用户名: 密码: 验证码:
粘土基NO_x-SCR催化剂中毒与再生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以NH_3为还原剂选择性催化还原(SCR)去除烟气中氮氧化物(NO_x)是烟气脱硝技术中最为有效的控制措施之一。作为脱硝技术的核心,开发高活性以及抗毒性能好的催化剂一直是研究的热点。烟气除尘之后仍可能含有超细飞灰,而脱硫之后也存在二氧化硫残留以及水含量高等问题,因此,中毒就成为催化剂应用过程中不可避免的问题。低温NO_x-SCR技术因其能耗低而成为国内外研究的热点,然而对于催化剂运行过程中的中毒问题缺乏系统性的研究。以此为背景,本文以价格低廉的柱撑粘土为载体,就其低温负载锰铈活性成分的低温NO_x-SCR脱硝性能和中毒特性进行了系统研究。
     本文以锆基柱撑粘土(pillared clays,PILC)为载体负载MnO_x活性成份,发现粘土基催化剂表现出良好的低温NO_x-SCR性能;Ce的添加增强了MnO_x的分散性、催化剂储氧能力和表面NH_3吸附量,使得Mn-Ce/ZrO2-PILC在180-240℃温度范围的NO_x转化率达到90%以上。同时,对氨氮比、氧含量等操作参数对催化剂脱硝活性的影响进行了考察。
     在此基础上,本文采用浸渍法分别研究了碱金属(K2O/Na2O)以及钾盐(K_2SO_4、KCl)对Mn-Ce/ZrO2-PILC催化剂脱硝活性的影响。研究发现,NO_x转化率的降低主要归结于K/Na在催化剂沉积,造成催化剂比表面积的下降、表面NH_3吸附能力以及氧化还原特性的降低,而且K的抑制作用要强于Na。K_2SO_4以及KCl也对催化剂也产生了严重的中毒作用,催化剂失活的机理主要体现在与碱金属氧化物中毒机理相同。采用水洗和酸洗对各中毒催化剂进行了再生处理,水洗对中毒量较低的中毒催化剂再生效果良好,而对于失活严重的催化剂则基本无作用。0.1M H_2SO_4酸洗可以有效去除有毒物质,而且增强了NH_3吸附能力,其再生效果要好于水洗再生。
     对催化剂的碱土金属中毒研究表明,Ca/Mg沉积在催化剂表面,降低催化剂比表面积、影响催化剂氧化还原性和表面酸性,也可造成催化剂的严重失活。对Ca中毒催化剂的再生发现。酸洗再生效果要优于水洗,而且不同酸洗溶液对再生的效果有所不同。硫酸洗涤再生增强了催化剂的表面吸附NH_3的能力,比硝酸的再生效果好。
     此外,本文系统研究了H_2O含量、反应温度等不同操作参数下H_2O对催化剂脱硝活性的影响,发现H_2O对催化剂产生可逆性的抑制作用,而且低反应温度以及高H_2O含量对催化剂活性的不利影响越明显。反应系统中SO2对此类柱撑粘土负载锰铈催化剂的毒化作用非常严重,表面硫铵盐的沉积以及活性成分的硫酸化是催化剂活性降低的主要原因。本实验对SO2中毒催化剂热处理后,发现仅可恢复10%左右的脱硝活性;而水洗再生可使催化剂活性基本完全恢复。
The selective catalytic reduction (SCR) of NO_xwith NH_3as reductant hasproven to be a promising technology to reduce the NO_xemission in the flue gas.Catalysts are critical to selective catalytic reduction of NO_x. Much attention ispresently focused on developing catalysts with high activity and good resistant topoison. Since most of the flue gases contain some amounts of ultra-fine particles,sulfur and water after desulfurization and dedust equipment, deactivation of catalystsis inevitable in the using process. Recently, low-temperature SCR has attracted moreand more interests for its low energy consumption. However, the poisoning effects ofsulfur and ash in flue gas has not invested systemly in the low-temperature SCR. Inthis dissertation, pillared clays were prepared and used as catalyst support. Thelab-scale investigations of activity performance and potential deactivation of MnO_xbased catalysts were investigated for low-temperature NO_x-SCR.
     The catalysts of Zr-pillared calys (ZrO2-PILC) supported MnO_xshowed highDeNO_xperformance in the low-temperature (80-240℃) SCR. It was found that theintroduction of Ce could improve the dispersion of MnO_x, enhance the oxygenstorage capacity and the adsoroption of NH_3, which is beneficial to NO_x-SCR. Theresults showed that NO_xconversion would be more than90%in the range of180-240℃. The operating parameters, such as NH_3concentration and O2concentration on theDeNO_xwere also investigated.
     The comprehensive study of the effects of alkali metals oxides (K2O/Na2O) anddifferent species of potassium (K_2SO_4, KCl) were conducted over theMn-Ce/ZrO2-PILC catalyst. Activity assessments of poisoned samples indicated thatcatalyst deactivation involves decrease of BET surface area, restraint of adsorptioncapacity of NH_3and reduction features of the catalysts. It also showed that Kexhibited greater poisoning effect than Na. Potassium in the form of chloride andsulfate is also a strong poison for the catalyst, and the resultes indicated that thepoisoning mechanism of potassium salt is similar to that of alkali metal oxides. Regeneration of deactivated catalysts were conducted by washing with water anddiluted sulphuric acid. Water washing was a promising method to the catalystsdeactivated with lower molar ratio of poison to Mn, except for the heavily deactivatedcatalyst. Washing with0.1mol/L H_2SO_4solution could increase the adsorption ofNH_3and the catalyst activity was even higher than the fresh one.
     Alkaline-earth metals could also induce serious deactivation to the NO_x-SCRcatalysts. The deposition of poison resulted in pore plugging and decrease of surfaceacidity and low-temperature reducibility. Washing with diluted acid solution, such assulphuric acid and nitric acid, presented to be more effective than water washing.Washing with sulphuric acid could create new acid sites and enhance the adsorptionof NH_3, which is beneficial to the NO_x-SCR.
