilization of proteins for electrophoretic analyses. Electrophoresis, 1996, 17(5): 813-829.
    [180] Rage M., Amess B., Tounjend R., et al. Protemoic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc Nail Acad Sci USA, 1999, 92(22): 12589-12594.
    [181] Resch-Sedlmeier G., Sedlmeier D.. Release of digestive enzymes from the crustacean hepatopancreas: effect of vertebrate gastrointestinal hormones. Comparative Biochemistry and Physiology Part B, 1999, 123:187-192.
    [182] Roach J.C.. The molecular evolution of the vertebrate trypsinogense. Unpublished.
    [183] Rodriguez A., Le Vay L., Mourente G., Jones D. A.. Biochemical composition and digestive enzyme activity in larvae and postlarvae of Penaeus japonicus during herbivorous and carnivorous feeding.Mar. Biol.,1994,118: 45-51.
    [184] Ross R.M., Kendra L.D., English T.S.. Reproductive cycle and fecundity of Euphausia pacifica in Puget Sound, Washington. Limnol. Ocean-org. 1982, 27: 304-314.
    [185] Rudenskaya G.N., Kislitsin Y.A. and Rebrikov D.V. Collagenolytic serine protease PC and trypsin PC from king crab Paralithodes camtschaticus: cDNA cloning and primary structure of the enzymes. BMC Struct. Biol. 2004, 4 (1): 2.
    [186] Rypniewski W.R., Perrakis A., Vorgias C.E., Wilson KS. Evolutionary divergence and conservation of trypsin. Protein Engineering, 1994, 7: 57-64.
    [187] Sainz J.C., García-Carreňo F.L., Hernández-Cortés P.. Penaeus vannamei isotrypsins: purification and characterization. Comp. Biochem. Physio. B, 2004, 138:155-162.
    [188] Saito H.,Kotani Y., Keriko JM., et al.High levels of n-3 polyunsaturated fatty acids in Euphausia pacifica and its role as a source of docosahexaenoic and icosapentaecoic acids for higher trophic levels.Mar Chem,2002,78:9-28
    [189] Salamanca M.H., Barria C., Asenjo J.A., Andrews B. A.. Isolation, purification and preliminary characterization of cryophilic proteases of marine origin.Bioseparation, 2001, 10(4-5):237–241.
    [190] Samain J.F., et al. Possible processes of nutritive adaptions for zooplankton: a demonstration on Artemia Kiel. Meeresforsch, 1981, 5: 218-228.
    [191] Sambrook J., Fritsch E.F., Maniatis T.. Molecular Cloning: A Laboratory Manual, 2nd ed. 1989, Cold Spring Harbor Laboratory, New York.
    [192] Sangwan V. S., Akpek E.K., Voo I., Zhao T., Pinar V., Yang J., Christen W., Baltatzis S., Wild R., Foster C. S..Krill protease effects on wound healing after corneal alkali burn. Cornea, 1999,18(6): 707-711.
    [193] Santoni V., Bellini G., Caboche M., et al. Use of two-dimensional protein-pattern analysis for characterization of Arabidopsis thaliana mutants. Planta, 1994, 192: 557-566.
    [194] Sellos D., Van Wormhoudt A.. Molecular cloning of a cDNA that encodes a serine protease with chymotryptic and collagenolytic activities in the hepatopancreas of the shrimp Penaeus vannamei (Crustacea, Decapoda). FEBS Lett,1992,309(3): 219-224.
    [195] Shao-Heng H.E., CHEN Pu, CHEN Han-Qiu. Modulation of enzymatic activity of human mast cell tryptase and chymase by protease inhibitors. Acta Pharmacologica Sinica,2003,24 (9): 923-929.
    [196] Shepard J.L., Olsson B., Tedengren M., et al. Protein expression signatures identified in Mytilus edulis exposed to PCBs , copper and salinity stress. Mar Environ Res , 2000a, 50 : 337-340.
    [197] Shepard J.L., Bardely B.P.. Protein expression signatures and lysosomal stability in Mytilus edulis exposed to graded copper concentrations. Mar Environ Res , 2000b, 50 : 457-463.
