用户名: 密码: 验证码:
Ti-Al-∑X(X=B,C,Fe,Si,Cr,Nb)系α(α2)/γ相平衡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合金化是改善γ-TiAl 基合金性能的有效方法之一,而C、B、Si、Fe 是其中重要的合金化元素,同时加入Cr-Nb、Cr-Si、Nb-Si是重要的合金化方案。本研究采用合金平衡扩散处理法(简称合金法)和扩散偶-电子探针法系统测定了Ti-Al-C、Ti-Al-B、Ti-Al-Si、Ti-Al-Fe 三元系和Ti-Al-Cr-Fe、Ti-Al-Cr-Si、Ti-Al-Nb-Fe 和Ti-Al-Nb-Si 四元系α(α_2)/γ相平衡关系和相平衡成分,成为这些合金系这一相平衡的最系统的研究结果。巨势法是一种富有发展潜力的相平衡计算方法,已在二元系实际相平衡计算中表现出优势。本研究对三元系相平衡的巨势法计算做了较深入的研究,进行了一系列的模型计算,并将其应用于实际合金体系??Ti-Al-Nb 系的相平衡计算。
    采用合金法测定了Ti-Al-C、Ti-Al-B、Ti-Al-Si 和Ti-Al-Fe 等三元系的1000~1250℃α(α_2)/γ相平衡关系和成分,根据测定结果分别绘出了0.2 at.%C、0.1at.%B、0.3at.%Si 和1.0at.% Fe 垂直截面相图,并计算了γ相稳定化参数△~*Gi~(α(α_2)→γ)(i=C, B, Si, Fe)。结果表明:
    (1) 在Ti-Al二元系中,加入少量的C 和B 使(α(α_2)+γ)/γ相界线向高Al 方向移动,B 还使α(α_2)/(α(α_2)+γ)相界线向高Al 方向移动;加入少量的Si 和Fe使α(α_2)/(α(α_2)+γ)相界线向富Ti方向有较大移动,Fe 还使(α(α_2)+γ)/γ相界线向富Ti方向移动;加入0.1at.%B 使Tα温度降低约18℃,0.3at.%Si、1.0at.%Fe 分别使Tα温度提高约80~110℃和90~110℃,而加入0.2at.%C 对Tα温度影响不大。
    (2) C、B和Si在α(α_2)相中的溶解度均大于在γ相中的溶解度,而Fe 在α(α_2)相中的溶解度则小于在γ相中的溶解度,且Fe 在α(α_2)和γ相中的分配比随温度升高而增大。
    (3) 当Si含量增加到1.0at%时,组织中出现第三相Ti5Si3。Ti5Si3相的出现使α(α_2)/γ片层组织细化,且粗化困难。
    采用本研究设计的简易四元扩散偶-电子探针法,测定了Ti-Al-Cr-Fe 系的
It has been shown that additions of alloying elements such as B, C, Fe, Si, Cr-Nb, Cr-Si and Nb-Si to γ-TiAl-based alloys is an effective method to improve the properties of the alloys. However, the α(α_2)/γphase equilibria in the Ti-Al-X(X=B, C, Fe, Si) ternary systems have not been studied systematically, and the α(α_2)/γphase equilibria in the Ti-Al-Cr-Si, Ti-Al-Cr-Fe, Ti-Al-Nb-Si and Ti-Al-Nb-Fe quarternary systems are never reported. In the present work, the α(α_2)/γphase equilibria in Ti-Al-B, Ti-Al-C, Ti-Al-Fe, Ti-Al-Si, Ti-Al-Cr-Fe, Ti-Al-Cr-Si, Ti-Al-Nb-Fe and Ti-Al-Nb-Si systems have been determined using alloy-equilibrium-diffusion treatment, diffusion couple and electron probe microanalysis (EPMA).
    Recent work in our group has indicated that the grand potential method (GPM) is effective to calculate phase equilibrium in binary systems. In the present work, the applicability of GPM in ternary systems has been studied systematically and the α/βand the α/γphase equilibria in the Ti-Al-Nb ternary system has been calculated by GPM.