     The effects of H_2O and SO2were also investigated in the research. H_2O wouldinhibit the catalytic activity, and the effect relateed with vapor content and thereaction temperature. However, the activity restored quickly to its original level aftercutting off of H_2O. While the catalyst was sensitive to the SO2in the gas, andpoisoning effect was irreversible. The deposition of ammonium salts on catalystsurface and sulfation of catalyst active phase were found to be the main reasons forthe deactivation of catalysts. Furthermore, thermal treatment and water-washing wereapplied for the regeneration of the SO2-deacivited catalysts. It was found that washingwith water could recover the most catalyst activity, thermal treatment, in contrast, dolittle to the regeneration.
引文
[1] BP集团. BP世界能源统计2010.
    [2]张敏,陈军.国内燃煤电厂氮氧化物的控制现状及其发展[J].四川化工,2009,12(5):44-52.
    [3]钟秦.燃煤烟气脱硫脱销技术及工程实例[M].第二版.北京:化学工业出版社,2007.
    [4]周生贤.全国环境保护工作会议[R].北京,2011.
    [5]杨飏.氮氧化物减排技术与烟气脱硝工程[M].北京:冶金工业出版社,2007.
    [6]蔡小峰,李晓芸. SNCR-SCR烟气脱硝技术及其应用[J].电力环境保护,2008,24(3):26-29.
    [7]张强.选择性催化还原(SCR)脱硝技术在液态排渣炉上的应用[J].电力设备,2006,7(8):6-8.
    [8]杨超,张杰群,郭婷婷,等.火电厂SCR烟气脱硝技术及其催化剂研究进展[J].热电技术,2011,(3):11-13,16.
    [9]马东祝,张玲,李树山,等.燃煤电厂SCR烟气脱硝技术的应用及发展[J].煤炭技术,2011,30(3):5-7.
    [10] Busca G,Lietti L,Ramis G, et al. Chemical and mechanistic aspects of the selective catalyticreduction of NOxby ammonia over oxide catalysts: A review[J]. Applied Catalysis B:Environmental,1998,18(1-2):1-36.
    [11] Kijlstra W S, Brands D S, Poels E K, et al. Mechanism of the selective catalytic reduction ofNO by NH3over MnOx/Al2O3I. Adsorption and desorption of the single reaction components[J].Journal of Catalysis,1997,171(1):208-218.
    [12] Kijlstra W S, Brands D S, Smit H I, et al. Mechanism of the selective catalytic reduction ofNO with NH3over MnOx/Al2O3II. Reactivity of adsorbed NH3and NO complexes[J]. Journal ofcatalysis,1997,171(1):219-230.
    [13] Kotsifa A,Kondarides D I, Verykios X E. Comparative study of the chemisorptive andcatalytic properties of supported Pt catalysts related to the selective catalytic reduction of NO bypropylene[J]. Applied Catalysis B: Environmental,2007,72(1-2):136-148.
    [14]李俊华,郝吉明,傅立新,等.富氧条件下贵金属催化剂上丙烯选择性还原NO研究[J].高等学校化学学报,2003,24(11):2060-2064.
    [15] Liu Z M, Li J H, Abu S. M. Junaid. Knowledge and know-how in improving the sulfurtolerance of deNO catalysts[J]. Catalysis Today,2010,153(3-4):95-102.
    [16]钟秦,曲虹霞,徐复铭. V2O5/TiO2选择性催化还原脱除烟气中的NOx[J].燃料化学学报,2001,29(4):378-380.
    [17]孙克勤,钟秦,李明波,等. V2O5-WO3/TiO2脱硝催化剂的制备及其性能研究[J].环境科学研究,2007,20(3):124-127.
    [18] Ha H P, Maddigapu P R, Pullur A K, et al. SO2resistant antimony promoted V2O5/TiO2catalyst for NH3-SCR of NOxat low temperatures[J]. Applied Catalysis B: Environmental,2008,78(3-4):301-308.
    [19] Zhang F X, Zhang S J, Guan N J, et al. NO SCR with propane and propene on Co-basedalumina catalysts prepared by co-precipitation[J]. Applied Catalysis B: Environmental,2007,73(3-4):209-219.
    [20]卢红玲,蒋毅,程极源,等.铜基催化剂上乙醇还原NOx的研究[J].应用化学,2005,22(8):870-873.
    [21] Pasel J, Ka ner P, Montanari B, et al. Transition metal oxides supported on active carbons aslow temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3[J]. AppliedCatalysis B: Environmental,1998,18(3-4):199-213.
    [22] Donovan A P, Balu S U, Panagiotis G S. TiO2-supported metal oxide catalysts forlow-temperature selective catalytic reduction of NO with NH3I. Evaluation and characterizationof first row transition metals[J]. Journal of Catalysis,2004,221(2):421-431.
    [23] Tang X L, Hao J M, Yi H H, et al. Low-temperature SCR of NO with NH3over AC/Csupported manganese-based monolithic catalysts[J]. Catalysis Today,2007,126(3-4):406-411.
    [24]唐晓龙,郝吉明,徐文国,等.新型MnOx催化剂用于低温NH3选择性催化还原NOx[J].催化学报,2006,27(10):843-848.
    [25] Frey A M, Mert S, Hansen J D, et al. Fe-BEA Zeolite Catalysts for NH3-SCR of NOx[J].Catalysis Letters,2009,130(1-2):1-8.
    [26] Kustov A L, Hansen T W, Kustova M, et al. Selective catalytic reduction of NO by ammoniausing mesoporous Fe-containing HZSM-5and HZSM-12zeolite catalysts: An option forautomotive applications[J]. Applied Catalysis B: Environmental,2007,76(3-4):311-319.
    [27] Choi E Y, Nam I S, Kim Y G. TPD Study of Mordenite-Type Zeolites for Selective CatalyticReduction of NO by NH3[J]. Journal of Catalysis,1996,161(2):597-604.
    [28] Carja G, Kameshima Y, Okada K, et al. Mn-Ce/ZSM5as a new superior catalyst for NOreduction with NH3[J]. Applied Catalysis B: Environmental,2007,73(1-2):60-64.
    [29]李敏,仲兆平.氨选择性催化还原(SCR)脱除氮氧化物的研究[J].能源研究与利用,2004,(2):24-27.
    [30]张静,张育婵,丁朋果.燃煤锅炉选择性催化还原法(SCR)烟气脱硝技术探讨[J].能源与环境,2010,(2):62-63,67.
    [31] Bauerle G L, Wu S C, Nobe K. Parametric and durability studies of NOxreduction with NH3on V2O5catalysts[J]. Industrial&Engineering Chemistry Research and development,1978,17(2):117-122.
