用户名: 密码: 验证码:
低温相变氧化钒薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于VO_2在68oC时会发生金属-绝缘体相变而为人所知,在发生金属-绝缘体相变的过程中,VO_2的晶体结构也会随之发生变化,由低温时的单斜结构转变为高温时的四方金红石结构。同时相变也会引起VO_2薄膜光学和电学性能的突变。本论文在分析VO_2薄膜的相变机理基础上,详细讨论和分析了基底类型、基底温度、氧分压以及退火条件等工艺参数对VO_2薄膜相变性能的影响;同时比较了目前几种常用的制备VO_2薄膜的方法。本课题的主要工作是采用磁控溅射法和离子束溅射法制备具有较低相变温度的VO_2薄膜的工艺、相变特性、及智能窗和激光防护等应用研究。详细的理论分析、工艺与实验测试、以及成果如下:
     在VO_2薄膜相变理论方面,首先介绍了VO_2晶体结构,分析了VO_2晶体相变前后能带的变化。其次介绍了VO_2薄膜相变温度的影响因素,如制备参数、内应力、表面结构以及元素的掺杂等,深入分析了以上因素对VO_2薄膜相变温度的影响机理,用以指导后续的低相变温度薄膜沉积工艺实验。
     通过对理论知识的运用,实验中采用LD-3型离子束溅射和后退火工艺两步法在Si3N4/玻璃基底上制备了相变温度非常接近室温的VOx薄膜,研究了基底温度、氧分压以及退火温度对VOx薄膜性能的影响。结果表明,在其它工艺参数保持一致的情况下,如Ar、O2流量比为:60:30SCCM(标况毫升每分),退火温度为430oC时,随着基底温度的升高(250~310oC),薄膜的相变温度也随之升高(29~35oC)。其次,Ar、O2流量比不仅对薄膜的相变温度有具大影响,而且对薄膜的光调制深度也有较大影响。在其它工艺参数保持一致的情况下,如基底温度为280oC,退火温度为430oC时, Ar、O2流量比为60:20、60:30以及60:40SCCM获得的薄膜的相变温度分别为36、30和32oC。最后,退火温度也对薄膜的性能有重大影响,当基底温度为280oC,Ar、O2流量比为60:30SCCM时,退火温度为400、430和460oC的薄膜的相变温度分别为35、30和34oC。最终,总结得出采用该种方法制备VO_2薄膜的最优工艺参数为基底温度280oC,氧分压为60:30SCCM以及退火温度430oC,其获得的VO_2薄膜相变温度为30oC,最大光调制深度为85%。
     其次,采用MSP-3200E型磁控溅射和后退火工艺两步法在蓝宝石基底上制备了相变温度为45oC的VO_2薄膜。制备的工艺参数为基底温度300oC,Ar气流量为40SCCM,氧气流量为5SCCM,退火温度为460oC以及退火时间60分钟。原子力显微测试结果表明,所获得的VO_2薄膜颗粒大小约为100nm,电学和光学测试表明该VO_2薄膜具有良好的相变性能以及较高的红外光调制深度,可以很好的应用于太阳能智能窗以及激光防护。
     再次,采用丹顿真空科技有限公司生产的HDG双离子源沉积设备室温条件下在不同类型的基底上制备出相变温度接近68oC的VOx薄膜,红外光调制深度高达94%。在此基础在,通过掺入2%(原子浓度比)的W元素,在玻璃基底上获得了相变温度为34±1oC的W-VO_2薄膜,X射线光电子能谱以及拉曼光谱分析结果显示W元素以+6价的离子形式存在于薄膜中。电学与光学测试结果表明,所获得的W-VO_2薄膜相变温度非常接近室温,但是相变幅度不大,并且红外光调制深度仅为60%,与前两者有较大的差距。不过室温沉积以及容易控制的退火工艺为其工业生产打下了良好的基础,另外,较短的退火时间不仅可以节约成本,而且可以加快生产进程。
     在VO_2薄膜的应用方面,将MSP-3200E磁控溅射设备制得的VO_2薄膜样品进行太阳能智能窗和激光防护等应用研究。太阳能智能窗模拟实验表明,该VO_2薄膜具有很好的智能调节温度能力,高温下可以使室内温度维持在47oC左右。激光防护实验结果表明,该VO_2薄膜具有较强的激光抗损的能力,其能承受功率密度高达1.46×103W/mm2的激光的照射。
     在论文的最后,对本工作取得的成果以及存在的一些问题作了总结,对未来的工作进行了展望。
Vanadium dioxide (VO_2) is well-known for its sharp metal-insulator transition (MIT)at68oC which is accompanied by a structural transition from monoclinic (low temperature)to tetragonal (high temperature) phase. This transition also brings with it abrupt changes inthe optical and electrical properties. Based on the phase transition theory, the dissertationpresents a detail discussion of fabricating-condition influence on the transition performanceof VO_2thin films, such as type ofsubstrate, substrate’s temperature, Ar and O2gas mixtureratio, and thermal annealing process. Additionally, several kinds of deposition methods areintroduced, such as Sol-Gel, magnetron sputtering, ion beam sputtering, plused laserdeposition, chemical vapor deposition, and so on. The main purpose of this work is tofabricate VO_2thin films with low phase transition temperature by appling magnetron andion beam sputterings. The main contents including theory analysis, experiments, and resultsare summarized as follows:
     First, the changes in VO_2lattice and band structures during the phase transition areintroduced. Furthermore, impact factors for Ttvalues of VO_2thin films are discussed, suchas the deposition condition, lattice strains, surface structure and doping, and the mechanismof the above factors to determine the VO_2film Ttis analysed to guide the followingexperiments.