    The α(α_2)/γphase equilibria at 1000~1250℃in Ti-Al-X(X=B, C, Fe, Si) ternary systems were determined by alloy-equilibrium-diffusion treatment and EPMA. According to the obtained data, the partial vertical sections of Ti-Al-X(X=B, C, Fe, Si) ternary systems have been plotted at 0.1at.%B, 0.2at.%C, 0.3at.%Si and 1.0at.%Fe, respectively. The results are as following:
    (1) The addition of B to the Ti-Al binary system results in a shift of both the α(α_2)/(α(α_2)+γ) and the (α(α_2)+γ)/γboundaries to the Al-rich side and 0.1at.%B addition decreases Tαby 18℃. The addition of C leads to a shift of the (α(α_2)+γ)/γboundary to the Al-rich side but the effect of 0.2at.%C addition on Tαis very slight. The addition of 0.3at.%Si increases Tαby 80~110℃and 1.0at.%Fe addition by 90~110℃. However, 1.0at.% Fe addition leads to a limited shift of the (α(α_2)+γ)/γboundary to the Ti-rich side, whereas the effect of 0.3at.%Si addition on the (α(α_2)+γ)/γboundary is quite slight.
    (2) The solubilities of B, C and Si in the α(α_2) phase are larger than those in the γphase,
    whereas the solubility of Fe in the α(α2) phase is smaller than that in the γphase. With increasing temperature, the partitioning ratio KFeα/γincreases gradually. (3) A third phase Ti5Si3 appears in Ti-46Al-1.0Si alloy and obviously restrain coarsening of primary lamellae of the alloy at elevated temperature. A new method of diffusion couple was designed to determine the α/γphase equilibrium in quarternary systems. By using this method, the α/γphase equilibria at 1150~1250 ℃in the Ti-Al-Cr-Fe, Ti-Al-Cr-Si, Ti-Al-Nb-Fe and Ti-Al-Nb-Si quarternary systems have been determined. Based on the measured α/γphase equilibrium data, the partial isothermal squares for the Ti-Al-Cr-Fe, Ti-Al-Cr-Si, Ti-Al-Nb-Fe and Ti-Al-Nb-Si quarternary systems have been obtained. The results show that the addition of Cr to the Ti-Al-Fe ternary system increases the partitioning ratio KFeα/γat given temperature, whereas the addition of Cr to the Ti-Al-Si ternary system decreases the partitioning ratio KSiα/γ. Both the additions of Si and Fe to the Ti-Al-Cr ternary system increase the partitioning ratio KCrα/γat given temperature. In this work, the principle, equations, approaches and programs for calculating the miscibility gap and the dissimilar phase equilibrium in ternary system by GPM are given systematically. Based on the theoretical analysis, a series of phase diagrams with miscibility gap and dissimilar phase equilibrium in ternary systems at a given temperature have been calculated out with various thermodynamic parameters. The results show that the calculation of phase equilibrium in ternary system by GPM has characteristics of clear geometrical relationship, convenient approach and wide application. Comparing with the usual optimization method for calculating the minimum value of the Gibbs free energe, GPM in ternary system has no convergent problem and has a high calculation efficiency. Based on the GPM in ternary system above, a new method to calculate the phase transition temperature in ternary system was proposed and is also applied to calculate the α→(α+γ) transition temperature Tαin Ti-Al-Nb system. The calculated results agree well with the experimental data. According to experimental data of phase equilibria in ternary system, the methods (the T0 line method and the chemical potential equality method) to determine the binary interaction parameters in metastable phases were proposed. By these methods, the interaction parameters IαA lNb, IγA lNb and IγN bTi are obtained with the subregular solution model based on the experimental data of α/βand α/γphase equilibria in the Ti-Al-Nb ternary system. The interaction parameters, IβT iAl, IγT iAl, IαTi2Al, IαN bTi, IβN bTi and IAβlNb were calculated using the experimental data in the Ti-Al,Al-Nb and Nb-Ti binary systems. Using the obtained thermodynamic parameters above, the phase equilibria α/β, α/γ, α2/γ
    in the Ti-Al binary system, L/βin the Al-Nb binary system, α/βin the Nb-Ti binary system, α/β( at 1150℃and 1400℃) and α/γ(at 1150℃, 1200℃, 1250℃, 1300℃and 1400℃) in the Ti-Al-Nb ternary system were calculated. The results are consistent well with the experimental phase diagram.