    [32] Inomata M, Mlyamoto A, Toshlaki Ui. Activities of V2O5/TiO2and V2O5/Al2O3catalysts forthe reduction of NO and NH3in the presence of O2[J]. Industrial and Engineering ChemistryProduct Research and Development,1982,21(3):424-428.
    [33] Forzatti P. Present status and perspectives in de-NO SCR catalysis[J]. Applied Catalysis A:General,2001,222(1-2):221-236.
    [34]周涛,刘少光,唐名早,等.选择性催化还原脱硝催化剂研究进展[J].硅酸盐学报,2009,37(2):317-324.
    [35] Madia G, Elsener M, Koebel M, et al. Thermal stability of vanadia-tungsta-titania catalysts inthe SCR process[J]. Applied Catalysis B: Environmental,2002,39(2):181-190.
    [36] Amiridis M D, Duevel R V, Wachs I E. The effect of metal oxide additives on the activity ofV2O5/TiO2catalysts for the selective catalytic reduction of nitric oxide by ammonia[J]. AppliedCatalysis B: Environmental,1999,20(2):111-122.
    [37] Tops e N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammoniaelucidated by in situ on-line fourier transform infrared spectroscopy[J]. Science,1994,265(5176):1217-1219.
    [38] Tops e N Y, Tops e H, Dumesic J A. Vanadia/Titania catalysts for selective catalytiereduction (SCR) of nitrie-oxide by ammonia:1.combined temperature-programmed in-situ FTIRand on-line mass-spectroscopy studies[J]. Journal of Catalysis,1995,151(1):226-240.
    [39] Chen J P. Preparation, characterization and deactivation of the catalysts for the selectivecatalytic reduction of NO with NH3[Ph.D学位论文]. Buffalo: State University of New York,1993.
    [40]梁材.国外商业SCR催化剂特性验证与研究[硕士学位论文].天津:南开大学,2007.
    [41]李玉江,吴涛.德国燃煤电厂氮氧化物的控制技术[J].环境科学研究,2000,13(4):47-49.
    [42]商雪松,陈进生,赵金平,等. SCR脱硝催化剂失活及其原因研究[J].燃料化学学报,2011,39(6):465-470.
    [43] Huang Z G, Zhu Z P, Liu ZY, et al. Formation and reaction of ammonium sulfate salts onV2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at lowtemperatures[J]. Journal of Catalysis,2003,214(2):213-219.
    [44] Chen L, Li J H, Ge M F. The poisoning effect of alkali metals doping over nanoV2O5-WO3/TiO2catalysts on selective catalytic reduction of NOxby NH3[J]. ChemicalEngineering Journal,2011,170(2-3):531-537.
    [45]付银成,浩宋,吴卫红,等. V2O5/TiO2的钾、钠、钙复合中毒及改性研究[J].能源工程,2011,(2):40-44.
    [46] Lisi L, Lasorella G, Malloggi S, et al. Single and combined deactivating effect of alkalimetals and HCl on commercial SCR catalysts[J]. Applied Catalysis B: Environmental,2004,50(4):251-258.
    [47]宋崇兵,金保升,仲兆平,等.碱金属氧化物对V2O5-WO3/TiO2催化剂脱硝性能的影响[J].环境化学,2007,26(6):783-786.
    [48] Larsson A C, Einvall J, Andersson Arne, et al. Targeting by comparison with laboratoryexperiments the SCR catalyst deactivation process by potassium and zinc salts in a large-ScaleBiomass Combustion Boiler[J]. Energy&Fuels,2006,20(4):1398-1405.
    [49] Zheng Y J, Jensen A D, Johnsson J E. Deactivation of V2O5-WO3-TiO2SCR catalyst at abiomass-fired combined heat and power plant[J]. Applied Catalysis B: Environmental,2005,60(3-4):253-264.
    [50] Zheng Y J, Jensen A D, Johnsson J E, et al. Deactivation of V2O5-WO3-TiO2SCR catalyst atbiomass fired power plants: Elucidation of mechanisms by lab-and pilot-scale experiments[J].Applied Catalysis B: Environmental,2008,83(3-4):186-194.
    [51] Kamata H, Takahashi K, Odenbrand C U I. The role of K2O in the selective reduction of NOwith NH3over a V2O5(WO3)/TiO2commercial selective catalytic reduction catalyst[J]. Journal ofMolecular Catalysis A: Chemical,1999,139(2-3):189-198.
    [52]张秋林. CaO对SCR催化剂选择的影响[J].能源研究与利用,2006,(6):29-30.
    [53]王义兵,郑建农.高钙粘性飞灰对SCR催化剂的影响分析[J].热力发电,2011,(11):17-21.
    [54] Nicosia D, Czekaj I, Krocher O. Chemical deactivation of V2O5/WO3-TiO2SCR catalysts byadditives and impurities from fuels, lubrication oils and urea solution Part II. Characterizationstudy of the effect of alkali and alkaline earth metals[J]. Applied Catalysis B: Environmental,2008,77(3-4):228-236.
    [55] Guo X Y. Poisoning and Sulfation on Vanadia SCR Catalyst[Ph.D学位论文]. Utah:Brigham Young University,2006.
    [56] Tang F S, Xu B L, Shi H H, et al. The poisoning effect of Na+and Ca2+ions doped on theV2O5/TiO2catalysts for selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental,2010,94(1-2):71-76.
    [57] Klimczak M, Kern P, Heinzelmann T, et al. High-throughput study of the effects of inorganicadditives and poisons on NH3-SCR catalysts-Part I: V2O5-WO3/TiO2catalysts[J]. AppliedCatalysis B: Environmental,2010,95(1-2):39-47.
    [58] Li H L, Li Y, Wu C Y, et al. Oxidation and capture of elemental mercury overSiO2-TiO2-V2O5catalysts in simulated low-rank coal combustion flue gas[J]. ChemicalEngineering Journal,2011,169(1-3):186-193.
    [59] He S, Zhou J S, Zhu Y Q, et al. Mercury oxidation over a vanadia-based selective catalyticreduction catalyst[J]. Energy&Fuels,2009,23(1):253-259.
    [60] Hong H J, Ham S W, Kim M H, et al. Characteristics of commercial selective catalyticreduction catalyst for the oxidation of gaseous elemental mercury with respect to reactionconditions[J]. Korean Journal of Chemical Engineering,2010,27(4):1117-1122.