     Second, nanostructural vanadium oxides (VOx) thin films with low MIT temperaturewere fabricated through reactive ion beam sputtering (LD-3) followed by a thermalannealing process. The VOxfilms were grown on borosilicate glass substrate with a Si3N4buffer layer at varying substrate temperature, Ar and O2gas mixture ratio and the annealingtemperature. The electrical resistance tests indicate that the films’ Ttrises (from29to35oC)as the growth temperature increases (from250to310oC). Besides, change of Ar and O2gasmixture ratio has significant impact on the films’ transition temperature and switchingefficiency. VOxthin films fabricated with Ar and O2gas mixture ratio of60:20,60:30and60:40SCCM (standard-state cubic centimeter per minute) exhibit a phase transitionfeature at the temperature of36,30and32oC, respectively. Additionally, the VOxthin filmsshow a phase transition character at temperature of35,30and34oC, as the samplesannealed at400,430and460oC, respectively. It can be concluded from the above resultsthat the optimum conditions for fabricating VO_2thin films are: substrate temperature280oC, Ar and O2mixture ratio60:30SCCM and annealing temperature430oC.
     Third, VO_2films with a low MIT temperature of45oC were fabricated through directcurrent magnetron sputtering (MSP-3200E) followed by a post-annealing. The process parameters are: substrate temperature300oC, Ar flow40SCCM, O2flow5SCCM,annealing temperature460oC and annealing time60min. Atomic force microscopymeasurements show that the VO_2grain size is about one hundred of nanometers. Theresults of electrical and optical tests reveal that the VO_2film not only exhibits outstandingchange in resistace, but also behaves excellent IR switching property, which make the VO_2thin film a proming material for smart window and laser protection application.
     Fourth, VOxfilms with MIT temperature around68oC on different types of substrateshave been prepared by HDG dual ion source vacuum equipment at room temperature (RT)and a short time thermal process. The IR transmittance measured below/above Tt illustratesthe VOxpossess excellent switching efficiency. Furthermore, tungsten-doped VO_2(V0.98W0.02O2) thin films with low MIT Ttof34±1oC were grown on borosilicate glasssubstrates with varying annealing temperature. X-ray photoelectron spectroscope andRaman measurements demonstrate that the tungsten atoms have been successfully dopedinto VO_2films and exist as the form of W6+in the films. Although the tungsten-doped VO_2films show a MIT near RT, i.e.34±1oC, the amplitude of the transition and the switchingefficiency confirmed by the electrical and optical measurements are not good enoughcompared with the previous studies. Nevertheless, the RT deposition and easy control ofannealing process have laid a good foundation for its industrial production. In addition, theshort annealing time, i.e.30min, will not only save the costs, but also speed up there-production process.
     The VO_2thin film prepared by MSP-3200E magnetron sputtering and a post annealingprocess is selected for application investigation. The smart window experiment shows thatthe VO_2thin film has an amazing ability to self-adjust the device temperature intelligently,and keeps the indoor temperature at a stable value of47oC under a continuous solarradiation. Moreover, laser radiation test indicates that VO_2thin film exhibits excellent highpower resist property, and threshold power density is up to1.46×103W/mm2. From theabove results we can conclude that the obtained VO_2thin film can be effectively used forsmart window and laser protection application.
     At the end of the dessertation, the achievements obtained in this work as well as someexisting problems have been summarized, and the prospect of future work has beensuggested.