引文
1. Y.W.Kim, JOM, 41(7):24, 1989
    2. Y.W.Kim, JOM, 46(7):30, 1994
    3. J.B.McAndrew, H.D.Kessler, J Metals, 8:1348, 1956
    4. H.A.Lipsitt, D.Shechtman, R.E.Schafrik, Metall Trans. A, 6A(11):1991, 1975
    5. M.J.Blackurn, M.P.Smith, US Patent 4294615, 1981
    6. Y.W.Kim, D.M.Dimiduk, JOM, 43(8):40, 1991
    7. F.H.Froes, JOM, 41(9):6, 1989
    8. 仲增墉, 金属间化合物高温结构材料,国家863 新材料研讨会, 1990
    9. F.H.弗罗斯, C.斯扬纳拉扬纳, D.爱里释, 材料工程, 4:1, 1991
    10. 桥本健纪, 土肥春夫, 笠原和男, 迁本得藏, 铃木朝夫, 日本金属学会志, 52(8):816,1988
    11. H.Inui, M.H.Oh, A.Nakamura, M.Yamaguchi, Acta. Metall.,40:3095, 1992
    12. Y.W.Kim, JOM, 47(7):39, 1995
    13. P.Bartolotta, J.Barrett, T.Kelly, and R.Smashey, JOM, 49(5):48, 1997
    14. M.M.Keller, P.E.Jones, W.J.Porter III, and D.Eylon, JOM, 49(5):42, 1997
    15. 仲增墉,叶恒强主编, 金属间化合物,机械工业出版社,1992
    16. Y.W.Kim, Workshop on γ-TiAl, IRC in Materials for High Performance Application, The University of Birmingham, Birmingham, Britain, 1992
    17. 乾晴行, まてりあ, Materia Japan, 33(3):231, 1994
    18. 丁进军,东北大学硕士学位论文,沈阳,1991
    19. 吴文涛,东北大学硕士学位论文,沈阳,1992
    20. W.E.Dowling et al.,Microstructure/Property Relationships in Titanium Aluminides and Alloys, ed. Y.W.Kim and R.R.Boyer, Warrendale, PA:TMS, 123, 1990
    21. D.S.Shih et al., Microstructure/Property Relationships in Titanium Aluminides and Alloys, ed. Y.W.Kim and R.R.Boyer, Warrendale, PA:TMS, 135, 1990
    22. J.S.Huang, Y.W.Kim, Scripta Metall., 25:1901, 1991
    23. M.Es-Souni, A.Bartels, R.Wagner, Structural Intermetallics, Warrendale, A:TMS,335,1993
    24. 郝士明, 材料导报, 3:11, 1993
    25. T.Kawabata, Scripta Metall, 22(11):1725, 1988
    26. T.Kawabata,Titanium Science and Technology,G.Lutjering,U.Zwicker,W.Bunk,Deutsche Gesellschaft fur Metallkunde, 1031, Munch, FRG, 1984
    27. K.S.Chan, Y.W.Kim, Scripta Metall, 28(12):439, 1994
    28. K.S.Chan, Y.W.Kim, Metall Trans, 23A:1633, 1992
    29. K.S.Chan, JOM, 44(5):30, 1992
    30. K.S.Chan, Metall Trans, 24A:569, 1993
    31. 山口正治, 金属, 60(7):34, 1990
    32. Y.W.Kim, 及川洪, 日本金属学会会报, 32(2):73, 1993
    33. Y.W.Kim, Acta Metall Mater, 40:1121, 1992
    34. Y.Zheng, L.Zhao, K.Tangri, Scripta Metall Mater, 26:219, 1992
    35. 郝士明,韩传玺,吴文涛,金属学报,29:A49, 1993
    36. B.F.Oliver, 中南工业大学内部资料,长沙,1990
    37. G.Frommeyer,W.Wunderlich,Th.Kremser,Z.G.Liu,Mater Sci Eng,A152:66,1992
    38. W.Wunderlich, Th.Kremser, G.Frommeyer, Z. Metallkde, 81(11):802, 1990
    39. W.Wunderlich, Th.Kremser, G.Frommeyer, Acta Metall Mater,41(6):1791, 1993
    40. M.Yamaguchi, H.Inui, J Mater Sci Tech, 10:193, 1994
    41. 加藤哲男,草加藤司,粉体および粉末冶金,36(7):30, 1989
    42. S.Tsuyama, S.Mitao, K.Minakawa, Mater Sci Eng, A153: 451, 1992
    43. D.M.Dimiduk, D.B.Miracle, Y.W.Kim, M.G.Mendiratta, ISIJ Int, 31:1223, 1991
    44. D.R.Johnson, H.Inui and M.Yamaguchi, Acta Mater, 44(6):2523, 1996