    [61] Qi G, Yang R T, Chang R, et al. Smith Sylvio Cardoso. Deactivation of La-Fe-ZSM-5catalystfor selective catalytic reduction of NO with NH3: field study results[J]. Applied Catalysis A:General,2004,275(1-2):207-212.
    [62] Khodayari R, Odenbrand C U I. Deactivating effects of lead on the selective catalyticreduction of nitric oxide with ammonia over a V2O5/WO3/TiO2catalyst for waste incinerationapplications[J]. Industrial&Engineering Chemistry Research,1998,37(4):1196-1202.
    [63] Gao X, Du X S, Fu Y C, et al. Theoretical and experimental study on the deactivation ofV2O5based catalyst by lead for selective catalytic reduction of nitric oxides[J]. Catalysis Today,2011,175(1):625-630.
    [64] Staudt J E, Engelmeyer T, Weston W H, et al. The impact of arsenic on coal fired powerplants equipped with SCR-experience at OUC stanton.2002.
    [65] Li Y Z, Tong H L, Zhuo Y Q, et al. Simultaneous removal of SO2and trace As2O3from fluegas: mechanism, kinetics study, and effect of main gases on arsenic capture[J]. EnvironmentalScience&Technology,2007,41(8):2894-2900.
    [66]徐晓亮,黄丽娜,缪明烽. SCR脱硝催化剂循环再利用的研究进展[J].环境与安全,2011,(6):6-9.
    [67]苏航. SCR系统中板式和蜂巢式催化剂的选取[J].电力环境保护,2005,(2):27-29.
    [68]肖青云,吕庭豪. SCR-一种新型环保装置[J].船海工程,2002,(2):32-34.
    [69]沈伯雄,熊丽仙,刘亭,等.纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究[J].燃料化学学报,2010,38(1):85-90.
    [70]王静,沈伯雄,刘亭,等.钒钛基SCR催化剂中毒及再生研究进展[J].环境科学与技术,2010,(9):97-101.
    [71]马建蓉,黄张根,刘振宇,等.再生方法对V2O5/AC催化剂同时脱硫脱硝活性的影响[J].催化学报,2005,(6):463-469.
    [72] Khodayari R, Odenbrand C U I. Regeneration of commercial TiO2-V2O5-WO3SCR catalystsused in bio fuel plants[J]. Applied Catalysis B: Environmental,2001,30(1-2):87-99.
    [73]云端,邓斯理,宋蔷,等. V2O5-WO3/TiO2系SCR催化剂的钾中毒及再生方法[J].环境科学研究,2009,22(6):730-735.
    [74] Jensen A D, Zheng Y J, Johnsson J E. Laboratory Investigation of Selective CatalyticReduction Catalysts: Deactivation by Potassium Compounds and Catalyst Regeneration[J].Industrial&Engineering Chemistry Research,2004,43(4):941-947.
    [75]沈伯雄,施建伟,杨婷婷,等.选择性催化还原脱氮催化剂的再生及其应用评述[J].化工进展,2008,27(1):64-67.
    [76] Xie G Y, Liu Z Y, Zhu Z P, et al. Reductive regeneration of sulfated CuO/Al2O3catalyst-sorbent in ammonia[J]. Applied Catalysis B: Environmental,2003,45(3):213-221.
    [77] Joseph M, Fedeyko B C. Mechanistic study of the low temperature activity of transitionmetal exchanged zeolite SCR catalysts[J]. Catalysis Today,2010,151(3-4):231-236.
    [78] Kang M, Park E D, Kim J M, et al. Cu-Mn mixed oxides for low temperature NO reductionwith NH3[J]. Catalysis Today,2006,111(3-4):236-241.
    [79] Lu P, Li C T, Zeng G M, et al. Low temperature selective catalytic reduction of NO byactivated carbon fiber loading lanthanum oxide and ceria[J]. Applied Catalysis B: Environmental,2010,96(1-2):157-161.
    [80] Kato A, Matsuda S, Nakajima F, et al. Reduction of nitric oxide with ammonia on ironoxide-titanium oxide catalyst[J]. The Journal of Physical Chemistry,1981,85(12):1710-1713.
    [81] Liu F D, He H, Zhang C B. Novel iron titanate catalyst for the selective catalytic reduction ofNO with NH3in the medium temperature range[J]. Chemical Communications,2008,(17):2043-2045.
    [82] Teng H S, Hsu L Y, Lai Y C. Catalytic reduction of NO with NH3over carbons impregnatedwith Cu and Fe[J]. Environment Science Technology,2001,35(11):2369-2374.
    [83] Xie G Y, Liu Z Y, Zhu Z P, et al. Simultaneous removal of SO2and NOxfrom flue gas usinga CuO/Al2O3catalyst sorbent: I. Deactivation of SCR activity by SO2at low temperatures[J].Journal of Catalysis,2004,224(1):36-41.
    [84] Tost R M, Gonzalez J S, Torres P M, et al. selective catalytic reduction of NO by ammonia atlow temperature on catalysts based on copper oxide supported on a zirconium-doped mesoporoussilica.Catalysis Letters,2002,82(3-4):205-212.
    [85] Ha H P, Maddigapu P R, Pullur K A, et al. SO2resistant antimony promoted V2O5/TiO2catalyst for NH3-SCR of NOxat low temperatures[J]. Applied Catalysis B: Environmental,2008,78(3-4):301-308.
    [86] Choi S H, Cho S P, Lee J Y, et al. The influence of non-stoichiometric species of V/TiO2catalysts on selective catalytic reduction at low temperature[J]. Journal of Molecular catalysisA-Chemical,2009,304(1-2):166-173.
    [87] Caraba R M, Masters S G, Eriksen K M, et al. Selective catalytic reduction of NO by NH3over high surface area Vanadia-silica catalysts[J]. Applied Catalysis B: Environmental,2001,34(2):191-200.
    [88] Zhu Z P, Liu Z Y, Liu S J, et al. A novel carbon-supported vanadium oxide catalyst for NOreduction with NH3at low temperatures[J]. Applied Catalysis: Environmental,1999,23(4):L229-L233.