引文
[1]姬云波,童雄,叶国华.提钒技术的研究现状和进展.国外金属矿选矿,2007,5:10~13
    [2]刘世友.钒的应用与展望.稀有金属与硬质合金,2000,141:58~61
    [3]锡淦,雷鹰,胡克俊等.国外钒的应用概况.世界有色金属,2000,2:15~21
    [4] M. H. Lee, M. G. Kim, H. K. Song. Thermochremism of rapid thermal annealed VO2and Sn-doped VO2thin films. Thin Solid Films,1996,290-291:30~33
    [5] C. Chen, Z. Fan. Changes in VO2band structure induced by charge localization andsurface segregation. Appl. Phys. Lett.,2009,95(26):262106
    [6] R. Balu, P. V. Ashrit. Near-zero IR transmission in the metal-insulator transition o fVO2thin films. Appl. Phys. Lett.,2008,92(2):021904
    [7] C. Chen, R. Wang, L. Shang, et al. Gate-field-induced phase transitions in VO2:Monoclinic metal phase separation and switchable infrared reflections. Appl. Phys.Lett.,2008,93(17):171101
    [8] C. Chen, Z. Zhou. Optical phonons assisted infrared absorption in VO2basedbolometer. Appl. Phys. Lett.,2007,91(1):011107
    [9] J. H. Claassen, J. W. Lu, K. G. West, et al. Relaxation dynamics of themetal-semiconductor transition in VO2thin films. Appl. Phys. Lett.,2010,96(13):132102
    [10] I. Karakurt, J. Boneberg, P. Leiderer, et al. Transmission increase upon switching o fVO2thin films on microstructured surfaces. Appl. Phys. Lett.,2007,91(9):091907
    [11] T. Kikuzuki, M. Lippmaa. Characterizing a strain-driven phase transition in VO2.Appl. Phys. Lett.,2010,96(13):132107
    [12] M. Rini, Z. Hao, R. W. Schoenlein, et al. Optical switching in VO2films bybelow-gap excitation. Appl. Phys. Lett.,2008,92(18):181904
    [13]刘东青,郑文伟,程海峰等.二氧化钒薄膜制备及其热致变发射率特性研究.红外技术,2010,32(3):181~184
    [14] F. Morin. Oxides Which Show a Metal-to-Insulator Transition at the NeelTemperature. Phys. Rev. Lett.,1959,3(1):34~36
    [15]袁宁一,李金华,林成鲁.氧化钒薄膜的结构、性能及制备技术的相关性.功能材料,2001,32(6):572~575
    [16]申泮文,车云霞,罗欲基.无机化学丛书-钛分族钒分族.北京:科学出版社.1998
    [17] K. D. Rogers, J. A. Coath, M. C. Lovell. Characterization of epitaxially grown filmsof vanadium oxides. J. Appl. Phys.,1991,70(3):1412
    [18] J. Y. Suh, R. Lopez, L. C. Feldman, et al. Semiconductor to metal phase transition inthe nucleation and growth of VO2nanoparticles and thin films. J. Appl. Phys.,2004,96(2):1209~1213
    [19] D. Brassard, S. Fourmaux, M. Jean-Jacques, et al. Grain size effect on thesemiconductor-metal phase transition characteristics of magnetron-sputtered VO2thin films. Appl. Phys. Lett.,2005,87(5):051910
    [20] J. F. De Natale, P. J. Hood, A. B. Harker. Formation and characterization ofgrain-oriented VO2thin films. J. Appl. Phys.,1989,66(12):5844
    [21] M. Qazilbash, M. Brehm, B. Chae, et al. Mott transition in VO2revealed by infraredspectroscopy and nano-imaging. Science,2007,318(5857):1750~1753.