    45. T.Noda, M.Okabe, S.Isobe, M.Sayashi, Mater Sci Eng, A192/193;774, 1995
    46. S.C.Huang, US Patent 7076858, 1991
    47. H.Clemens, Z Metallkd, 86(12):814
    48. G.E.Fuchs, Mater Sci Eng, A192/193:707, 1995
    49. D.W.McKee, S.C.Huang, Corros Sci, 33:1899, 1992
    50. P.L.Martin, M.G.Mendiratta, H.A.Lipsitt, Metall Trans A, 14:2170, 1983
    51. D.R.Johnson, Y.Masuda, H.Inui, M.Yamaguchi, Acta Mater, 45(6):2523, 1997
    52. M.Es-Souni, R.Wagner and P.A.Beaven, Mater Sci Eng, A153:444, 1992
    53. M.Nemoto,W.H.Tian,K.Harada,C.S.Han,T.Sano, Mater Sci Eng,A152:247,1992
    54. T.Kawabata, M.Tadano, O.Izumi, ISIJ Int, 31(10):1161,1991
    55. 田文怀, 原田浩介, 中岛玲司, 佐野毅, 根本实, 日本金属学会志, 57(11):1235, 1993
    56. 曲选辉, 黄伯云, 雷长明, 贺跃辉, 孔高宁, 金属学报, 31 增刊:S537, 1995
    57. 朱丹青, 陈国良, 张卫军. 金属学报, 31 增刊:S546, 1995
    58. T.Hanamura, Proc. JIMIS--6, ed. O.Izumi, Sendi, Japan, 179, 1991
    59. 徐强, 北京航空航天大学博士学位论文, 北京, 1993
    60. E.Van Erkelen, Metall Erz, 20(11):206, 1923
    61. J.L.Murray, Binary Titanium Phase Diagrams, ed. J.L.Murray, ASM, Inter Mater Park, Ohio, 12, 1987
    62. T.B.Massalski, J.L.Murray, L.H.Bennett, H.Baker, eds, Binary Phase Diagrames, vol.1, 175, ASM, 1986
    63. L.Kaufman, Titanium Science and Technology, R.I.Jaffee, eds, Plenum Press, New York, NY, 773, 1973
    64. J.P.Gross, Scripta Metall, 22:1587, 1988
    65. C.McCullough,J.J.Valencia,C.G.Levi,R.Mehrabian,Scripta Metall,22:1131,1988
    66. R.D.Shull, Acta Metall, 41:387, 1993
    67. J.L.Murray, Metall Trans, 23A:2699, 1992
    68. T.B.Massalski, Binary Alloy Phase Diagram, ASM, vol1, 225, 1990
    69. C.McCullough, J.J.Valencia, C.G.Levi, R.Mehrabian, Acta Metall, 37(5):1321, 1989
    70. S.C.Huang, P.A.Siemers, Metall Trans, 20A:1899, 1989
    71. U.R.Kattner, J.C.Lin, Y.A.Chang, Metall Trans A, 23A(8):2081, 1992
    72. H.Okamoto, J Phase Equilibria, 14(1):120, 1993
    73. R.J.Van Thyne, H.D.Kessler, Trans AIME, J Metals, 200:193, 1954
    74. J.C.Schuster, H.Nowotny, C.Vaccaro, J Solid State Chem, 32:213, 1980
    75. F.H.Hayes,Ternary Alloys,vol.3,G.Petzow and G.Effenberg,ed.,Verlag Chemie, Weinheim, FRG, 557, 1990
    76. G.Cam, H.M.Flower, D.R.F.West, Mater Sci Technol, 7(6):505, 1991
    77. M.A.Pietzka, “Structural Chemistry,Phase Equilibria and Chemical Analysis in the Systems Ti-Al-C and Ti-Al-N”, paper presented at Junior EUROMAT, Lausanne, Switzerland, 1992
    78. M.X.Zhang, Y.A.Chang, J Phase Equilibria, 15(5):470, 1994
    79. M.A.Pietzka, J.C.Schuster, J Phase Equilibria, 15(4):1994
    80. F.H.Hayes, H.L.Lukas, J Phase Equilibria, 12(5):609, 1991
    81. O.Schob, H.Nowotny, F.Benesovsky, Planseeberichte fur Pulvermetallurgie, 10: 65, 1962
    82. A.Raman, K.Schubert, Z Metallkd, 44:56, 1965
    83. M.Bulanova, L.Tretyachenko, M.Golovkova, Z Metallkd, 88(3):256, 1997
    84. J.S.Wu, P.A.Beaven, R.Wagner, Scripta Metall, 24:207, 1990