    [89] Zhu Z P, Liu Z Y, Niu H X, et al. NO-NH3-O2reaction catalyzed by V2O5/AC at lowtemperatures: effects of SO2, V2O5loading and reaction temperature[J]. Science in China SeriesB-Chemistry,2000,43(1):51-57.
    [90] Kang M, Park E D, Kim J M, et al. Manganese oxide catalysts for NOxreduction with NH3atlow temperatures[J]. Applied Catalysis A: General,2007,327(2):261-269.
    [91] Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. AppliedCatalysis B: Environmental,2007,76(1-2):123-134.
    [92] Grzybek T, Klinik J, Krzyzanowski A, et al. Selective catalytic reduction of nitric oxide withammonia on Mn-promoted carbonized used silica-alumina sorbents[J]. Catalysis Letters,1999,63(1-2):107-111
    [93] Jiang B Q, Liu Y, Wu Z B. Low-temperature selective catalytic reduction of NO onMnOx/TiO2prepared by different methods[J]. Journal of Hazardous Materials,2009,162(2-3):1249-1254.
    [94] Qi G, Yang R T, Chang R. MnOx-CeO2mixed oxides prepared by co-precipitation forselective catalytic reduction of NO with NH3at low temperatures[J]. Applied Catalysis B:Environmental,2004,51(2):93-106.
    [95] Yang R T, Qi G. Low-temperature SCR of NO with NH3over USY-supported manganeseoxide-based catalysts[J]. Catalysis Letters,2003,87(1-2):67-71.
    [96] Donovan A P, Balu S U, Ettireddy P R, et al. Identification of surface species ontitania-supported manganese, Chromium, and Copper Oxide Low-Temperature SCR Catalysts[J].The Journal of Physical Chemistry B,2004,108(28):9927-9936.
    [97] Sreekanth P M, Smirniotis P G. Selective reduction of NO with CO over titania supportedtransition metal oxide catalysts[J]. Catalysis Letters,2008,122(1-2):37-42.
    [98]沈伯雄,郭宾彬,史展亮,等. CeO2/ACF的低温SCR烟气脱硝性能研究[J].燃料化学学报,2007,35(1):125-128.
    [99]韦正乐,黄碧纯,黄华存. CeO2/ACFP催化剂低温选择性催化还原NO[J].化工环保,2008,28(2):114-117.
    [100]刘炜,童志权,罗婕. Ce-Mn/TiO2催化剂选择性催化还原NO的低温活性及抗毒化性能[J].环境科学学报,2006,26(8):1240-1245.
    [101] Casapu M, Krocher O, Elsener M. Screening of doped MnOx-CeO2catalysts forlow-temperature NO-SCR[J]. Applied Catalysis B: Environmental,2009,88(3-4):413-419.
    [102]郭静,李彩亭,路培,等. CeO2改性MnOx/Al2O3的低温SCR法脱硝性能及机制研究[J].环境科学,2011,32(8):2240-2246.
    [103]寻洲,童华,黄妍,等. Mn-Ce-Fe/TiO2低温催化还原NO的性能[J].环境科学学报,2008,28(9):1733-1738.
    [104]钟标城,周广英,王文辉,等. Fe掺杂对MnOx催化剂结构性质及低温SCR反应机制的影响[J].环境科学学报,2011,31(10):2091-2101.
    [105] Yang R T, Qi G. Low-temperature selective catalytic reduction of NO with NH3over ironand manganese oxides supported on titania[J]. Applied Catalysis B: Environmental,2003,44(3):217-225.
    [106] Wu Z B, Jiang B Q, Liu Y. Effect of transition metals addition on the catalyst ofmanganese/titania for low-temperature selective catalytic reduction of nitric oxide withammonia[J]. Applied Catalysis B: Environmental,2008,79(4):347-355.
    [107]吴碧君,肖萍,刘晓勤. MnOx-WO3/TiO2NH3选择性还原NOx的催化性能与动力学[J].化工学报,2011,62(4):940-946.
    [108] Smirniotis P G, Sreekanth P M, Pe a D A, et al. Manganese oxide catalysts supported onTiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3[J]. Industrial&Engineering Chemistry Research,2006,45(19):6436-6443.
    [109] Jin R B, Liu Y, Wu Z B, et al. Low-temperature selective catalytic reduction of NO withNH3over Mn-Ce oxides supported on TiO2and Al2O3: A comparative study[J]. Chemosphere,2010,78(9):1160-1166.
    [110] Shen B X, Liu T, Yang X Y, et al. MnOx/Ce0.6Zr0.4O2catalysts for low-temperatureselective catalytic reduction of NOxwith NH3[J]. Envrionmental Engineering Science,2011,28(4):291-298.
    [111] Lin T, Zhang Q L, Li W. Monolith manganese-based catalyst supported on ZrO2-TiO2forNH3-SCR reaetion at low temperature[J]. Acta Physico-Chimica Sinica,2008,24(7):127-1131.
    [112]梁锦平,华坚,尹华强,等.低温烟气脱氮活性炭基催化剂[J].四川环境,2006,25(2):99-104.
    [113]郭占成.活性炭选择性催化还原(SCR)烟道气中NOx[J].环境工程,1999,17(4):35-40.
    [114]沈伯雄,周元驰,史展亮,等.活性炭纤维的预处理及其SCR催化活性研究[J].燃料化学学报,2008,36(3):376-380.
    [115]莫德清,叶代启.活性碳纤维表面改性及其在气体净化中的应用[J].环境科学与技术,2008,31(9):77-81.
    [116]沈伯雄,史展亮,施建伟,等.基于Mn-CeOx/ACFN的低温SCR脱硝[J].化工进展,2008,35(1):87-91.
    [117] Valdés-Sol s V, Marbán G, Fuertes A B. Low-temperature SCR of NOxwith NH3overcarbon-ceramic cellular monolith-supported manganese oxides[J]. Catalysis Today,2001,69(1-4):259-264.
    [118] Valdés-Sol s V, Marbán G, Fuertes A B. Low-temperature SCR of NOxwith NH3overcarbon-ceramic supported catalysts[J]. Applied Catalysis B: Environmental,2003,46(2):261-271.
    [119] Hadjiivanov K I. Identification of neutral and charged NxOysurface species by IRspectroscopy[J]. Catalysis Reviews Science And Engineering,2000,42(1-2):71-144.