    [22] C. Leroux, G. Nihoul, G. V. Tendeloo. From VO2(B) to VO2(R): Theoreticalstructures of VO2polymorphs and in situ electron microscopy. Phys. Rev. B,1998,57(9):511~521
    [23] F. Sediri, N. Gharbi. Controlled hydrothermal synthesis of VO2(B) nanobelts. Mater.Lett.,2009,63(1):15~18
    [24] F. Sediri, F. Touati, N. Gharbi. From V2O5foam to VO2(B) nanoneedles. Mater. Sci.Eng. B,2006,129(1-3):251~255
    [25] C. V. Subba Reddy, E. H. Walker, S. A. Wicker, et al. Synthesis of VO2(B) nanorodsfor Li battery application. Curr. Appl. Phys.,2009,9(6):1195~1198
    [26]尚东,林理彬,何捷等.特型二氧化钒薄膜的制备及电阻温度系数的研究.四川大学学报,2005,42(3):523~527
    [27] C. H. Chen, X. J. Y., X. R. Zhao, B. F. Xiong. Characterizations of VO2-baseduncooled microbolometer linear array. Sens. Actuators, A,2001,90:212~214
    [28] N. Chi-Anh, H. J. Shin, K. Kim, et al. Characterization of uncooled bolometer withvanadium tungsten oxide infrared active layer. Sens. Actuators, A,2005,123-124:87~91
    [29] Y. H. Han, K. T. Kim, N. Chi-Anh, et al. Fabrication and characterization ofbolometric oxide thin film based on vanadium–tungsten alloy. Sens. Actuators, A,2005,123-124:660~664
    [30] G. Li, N. Yuan, J. Li, et al. Thermal simulation of micromachined bridge andself-heating for uncooled VO2infrared microbolometer. Sens. Actuators, A,2006,126(2):430~435
    [31] R. T. Rajendra Kumar, B. Karunagaran, D. Mangalaraj, et al. Pulsed laser depositedvanadium oxide thin films for uncooled infrared detectors. Sens. Actuators, A,2003,107(1):62~67
    [32] S. B. Wang, B. F. Xiong, S. B. Zhou, et al. Preparation of128element of IR detectorarray based on vanadium oxide thin films obtained by ion beam sputtering. Sens.Actuators, A,2005,117(1):110~114
    [33] Z. L. Huang, S. H. Chen, Y. Chen, et al. Low transition-temperature characteristic inVOxfilms grown on Si3N4/Glass substrates. Surf. Coat. Technol.,2012,207:130~134
    [34] Z. L. Huang, S. H. Chen, C. H. Lv, et al. Infrared characteristics of VO2thin filmsfor smart window and laser protection applications. Appl. Phys. Lett.,2012,101(19):191905
    [35] Z. L. Huang, S. H. Chen, B. Q. Wang, et al. Vanadium dioxide thin film with lowphase transition temperature deposited on borosilicate glass substrate. Thin SolidFilms,2011,519(13):4246~4248
    [36]宁永刚,孙晓泉.二氧化钒薄膜在激光防护上的应用研究.红外与激光工程,2005,34(5):530~534
    [37] X. Gu, G. Karunasiri, J. Yu, G. Chen, U. Sridhar, W. J. Zeng. On-chip compensationof self-heating effects in microbolometer infrared detector arrays. Sens. Actuators, A,1998,69:92~96
    [38] S. H. Chen, J. J. Lai, J. Dai, et al. Characterization of nanostructured VO2thin filmsgrown by magnetron controlled sputtering deposition and post annealing methodOpt. Express,2009,17(26):24154~24161
    [39]许旻,崔敬忠,贺德衍.非致冷红外焦平面阵列VO2薄膜结构和性能研究.微细加工技术,2003,1(1):34~38
    [40] S. Bonora, U. Bortolozzo, S. Residori, R. Balu, et al. Mid-IR to near-IR imageconversion by thermally induced optical switching in vanadium dioxide. Opt.Express,2010,35(2):103~105
    [41] Y. Li, X. J. Yi, T. X. Zhang. Nanostructure and thermal optical properties ofvanadium dioxide thin films. Chin. Opt. Lett.,2005,3(12):719~721
    [42] Y. W. Lee, B. J. Kim, S. Choi, et al. Photo assisted electrical gating in a two terminaldevice based on vanadium dioxide thin film. Opt. Express,2007,15(19):12108~12113
    [43] F. Guinneton, L. Sauques, J. C. Valmalette, et al. Optimized infrared switchingproperties in thermochromic vanadium dioxide thin films: role of deposition processand microstructure. Thin Solid Films,2004,446(2):287~295
    [44] E. M. Heckman, L. P. Gonzalez, S. Guha, et al. Electrical and optical switchingproperties of ion implanted VO2thin films. Thin Solid Films,2009,518(1):265~268