    [198] Shevchenko A., Jensen O.N., Podtelejnikov A.V., Sagliocco F., Wilm M., Vorm O., Mortensen P., Shevchenko A., Boucherie H., Mann M.. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two-dimensional gels. Proc. Natl. Acad. Sci. USA, 1996, 93 (25): 14440–14445.
    [199] Shi Y.B., Brown D.D.. Developmental and thyroid hormone-dependent regulation of pancreatic genes in Xenopus laevis. Genes Dev, 1990, 4(7): 1107-1113.
    [200] Simpson B.K., Haard, N.F.. Purification and characterization of trypsin from Greenland cod, (Gadus ogac). 1. Kinetic and thermodynamic characterization. Can. J. Biochem. Cell.Biol., 1984,62, 894–900.
    [201] Sj?dahl J., Emmer A., Karlstam B., Vincent J., Roeraade J.. Separation of proteolytic enzymes originatiing from Antarctic krill (Euphausia superba) by capillary electrophoresis. J. Chromatogr. B Biomed Sci. Appl., 1998, 705(2): 231-241.
    [202] Sj?dahl J., Emmer A., Vincent J., Roweaade J.. Characterization of proteinases from Antarctic krill (Euphausia superba). Protein Expression and Purification,2002,26:153-161.
    [203] Smiles M.C. and Pearcy W.G.. Size structure and growth rate of Euphausia pacifica off the Oregon coast. Fish. Bull. 1971, 69: 79-86.
    [204] Smithson S.L., Paterson I.C., Bailey A.M., et al. Cloning and characterisation of a gene encoding a cuticle-degrading protease from the insect pathogenic fungus Metarhizium anisopliae. Gene, 1995, 166(1): 161-165.
    [205] Stabili L., A.M. Miglietta , G. Belmonte. Lysozyme-like and trypsin-like activities in the cysts of Artemia franciscana Kellog, 1906. Is there a passive immunity in a resting stage?. Journal of Experimental Marine Biology and Ecology, 1999, 237: 291–303.
    [206] Stauffer C.. Effect of pH on activity In: Enzyme Assay for Food Scientists, 1999, New York NY. : AVI Press.
    [207] Suh H.L., Toda T., Hong S.Y.. Ontogeny of Foregut Morphology in the Euphausiid Euphausia pacifica. Journal of Crustacean Biology, 1994, 14(1): 47-53.
    [208] Suzuki M.. On the distribution of Euphausia pacifica in the southern Joban and Kashima-nada areas. Bull. Tohoku Branch Jap. Soc. of Sci. Fish. 1986, 37: 30-31.
    [209] Suzuki T., Shibata N.. The utilization of Antarctic krill for human food. Food Reviews International, 1990, 6: 119-147.
    [210] Suzuki T., Srivastava A.S., Kurokawa T.. cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese flounder, Paralichthys olivaceus. Comparative Biochemistry and Physiology Part B, 2002, 131:63-70.
    [211] Tande K.S. and Slagstand D.. Ecological investigation on the zooplankton community of Balsfjorden, Northern Norway (Seasonal and short time cariations in enzyme activity in copepodite stageⅤandⅥmales and females of Calanus finmarchicus). Sarsia, 1982, 67(1): 63-70.
    [212] Tang J.. Modification of an Arginyl Residue in Pepsin by 2,3-Butanedione. J. Biochem.,1972,247:2704-2710.
    [213] Tanasichuk R.W., Ware D.M., Shaw W., MacFarlane G.A.. Variations in diet, daily ration, and feeding periodicity of Pacific hake (Merluccius productus) and spiny dogfish (Squalus acanthias) off the lower west coast of Vancouver Island. Can. J. Fish. Aquat. Sci. 1991, 48: 2118-2128.
    [214] Titani K., Sasagawa T., Woodbury R.G., Ericsson L.H., Dorsam H., Kraemer M., Neurath H. and Zwilling R.. Amino acid sequence of crayfish (Astacus fluviatilis) trypsin If. Biochemistry, 1983, 22 (6), 1459-1465.
    [215] Van Wormhoudt A.. Activites des proteases et amylases ches Penaeus kerathurus: existence d' um rhythme circadien. C. r. hebd. S. eanc . Acad. Sci.,Paris,1972,274:1208-1211.