    [120] Kijlstra W S, Daamen J C M L, Graaf J M Van de, et al. Inhibiting and deactivatingeffects of water on the selective catalytic reduction of nitric oxide with ammonia overMnOx/Al2O3[J]. Applied Catalysis B: Environmental,1996,7(3-4):337-357.
    [121]黄继辉,童华,童志权,等. H2O和SO2对Mn-Fe/MPS催化剂用于NH3低温还原NO的影响[J].过程工程学报,2008,8(3):517-522.
    [122] Huang Z G, Liu Z Y, Zhang X L, et al. Inhibition effect of H2O onV2O5/AC catalyst forcatalytic reduction of NO with NH3at low temperature[J]. Applied Catalysis B: Environmental,2006,63(3-4):260-265.
    [123] Huang Z G, Zhu Z P, Liu Z Y. Combined effect of H2O and SO2on V2O5/AC catalysts forNO reduction with ammonia at lower temperatures[J]. Applied Catalysis B: Environmental,2002,39(4):361-368.
    [124] Zhang J F, Huang Y, Chen X. Selective catalytic oxidation of NO over iron and manganeseoxides supported on mesoporous silica[J]. Journal of Natural Gas Chemistry,2008,17(3):273-277.
    [125] Huang J H, Tong Z Q, Huang Y, et al. Selective catalytic reduction of NO with NH3at lowtemperatures over iron and manganese oxides supported on mesoporous silica[J]. AppliedCatalysis B: Environmental,2008,78(3-4):309-314.
    [126] Zhu Z P, Niu H X, Liu Z Y, et al. Decomposition and reactivity of NH4HSO4on V2O5/ACcatalysts used for NO reduction with ammonia[J]. Journal of Catalysis,2000,195(2):268-278.
    [127] Zhu Z P, Liu Z Y, Niu H X, et al. Mechanism of SO2promotion for NO reduction with NH3over activated carbon-supported vanadium oxide catalyst[J]. Journal of Catalysis,2001,197(1):6-16.
    [128] Zhu Z P, Liu Z Y, Liu S J, et al. Catalytic NO reduction with ammonia at low temperatureson V2O5/AC catalysts: effect of metal oxides addition and SO2[J]. Applied Catalysis B:Environmental,2001,30(3-4):267-276.
    [129]伍斌,黄妍,郑毅,等. SO2对Mn-Cu-Ce/TiO2低温选择催化还原NO的影响[J].环境科学学报,2008,28(5):960-964.
    [130] Liu F D, He H, Ding Y, et al. Effect of manganese substitution on the structure and activityof iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Applied CatalysisB: Environmental,2009,93(1-2):194-204.
    [131]刘福东,单文坡,石晓燕,等.用于NH3选择性催化还原NO的非钒基催化剂研究进展[J].催化学报,2011,32(7):1113-1128.
    [132] Park T S, Jeong S K, Hong S H, et al. Selective catalytic reduction of nitrogen oxides withNH3over natural manganese ore at low temperature[J]. Industrial&Engineering ChemistryResearch,2001,40(21):4491-4495.
    [133] Kijlstra W S, Biervliet M, Poels E K. Deactivation by SO2of MnOx/Al2O3catalysts used forthe selective catalytic reduction of NO with NH3at low temperatures[J]. Applied Catalysis B:Environmental,1998,16(4):327-337.
    [134]沈伯雄,刘亭,杨婷婷,等.低温SCR脱硝催化剂过渡金属氧化物改性及硫中毒失活机制研究[J].环境科学,2009,30(8):2204-2209.
    [135] Han Y S, Yamanaka S, Choy J H. Acidic and hydrophobic microporous clays pillared withmixed metal oxide nano-sols[J]. Journal of Solid State Chemistry,1999,144(1):45-52.
    [136] Canizares P, Valverde J L, Kou M R S, et al. Synthesis and characterization of PILCs withsingle and mixed oxide pillars prepared from two diVerent bentonites.A comparative study[J].Microporous and Mesoporous Materials,1999,29(3):267-281.
    [137]肖金凯,荣天君.粘土矿物在催化裂化催化剂中的应用[J].高校地质学报,2000,6(2):282-286.
    [138]戴劲草,肖子敬,叶玲,等.纳米多孔粘土材料[J].非金属矿,1998,124(4):1-2.
    [139]刘灵燕,肖金凯,张澄博,等.柱化剂研究进展[J].矿物岩石地球化学通报,2002,21(4):247-252.
    [140]李松军,罗来涛,郭建军.交联粘土催化剂的研究进展[J].工业催化,2000,8(6):3-7.
    [141]戴劲草,萧子敬,叶玲,等.粘土的层间交联和多孔材料的形成条件[J].无机材料学报,1999,14(1):90-94.
    [142] Vaccari A. Preparation and catalytic properties of cationic and anionic clays[J]. CatalysisToday,1998,41(1):53-71.
    [143] Kaneko T, Shimotsuma H, Kajikawa M, et al. Synthesis and photocatalytic activity oftitania pillared clays[J]. Journal of Porous Materials,2001,8(4):295-301.
    [144] Bineesh K V, Kim S Y, Jermy B R, et al. Synthesis, characterization and catalyticperformance of vanadia-doped delaminated zirconia-pillared montmorillonite clay for theselective catalytic oxidation of hydrogen sulfide[J]. Journal of Molecular Catalysis A: Chemical,2009,308(1-2):150-158.
    [145]孙家寿,刘羽,鲍世聪.硅钛交联膨润土对COD的吸附研究[J].非金属矿,1998,122(2):12-13.
    [146] Mattes W, Mdasen F T, Kahr G. Soprtion of heavy-metal cations by Al andZ-hydroxy-interealalated and pillared bentonite[J]. Clay and Clay Minerals,1999,47(5):617-629
    [147] Yang R T. Pillared interlayer clay catalysts for the selective reduction of nitrogen oxideswith ammonia[S]. America:5415850.
    [148] Yang R T, Chen J P, Kikkinides E S, et al. Pillared Clays as superior catalysts for selectivecatalytic reduction of NO with NH3[J]. Industrial and Engineering Chemistry Research,1992,31(6):1440-1445.
    [149] Chae H J, Nama I S, Ham S W, et al. Characteristics of vanadia on the surface ofV2O5/Ti-PILC catalyst for the reduction of NOxby NH3[J]. Applied Catalysis B: Environmental,2004,53(2):117-126.