    [45] X. J. Yi, C. H. Chen, L. Q. Liu, et al. A new fabrication method for vanadiumdioxide thin films deposited by ion sputtering. Infrared Phys. Technol.,2003,44:137~141
    [46] S. H. Chen, H. Ma, X. J. Yi, et al. Smart VO2thin film for protection of sensitiveinfrared detectors from strong laser radiation. Sens. Actuators, A,2004,115(1):28~31
    [47]王宏臣.氧化钒薄膜及非致冷红外探测器阵列研究.[博士学位论文].武汉:华中科技大学,2005
    [48] H. C. Wang, X. J. Yi, S. H. Chen. Low temperature fabrication of vanadium oxidefilms for uncooled bolometric detectors. Infrared Phys. Technol.,2006,47(3):273~277
    [49] H. C. Wang, X. J. Yi, S. H. Chen, et al. Planarization of CMOS ROIC dies foruncooled detectors. Infrared Phys. Technol.,2006,47(3):251~256
    [50] H. C. Wang, X. J. Yi, G. Huang, et al. IR microbolometer with self-supportingstructure operating at room temperature. Infrared Phys. Technol.,2004,45(1):53~57
    [51]戴君.氧化钒薄膜的光电特性及其应用基础研究.[博士学位论文].武汉:华中科技大学,2009
    [52]谢艳红.热致相变氧化钒薄膜的制备与特性测试研究.[硕士学位论文].武汉:华中科技大学,2009
    [53] S. Biermann, A. Poteryaev, A. Lichtenstein, et al. Dynamical Singlets andCorrelation-Assisted Peierls Transition in VO2. Phys. Rev. Lett.,2005,94(2):026404
    [54] E. Donev, J. Suh, F. Villegas, et al. Optical properties of subwavelength hole arraysin vanadium dioxide thin films. Phys. Rev. B,2006,73(20):201401
    [55] D. Ruzmetov, D. Heiman, B. Claflin, et al. Hall carrier density andmagnetoresistance measurements in thin-film vanadium dioxide across themetal-insulator transition. Phys. Rev. B,2009,79(15):153107
    [56] Z. Yang, C. Ko, V. Balakrishnan, et al. Dielectric and carrier transport properties ofvanadium dioxide thin films across the phase transition utilizing gated capacitordevices. Phys. Rev. B,2010,82(20):205101
    [57] M. B. Sahana, G. N. Subbanna, S. A. Shivashankar. Phase transformation andsemiconductor-metal transition in thin films of VO2deposited by low-pressuremetalorganic chemical vapor deposition. J. Appl. Phys.,2002,92(11):6495
    [58] A. Haras, M. Witko, D. R. Salahub, et al. Electronic properties of the VO2(011)surface: Density functional cluster calculations. Surf. Sci.,2001,491:77~87
    [59] K. V. Ramanujachary, J. E. Sunstrom, I. I. Fawcett, et al. Magnetic and electricalproperties of Eu2VO4. Mater. Res. Bull.,1999,34(5):803~816
    [60]林华,黄维刚,涂铭旌. VO2的相变原理及影响相变的因素.功能材料,2004,35:188~191
    [61] N. R. Mlyuka, R. T. Kivaisi. Correlation between optical, electrical and structuralproperties of vanadium dioxide thin films. J. Mater. Sci.,2006,41(17):5619~5624
    [62] D. Ruzmetov, S. Senanayake, S. Ramanathan. X-ray absorption spectroscopy ofvanadium dioxide thin films across the phase-transition boundary. Phys. Rev. B,2007,75:195102
    [63]贾嘉.溅射法制备纳米薄膜材料及进展.半导体技术,2004,29(7):70~75
    [64] M. G. Krishna, Y. Debauge, A. K. Bhattacharya. X-ray photoelectron spectroscopyand spectral transmittance study of stoichiometry in sputtered vanadium oxide films.Thin Solid Films,1998,312:116~122
    [65] G. Xu, P. Jin, M. Tazawa, et al. Thickness dependence of optical properties of VO2thin films epitaxially grown on sapphire (0001). Appl. Surf. Sci.,2005,244(1-4):449~452
    [66] F. C. Case. Modifications in the phase transition properties of predeposited VO2films. J. Vac. Sci. Technol. A,1984,2(4):1509
    [67] D. Ruzmetov, K. T. Zawilski, V. Narayanamurti, et al. Structure-functional propertyrelationships in rf-sputtered vanadium dioxide thin films. J. Appl. Phys.,2007,102(11):113715
    [68] Y. Muraoka, Z. Hiroi. Metal–insulator transition of VO2thin films grown on TiO2(001) and (110) substrates. Appl. Phys. Lett.,2002,80(4):583
    [69] J. Narayan, V. M. Bhosle. Phase transition and critical issues in structure-propertycorrelations of vanadium oxide. J. Appl. Phys.,2006,100(10):103524