    [216] Van Wormhoudt A.. Variations of the level of the digestive enzymes during the intermolt cycle of Palaemon serratus: influence of the season and effect of the eyestalk ablation. Comp. Bioch. &Physiol., 1974, 49A(4): 707-715.
    [217] Van Wormboudt A.. Activities enzymatiques digestive ches Palaemon serratus: Variations annuelles de I’acrophase des rhythmes circadiens. Biochem. System. & Ecol.,1977, 5:301-307.
    [218] Van Wormhoudt A.. Variations immunoquantitayives de 1 'α- amylase au cours du cycle d' intermue a differentes saisons xhes Palaemon serratus(Crustacea Decapoda:Natantia) . Mar. Biol., 1983, 74(2): 127-132.
    [219] Vega-Villasante F., Nolasco H., Civera R.. The digestive enzymes of the Pacific brown shrimp (Penaeus californiensis)-Ⅱ.Properties of protease activity in the whole digestive tract. Comp. Biochem. Physiol., 1995, 112B(1): 123-129.
    [220] Viswanatha T., et al. The Action of N-Bromosuccinimide on Trypsinogen and It’s Derivatives. Biochem. Biophys. Acta. 1960,40: 216-224.
    [221] Walsh K.A. Trypsinogen and trypsins of various species. Methods Enzymology, 1970, 19: 41-63.
    [222] Wang K., Gan L., Lee I., et al. Isolation and characterization of the chicken trypsinogen gene family. Biochem J, 1995, 307 (2):471-479.
    [223] Westerhof W., Van Ginkel C. J.,Cohen E. B. and Mekkes J. R..Prospective randomizedstudy comparing the debriding effect of krill enzyme and a non- enzymatic treatment in venous leg ulcers. Dermatologica, 1990, 181(4): 293-297.
    [224] Wijk K.J.. Challenge and prospect of plant proteomics. Plant Physiology, 2001, 126: 501-508.
    [225] Whitehouse C.M., Dreyer R.N., Yamashita M., Fenn J.B., Electrospray ionization for liquid chromatographs and mass spectrometers. Anal Chem, 1985, 57(3): 659-675.
    [226] Yan X.H., De Bondt H.L., Powell C.C., et al. Sequencing and characterization of the citrus weevil, Diaprepes abbreviatus, trypsin cDNA. Effect of Aedes trypsin modulating oostatic factor on trypsin biosynthesis. Eur. J. Biochem., 1999, 262(3): 627-636.
    [227] Yamamura O., Inada T. and Shimazaki K.. Predation on Euphausia pacifica by demersal fishes: predation impact and influence of physical variability. Mar. Biol., 1998, 132, 195-208.
    [228] Zaks A, Klibanov AM.Enzymatic catalysis in organic media at 100 degrees C. Science. 1984 Jun 15, 224(4654): 1249-1251.
    [229] Zeng F., Zhu Y., Cohen A.. Partial characterization of trypsin-like protease and molecular cloning of a trypsin-like precursor cDNA in salivary glands of Lygus lineolaris. Comp.Biochem. Physiol. B. Biochem. Mol. Biol., 2002, 131(3): 453-463.
    [230] Zeng F., Zhu Y.C., Cohen A.C.. Molecular cloning and partial characterization of a trypsin-like protein in salivary glands of Lygus hesperus (Hemiptera: Miridae). Insect Biochem Mol Biol, 2002, 32(4): 455-464.
    [231] Zheng Wen-zhu, Chen Qing-xi, Zhao Hong, et al. An essential tryptophan residue of green crab (Syclla serrata) alkaline phosphatase. Biochemistry and Molecular Biology International, 1997, 41(5): 951-959.
    [232] Zhu Y.C., Kramer K.J., Dowdy A.K., et al. Trypsinogen-like cDNAs and quantitative analysis of mRNA levels from the Indianmeal moth,Plodia interpunctella. Insect Biochemistry and Molecular Biology, 2000,30: 1027- 1035.
    [233] Zwilling R., Neurath H., Ericsoon L.H. and Enfield D.L.. The amino-terminal sequence of an invertebrate trypsin (crayfish Astacus leptodactylus): homology with other serine proteases. FEBS Lett. 1975, 60 (2): 247-249.
    [234] Zwilling R., Neurath H.. Invertebrate proteases. Method. Enzymol. 1981, 80, 633-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700