    [150] Cheng L S, Yang R T, Cheny N. Iron oxide and chromia supported on titania-pillared clayfor selective catalytic reduction of nitric oxide with ammonia[J]. Journal of Catalysis,1996,164(1):70-81.
    [151] Chmielarz L, Kustrowski P, Zbroja M, et al. SCR of NO by NH3on alumina ortitania-pillared montmorillonite various modified with Cu or Co Part I. General characterizationand catalysts screening[J]. Applied Catalysis B: Environmental,2003,45(2):103-116.
    [152] Chmielarz L, Kustrowski P, Zbroja M, et al. Selective reduction of NO with NH3overpillared clays modified with transition metals. Catalysis Today,2004,90(1-2):43-49.
    [153] Chmielarz L, Dziembaj R, ojewski T, et al. Effect of water vapour and SO2addition onstability of zirconia-pillared montmorillonites in selective catalytic reduction of NO withammonia[J]. Solid State Ionics,2001,141-142:715-719.
    [154] Shen B X, Yao Yan, Ma H Q, et al. Ceria modified MnOx/TiO2-pillared clays catalysts forselective catalytic reduction of NO with NH3at low temperature[J]. Chinese Journal of Catalysis,2011,32(12):1803-1811.
    [155] Kapteijn F, Singoredjo L, Andreini A. Activity and selectivity of pure manganese oxides inthe selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental,1994,3(2-3):173-189.
    [156] Kijlstra W S, Brands D S, Poels E K, et al. Kinetics of the selective catalytic reduction ofNO with NH3over MnOx/Al2O3catalysts at low temperature[J]. Catalysis Today,1999,50(6):133-140.
    [157] Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3over MnOx-CeO2catalyst[J]. Journal of Catalysis,2003,217(2):434-441.
    [158] Wu Z B, Jin R B, Liu Y, et al. Ceria modified MnOx/TiO2as a superior catalyst for NOreduction with NH3at low-temperature[J]. Catalysis Communications,2008,9(13):2217-2220.
    [159] Long R Q, Yang R T. Selective catalytic reduction of NO with ammonia over V2O5dopedTiO2pillared clay catalysts[J]. Applied Catalysis B: Environmental,2000,24(1):13-21.
    [160] Yang R T, Tharappiwattananon N, Long R Q. Ion-exchanged pillared clays for selectivecatalytic reduction of NO by ethylene in the presence of oxygen[J]. Applied Catalysis B:Environmental,1998,19(3-4):289-304.
    [161] Long R Q, Yang R T. Selective catalytic reduction of nitrogen oxides by ammonia overFe3+-exchanged TiO2-pillared clay catalysts[J]. Journal of Catalysis,1999,186(2):254-268.
    [162] Yang R T, Long R Q. Acid-and base-treated Fe3+-TiO2-pillared clays for selective catalyticreduction of NO by NH3[J]. Catalysis Letters,1999,59(3):39-44.
    [163] Jagtap N, Ramaswamy V. Oxidation of aniline over titania pillared montmorillonite clays[J].Applied Clay Science,2006,33(2):89-98.
    [164]温勇,徐玲玲,沈艳华,等. TiO2柱撑粘土纳米功能材料制备研究[J].材料科学与工程学报,2003,21(6):865-868.
    [165] Wu Z B, Jiang B Q, Liu Y, et al. Experimental study on a low-temperature SCR catalystbased on MnOx/TiO2prepared by sol-gel method[J]. Journal of Hazardous Materials,2007,145(3):488-494.
    [166] Boudali L K, Ghorbel A, Grange P, et al. Selective catalytic reduction of NO with ammoniaover V2O5supported sulfated titanium-pillared clay catalysts: influence of V2O5content[J].Applied Catalysis B: Environmental,2005,59(1-2):105-111.
    [167] Teng H, Hsu Y F, Tu Y T. Reduction of NO with NH3over carbon catalysts-the influenceof carbon surface structures and the global kinetics[J]. Applied Catalysis B: Environmental,1999,20(2):145-154.
    [168] Bineesh K V, Kim D K, Cho H J, et al. Synthesis of metal-oxide pillared montmorilloniteclay for the selective catalytic oxidation of H2S[J]. Journal of Industrial and EngineeringChemistry,2010,169(4):593-597.
    [169] Grzybek T. Layered clays as SCR deNOxcatalysts[J]. Catalysis Today,2007,119(1-4):125-132.
    [170] Tang X F, Li Y G, Huang X M, et al. MnOx-CeO2mixed oxide catalysts for completeoxidation of formaldehyde: Effect of preparation method and calcination temperature[J]. AppliedCatalysis B: Environmental,2006,62(3-4):265-273.
    [171] Trovarelli A. Catalytic properties of ceria and CeO2-containing materials[J]. Science andEngineering,1996,38(4):439-520.
    [172] Tang X F, Chen J L, Huang X M. Pt/MnOx-CeO2catalysts for the complete oxidation offormaldehyde at ambient temperature[J]. Applied Catalysis B: Environmental,2008,81(1-2):115-121.
    [173] Dula R, Janik R, Machej T, et al. Mn-containing catalytic materials for the total combustionof toluene: The role of Mn localisation in the structure of LDH precursor[J]. Catalysis Today,2007,119(1-4):327-331.
    [174] Bosch H, Janssen F J J G, KerkhofF M G, et al. The activity of supported vanadium oxidecatalysts for the selective reduction of NO with ammonia[J]. Applied Catalysis,1986,25(1-2):239-248.
    [175] Valmari T, Lind T M, Kauppinen E I. Field study on ash behavior during circulatingfluidized-bed combustion of biomass.1. ash formation[J]. Energy&Fuels,1999,13(2):379-389.
    [176] Benson S A, Laumb J D, Crocker C R, et al. SCR catalyst performance in flue gases derivedfrom subbituminous and lignite coals[J]. Fuel Processing Technology,2005,86(5):577-613.
    [177] French R J, Milne T A. Vapor phase release of alkali species in the combustion of biomasspyrolysis oils[J]. Biomass&Bioenergy,1994,7(1-6):315-325.
    [178] Christensen K A, Hans L. A field study of submicron particles from the combustion ofstraw[J]. Aerosol Science And Technology,1996,25(2):185-199.