    [70] V. S. Vikhnin, S. Lysenko, A. Rua, et al. The model of ultrafast light-inducedinsulator-metal phase transition in VO2. Solid State Commun.,2006,137(11):615~620
    [71] M. Soltani, M. Chaker, E. Haddad, et al. Effects of Ti–W codoping on the opticaland electrical switching of vanadium dioxide thin films grown by a reactive pulsedlaser deposition. Appl. Phys. Lett.,2004,85(11):1958
    [72] B. G. Chae, H. T. Kim. Effects of W doping on the metal–insulator transition invanadium dioxide film. Physica B,2010,405(2):663~667
    [73] F. Y. Kong, M. Li, S. S. Pan, et al. Synthesis and thermal stability of W-doped VO2nanocrystals. Mater. Res. Bull.,2011,46(11):2100~2104
    [74] M. Tazawa, P. Jin, S. Tanemura. Optical constants of V1-xWxO2Films. Appl. Opt.,1998,37(10):1858~1861
    [75] K. I. Shimizu, I. Chinzei, H. Nishiyama, et al. Doped-vanadium oxides as sensingmaterials for high temperature operative selective ammonia gas sensors. Sens.Actuators, B,2009,141(2):410~416
    [76] J. Shi, S. Zhou, B. You, et al. Preparation and thermochromic property oftungsten-doped vanadium dioxide particles. Sol. Energy Mater. Sol. Cells,2007,91(19):1856~1862
    [77] E. Lugscheider, S. Barwulf, C. Barimani. Properties of tungsten and vanadiumoxides deposited by MSIP–PVD process for self-lubricating applications. Surf. Coat.Technol.,1999,120-121:458~464
    [78] M. S. Burdis. Properties of sputtered thin films of vanadium–titanium oxide for usein electrochromic windows. Thin Solid Films,1997,311:286~298
    [79] W. Burkhardt, T. Christmann, S. Franke, et al. Tungsten and fluorine co-doping o fVO2films. Thin Solid Films,2002,402:226~231
    [80] T. J. Hanlon, J. A. Coath, M. A. Richardson. Molybdenum-doped vanadium dioxidecoatings on glass produced by the aqueous sol–gel method. Thin Solid Films,2003,436(2):269~272
    [81] A. Baserga, V. Russo, F. Di Fonzo, et al. Nanostructured tungsten oxide withcontrolled properties: Synthesis and Raman characterization. Thin Solid Films,2007,515(16):6465~6469
    [82] J. Z. Yan, Y. Zhang, W. X. Huang, et al. Effect of Mo-W Co-doping onsemiconductor-metal phase transition temperature of vanadium dioxide film. ThinSolid Films,2008,516(23):8554~8558
    [83] P. Kiri, M. E. A. Warwick, I. Ridley, et al. Fluorine doped vanadium dioxide thinfilms for smart windows. Thin Solid Films,2011,520(4):1363~1366
    [84] J. B. Goodenough. The two components of the crystallographic transition in VO2. J.Solid State Chem.,1971,3(4):490~500
    [85] A. Zylbersztejn. Metal-insulator transition in vanadium dioxide. Phys. Rev. B,1975,11(11):4383~4395
    [86] C. Tang, P. Georgopoulos, M. Fine, et al. Local atomic and electronic arrangementsin WxV1-xO2. Phys. Rev. B,1985,31(2):1000~1011
    [87] Y. H. Han, I. H. Choi, H. K. Kang, et al. Fabrication of vanadium oxide thin filmwiht high temperature coefficient of resistance using V2O5/V/V2O5multilayers foruncooled microbolometers. Thin Solid Films,2003,425:260~264
    [88] S. H. Chen, H. Ma, S. B. Wang, et al. Vanadium oxide thin films deposited onsilicon dioxide buffer layers by magnetron sputtering. Thin Solid Films,2006,497(1-2):267~269
    [89] C. S. Blackman, C. Piccirillo, R. Binions, et al. Atmospheric pressure chemicalvapour deposition of thermochromic tungsten doped vanadium dioxide thin filmsfor use in architectural glazing. Thin Solid Films,2009,517(16):4565~4570
    [90]刘凤举,余志明,陈爽等.反应磁控溅射法制备氧化钒薄膜.稀有金属材料与工程,2008,37(12):2221~2225
    [91]魏雄邦,吴志明,王涛等.氧化钒薄膜在玻璃基片上的生长研究.无机材料学报,2008,23(2):364~368
    [92]陈爽,余志明,刘凤举等.磁控溅射氧化钒薄膜的相组成及性能.中国有色金属学报,2008,18(12):2196~2201
    [93]梁继然,胡明,王晓东等.纳米二氧化钒薄膜的制备及红外光学性能.物理化学学报,2009,25(8):1523~1529
    [94] T. D. Manning, I. P. Parkin. Vanadium(IV) oxide thin films on glass and siliconfrom the atmospheric pressure chemical vapour deposition reaction of VOCl3andwater. Polyhedron,2004,23(18):3087~3095
    [95] D. Vernardou, M. E. Pemble, D. W. Sheel. Tungsten-Doped Vanadium OxidesPrepared by Direct Liquid Injection MOCVD. Chem. Vap. Deposition,2007,13(4):158~162
    [96] B. G. Chae, H. T. Kim, S. J. Yun. Characteristics of W-and Ti-Doped VO2ThinFilms Prepared by Sol-Gel Method. Electrochem. Solid-State Lett.,2008,11(6):D53
    [97] K. G. West, J. Lu, J. Yu, et al. Growth and characterization of vanadium dioxide thinfilms prepared by reactive-biased target ion beam deposition. J. Vac. Sci. Technol. A,2008,26(1):133
    [98] M. Nishikawa, T. Nakajima, T. Manabe, et al. High temperature coefficients ofresistance of VO2films grown by excimer-laser-assisted metal organic depositionprocess for bolometer application. Mater. Lett.,2010,64(17):1921~1924
    [99] J. H. Cho, Y. J. Byun, J. H. Kim, et al. Thermochromic characteristics o fWO3-doped vanadium dioxide thin films prepared by sol–gel method. Ceram. Int.,2012,38: S589~S593
    [100] K. Okimura, T. Watanabe, J. Sakai. Stress-induced VO2films with M2monoclinicphase stable at room temperature grown by inductively coupled plasma-assistedreactive sputtering. J. Appl. Phys.,2012,111(7):073514
    [101] D. H. Kim, H. S. Kwok. Pulsed laser deposition of VO2thin films. Appl. Phys. Lett.,1994,65(25):3188~3190
    [102] E. Lugscheider, O. Knotek, S. Barwulf, et al. Characteristic curves of voltage andcurrent, phase generation and properties of tungsten-and vanadium-oxidesdeposited by reactive d.c.-MSIP-PVD-process for self-lubricating applications. Surf.Coat. Technol.,2001,142-144:137~142
    [103] Y. Q. Lv, M. Hu, M. Wu, et al. Preparation of vanadium oxide thin films with hightemperature coefficient of resistance by facing targets d.c. reactive sputtering andannealing process. Surf. Coat. Technol.,2007,201(9-11):4969~4972
    [104] C. M. Ghimbeu, F. Sima, R. V. Ostaci, et al. Crystalline vanadium nitride ultra-thinfilms obtained at room temperature by pulsed laser deposition. Surf. Coat. Technol.,2012,211:158~162
    [105]李金华,袁宁一.离子束增强沉积二氧化钒薄膜和器件的研究进展.科学技术与工程,2004,4(1):46~48
    [106]王海方,李毅,蒋群杰等.脉冲激光沉积法制备二氧化钒薄膜的研究进展.光学制造,2009,6:49~53
    [107]王利霞,李建平,何秀丽等.二氧化钒薄膜的低温制备及其性能研究.物理学报,2006,55(6):2846~2851
    [108]牟永强,冯浩,梁耀廷等.二氧化钒薄膜退火特性研究.真空与低温,2009,15(1):21~24
    [109]唐振方,赵健,卫红等.射频磁控溅射工艺制备二氧化钒薄膜.人工晶体学报,2008,37(1):88~92
    [110]黄传真,艾兴,候志刚等.溶胶_凝胶法的研究和应用现状.材料导报,1997,11(3):8~13
    [111]袁宁一,李金华,李格. IBED和Sol-gel制备方法对二氧化钒薄膜性能的影响.哈尔滨理工大学学报,2003,8(5):88~92
    [112]袁宁一,李金华,林成鲁.溶胶-凝胶VO2薄膜转换特性研究.物理学报,2002,51(4):852~855
    [113]宋晶晶.磁控溅射氧化钒薄膜制备工艺研究.[硕士学位论文].重庆:重庆理工大学.2009
    [114] J. Dai, X. Z. Wang,S. W. He, et al. Low temperature fabrication of VOxthin filmsfor uncooled IR detectors by direct current reactive magnetron sputtering method.Infrared Phys. Technol.,2008,51(4):287~291
    [115] E. Cazzanelli, G. Mariotto, S. Passerini, et al. Raman and XPS characterization ofvanadium oxide thin films deposited by reactive RF sputtering. Sol. Energy Mater.Sol. Cells,1999,56:249~258
    [116]逯家宁.氧化钒薄膜金属-绝缘体相变特性研究.[硕士学位论文].天津:天津大学.2009
    [117]李金华,袁宁一,陈王丽华等.用离子束增强沉积从V2O5粉末制备高热电阻温度系数VO2薄膜.物理学报,2002,51(8):1788~1792
    [118]百度百科. http://baike.baidu.com/view/3033029.htm
    [119] T. W. Chiu, K. Tonooka, N. Kikuchi. Influence of oxygen pressure on the structural,electrical and optical properties of VO2thin films deposited on ZnO/glass substratesby pulsed laser deposition. Thin Solid Films,2010,518(24):7441~7444
    [120] M. B. Sahana, G. N. Subbanna, S. A. Shivashankar. Phase transformation andsemiconductor-metal transition in thin films of VO2deposited by low-pressuremetalorganic chemical vapor deposition. J. Appl. Phys.,2002,92(11):6495