    [179] Bulushev D A, Rainone F, Lioubov K M, et al. Influence of potassium doping on theformation of vanadia species in V/Ti oxide catalysts[J]. Langmuir,2001,17(17):5276-5282.
    [180] Kustov A L, Kustova M Y, Fehrmann R, et al. Vanadia on sulphated-ZrO2, a promisingcatalyst for NO abatement with ammonia in alkali containing flue gases[J]. Applied Catalysis B:Environmental,2005,58(1-2):97-104.
    [181] Klimczak M, Kern P, Heinzelmann T, et al. High-throughput study of the effects ofinorganic additives and poisons on NH3-SCR catalysts. Part II: Fe-zeolite catalysts[J]. AppliedCatalysis B: Environmental,2010,95(1-2):48-56.
    [182]熊丽仙,沈伯雄,杨晓燕,等.纳米负载型V2O5-WO3/TiO2催化剂碱及碱土金属中毒[J].环境化学,2010,29(4):690-695.
    [183] Picasso G, Gutierrez M, Pina M P, et al. Preparation and characterization of Ce-Zr andCe-Mn based oxides for n-hexane combustion: Application to catalytic membrane reactors[J].Chemical Engineering Journal,2007,126(2-3):119-130.
    [184] Alifanti M, Baps B, Blangenois N, et al. Characterization of CeO2-ZrO2mixed oxides.comparison of the citrate and sol-gel preparation methods[J]. Chemistry of Materials,2003,15(2):395-403.
    [185] Machida M, Uto M, Kurogi D, et al. MnOx-CeO2binary oxides for catalytic NOxsorption atlow temperatures. sorptive removal of NO[J]. Chemistry of Materials,2000,12(10):3158-3164.
    [186] Chen H Y, Sayari A, Adnot A, et al. Composition-activity effects of Mn-Ce-O compositeson phenol catalytic wet oxidation[J]. Applied Catalysis B: Environmental,2001,32(3):195-204.
    [187] Zhang X L, Huang Z G, Liu Z Y. Effect of KCl on selective catalytic reduction of NO withNH3over a V2O5/AC catalyst[J]. Catalysis Communications,2008,9(5):842-846.
    [188] Kling A, Andersson C, Myringer A, et al. Alkali deactivation of high-dust SCR catalystsused for NOx reduction exposed to flue gas from100MW-scale biofuel and peat fired boilers:Influence of flue gas composition[J]. Applied Catalysis B: Environmental,2007,69:240-251.
    [189] Ebitani K, Tanaka T, Hattori H. X-ray absorption spectroscopic study of platinum supportedon sulfate ion-treated zirconium oxide[J]. Applied Catalysis,1993,102(2):79-82.
    [190]沈伯雄,姚燕,唐雪娇,等.掺杂元素对TiO2/SO42-固体酸特性的影响[J].化工学报,2011,62(3):699-704.
    [191]朱光俊,梁中渝,邓能运.燃煤固硫剂及添加剂的研究现状[J].工业加热,2004,33(4):21-24.
    [192]江得厚,郝党强,王勤,等.钙法烟气脱硫工艺技术问题探讨[J].电力环境保护,2006,22(6):26-28.
    [193]韩翔宇,陈皓侃,李保庆.石灰石在煤燃烧过程中固硫反应机理研究进展[J].煤炭转化,2000,23(1):22-28.
    [194] Nicosia D, Elsener M, Krocher O, et al. Basic investigation of the chemical deactivation ofV2O5/WO3-TiO2SCR catalysts by potassium, calcium, and phosphate[J]. Topics in Catalysis,2007,42-43(1-4):333-336.
    [195] KroCher O, Elsener M. Chemical deactivation of V2O5/WO3-TiO2SCR catalysts byadditives and impurities from fuels, lubrication oils, and urea solution I. Catalytic studies. AppliedCatalysis B: Environmental,2008,75(3-4):215-227.
    [196] Einvall J, Albertazzi S, Hulteberg C, et al. Investigation of reforming catalyst deactivationby exposure to fly ash from biomass gasification in laboratory scale[J]. Energy&Fuels,2007,21(5):2481-2488.
    [197]刘亭,沈伯雄,朱国营,等.抗水、抗SO2的低温选择性催化还原催化剂研究进展[J].环境污染与防治,2008,30(11):80-83.
    [198] Xu W Q, He H, Yu Y B. Deactivation of a Ce/TiO2catalyst by SO2in the selective catalyticreduction of NO by NH3[J]. Journal of Physical and Chemistry,2009,113(11):4426-4432.
    [199]何勇,童华,童志权,等.新型CuSO4-CeO2/TS催化剂低温NH3还原NO及抗中毒性能[J].过程工程学报,2009,9(2):360-367.
    [200] Lu P, Li C T, Zeng G M, et al. Low temperature selective catalytic reduction of NO byactivated carbon fiber loading lanthanum oxide and ceria[J]. Applied Catalysis B-Environmental,2010,96(1-2):157-161.
    [201]郭锡坤,刘庆红,林绮纯.镧改性铜基铝铈交联蒙脱土的制备及其对丙烯选择性还原NO的催化性能[J].催化学报,2004,25(12):989-994.
    [202]丁锐,刘孝恒.膨润土与硅酸钠作用的热重分析[J].油田化学,1998,15(4):2-5.
    [203]强敏,刘智伟,项茹,等.钛交联蒙脱石纳米复合材料的合成与表征[J].硅酸盐学报,2005,33(11):92-97.
    [204]刘伟科,陈天朗.硫酸铵的热分解[J].化学研究与应用,2002,6(14):737-738.
    [206] Casari B M, Langer V. Two Ce(SO.4)24H2O polymorphs: crystal structure and thermalbehavior[J]. Journal of Solid State Chemistry,2007,180(5):1616-1622.
    [207] Romano E J, Schulz K H. A XPS investigation of SO2adsorption on ceria-zirconiamixed-metal oxides[J]. Applied Surface Science,2005,246(1-3):262-270.
    [208] Yu J, Guo F, Wang Y L, et al. Sulfur poisoning resistant mesoporous Mn-base catalyst forlow-temperature SCR of NO with NH3[J]. Applied Catalysis B: Environmental,2010,95(1-2):160-168.
    [209] Bordejé E G, Pinilla J L, Lázaro M J, et al. Role of sulphates on the mechanism ofNH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coatedmonoliths[J]. Journal of Catalysis,2005,233(1):166-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700