    [121] J. H. Li, N. Y. Yuan, J. S. Xie. Annealing characteristics of the vanadium oxide filmsprepared by modified ion beam enhanced deposition. Appl. Surf. Sci.,2005,243(1-4):437~442
    [122] M. V. Laue. Concerning the detection of X-ray interferences. Nobel Lecture,1915,347~355
    [123]郭冬勇,赵德国.纳米材料的现行测量技术.安徽教育学院学报,2002,20(6):49~51
    [124] C. Kittel,项金钟,吴兴惠.固体物理导论.北京:化学工业出版社,2005
    [125]唐晓山.扫描电子显微镜在纳米材料研究中的应用.哈尔滨职业技术学院学报,2009,4:121~123
    [126]百度百科. http://baike.baidu.com/view/1645198.htm
    [127]齐兴义.晶体点阵面间距的矢量分析与导出.推精品促繁荣--国家精品课程建设六周年回顾(在编)
    [128]周公度,段连运.结构化学基础第四版北京:北京大学出版社,2008
    [129] J. M. Longo, P. Kierkegaard. A Refinement of the Structure of VO2. Acta Chem.Scand.,1970,24:420~426
    [130] K. Nagashima, T. Yanagida, H. Tanaka, et al. Influence of ambient atmosphere onmetal-insulator transition of strained vanadium dioxide ultrathin films. J. Appl.Phys.,2006,100(6):063714
    [131] K. Shibuya, M. Kawasaki, Y. Tokura. Metal-insulator transition in epitaxia lV1xWxO2(0≤x≤0.33) thin films. Appl. Phys. Lett.,2010,96(2):022102
    [132] B. Fisher. Electrical and seebeck effect measurements in Nb doped VO2. J. Phys.Chem. Solids,1982,43(3):205~211
    [133] C. Tang, P. Georgopoulos, M. Fine, et al. Local atomic and electronic arrangementsin WxV1-xO2. Phys. Rev. B,1985,31(2):1000~1011
    [134] P. Jin, S. Tanemura. Relationship between Transition Temperature and x inV1-xWxO2Films Deposited by Dual-Target Magnetron Sputtering. Jpn. J. Appl.Phys.,1995,34:2459~2460
    [135] D. J. Gardiner. Practical Raman spectroscopy. Springer-Verlag.1989
    [136] B. Pettinger. Adsorption at Electrode Surface. New York: VCH.1992
    [137] A. Chemseddine, M. Henry, J. Livage. J. Rev. Chim. Miner.,1984,21:487
    [138] J. Parker. Raman scattering from VO2single crystals: A study of the effects ofsurface oxidation. Phys. Rev. B,1990,42(5):3164~3166
    [139] S. P. S. Porto, P. A. Fleury, T. C. Damen. Raman Spectra of TiO2, MgF2, ZnF2, FeF2,and MnF2. Phys. Rev.,1967,154(2):522~526
    [140] R. Srivastava, L. Chas. Raman Spectrum of Semiconducting and Metallic VO2.Phys. Rev. Lett.,1971,27(11):727~730
    [141] R. Baddour-Hadjean, V. Golabkan, J. P. Pereira-Ramos, et al. A Raman study of thelithium insertion process in vanadium pentoxide thin films deposited by atomiclayer deposition. J. Raman Spectrosc.,2002,33(8):631~638
    [142] L. Abello, E. Husson, Y. Repelin, et al. Vibrational spectra and valence force field ofcrystalline V2O5. Spectrochim. Acta, Part A,1983,39(7):641~651
    [143] C. Santato, M. Odziemkowski, M. Ulmann, et al. Crystallographically OrientedMesoporous WO3Films: Synthesis, Characterization, and Applications. J. Am.Chem. Soc.,2001,123:10639~10649
    [144] M. Demeter, M. Neumann, W. Reichelt. Mixed-valence vanadium oxides studied byXPS. Surf. Sci.,2000,454-456:41~44
    [145] F. Gracia, F. Yubero, J. P. Espinós, et al. First nucleation steps of vanadium oxidethin films studied by XPS inelastic peak shape analysis. Appl. Surf. Sci.,2005,252(1):189~195
    [146] M. Mao, W. X. Huang, Y. X. Zhang, et al. Study on Phase Transition Property ofTungsten-doped Vanadium Dioxide Thin Film at Terahertz Range. J. Inorg. Mater.,2012,27(8):891~896
    [147] S. Zhou, Y. Li, H. Zhu, et al. Microstructures and thermochromic characteristics oflow-cost vanadium–tungsten co-sputtered thin films. Surf. Coat. Technol.,2012,206(11-12):2922~2926
    [148] X. Gong, J. Li, S. Chen, et al. Copolymer solution-based “smart window”. Appl.Phys. Lett.,2009,95(25):251907
    [149]李锦,魏红莉,何峰. VO2薄膜智能玻璃的研究进展.玻璃,2006,1:45~47
    [150]张波,张建新,蔡伟.低辐射建筑节能玻璃研究进展.玻璃与搪瓷,2008,36(6):34~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700