    85. J.S.Wu, G.Qiu, L.Zhang, Scripta Metall, 30:213, 1994
    86. S.H.Manesh, H.M.Flower, Mater Sci Technol, 10:674, 1994
    87. S.Stilz, A.Prince, in G.Petzow and G.Effenberg eds, Ternary Alloys, III, VCH, Weinheim, 374, 1990
    88. P.Perrot,in G.Petzow and G.Effenberg eds,Ternary Alloys,III,VCH,Weinheim,283,1990
    89. Y.G.Nakagawa, S.Yokoshima, K.Mastuda, Mater Sci Eng, A153:722, 1992
    90. B.J.Inkson, C.B.Boothroyd, C.J.Humphreys, Acta Metall Mater, 41(10):2867, 1993
    91. H.Nishimura, E.Matsumoto, Nippon Kinzoku Gakkai-Shi, 10(4):339, 1940 (in Japanes)
    92. I.I.Kornilov, E.N.Pylaeva, M.A.Volkova, Zh Neorg Khim, 3:1391, 1958 (in Russian)
    93. M.A.Volkova, I.I.Kornilov, Izv Akad Nauk SSSR, Met, (3):187, 1970 (in Russian)
    94. M.A.Volkova, I.I.Kornilov, Izv Akad Nauk SSSR, Met, (1):200, 1971 (in Russian)
    95. V.Ya.Markiv, V.V.Burnashova, V.P.Ryabov, Akad Nauk Ukr SSR, Metallofiz, 46:103, 1973 (in Russian)
    96. M.A. Volkova, I.I.Kornilov, Khim Met Splav, (1):77, 1973
    97. A.Seibold, Z Metallkd, 77(10):712, 1981
    98. V.Raghavan, Phase Diagrams of Ternary Iron Alloys:Part I, ASM International, Metals Park, OH, 9, 1987
    99. V.Raghavan, J Phase Equilibria, 14(5):618, 1993
    100. 山口正治,金属,59(1):49, 1989
    101. 山口正治,乾晴行,臼井泰治,金属,65(3):215, 1993
    102. 宫本淳之,金属,65(3):260, 1993
    103. M.V.Malt’sev, G.P.Danilova, A.R.Avidon,Izvest Vysshikh, Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2:146, 1956
    104. I.A.Popov, V.I.Rabezova, Titan I Ego Splavy, Akad Nauk USSR, 7:105 and 436, 1962
    105. B.S.Troitskii, A.M.Zhakarov, G.V.Karsanov, L.L.Vergasova, Izv Vuz Tsvetn Metall, Moscow, 77, 1983
    106. A.M.Zhakarov, G.V.Karsanov, B.S.Troitskii, L.L.Vergasova, Russian Metall, 1:199,1984
    107. J.H.Perepezko, Y.A.Chang, L.E.seitzman, J.C.Lin, N.R.Bonda, T.J.Jewett, J.C.Mishurda, in High Temperature Aluminides and Intermetallics, S.H.Whang, C.T.Liu, D.P.Pope, J.O.Stiegler, eds, The Minerals, Metals and Materials Society, 19,1990
    108. I.Ma, M.H.Paynnada, Scripta Metall, 28:429, 1993
    109. 张锌, 郝士明, 首届辽宁青年学术交流会论文集, 沈阳, 1:257, 1992
    110. 郝士明, 赵泉, 第六届全国相图学术交流会论文集, 沈阳, 141, 1990
    111. 曹京霞, 丁进军, 郝士明, 陈国良, 金属学报, 31:S555, 1995
    112. 王西涛, 陈国良, 倪克铨, 高茂林, 陈建栋, 金属学报, 31:S550, 1995
    113. 刘雅秀, 北京科技大学博士学位论文, 北京, 1995
    114. 秦高梧, 曾宁华, 郝士明, 金属学报, 1996
    115. 王金国, 北京科技大学博士学位论文, 北京, 1995
    116. 陈国良, 孙祖庆, 谢锡善, 任允蓉, 金属间化合物, 仲增墉, 叶恒强主编, 机械工业出版社, 北京, 233, 1992
    117. G.L.Chen, Z.Q.Sun, X.Zhou, Mater Sci Eng, A152:597, 1992
    118. G.L.Chen, J.G.Wang, Z.Q.Sun, H.Q.Ye, Intermetallics, 2: 31, 1994
    119. J.G.Wang, G.L.Chen, Z.Q.Sun, J Mater Sci & Technol, 10: 359, 1995
    120. 曹京霞, 丁进军, 郝士明, 陈国良, 金属学报, 31: 559, 1995
    121. 王西涛, 北京科技大学博士学位论文, 北京, 1995
    122. 丁进军, 东北大学博士学位论文, 沈阳, 1996
    123. G.L.Chen, X.T.Wang, K.Q.Ni, S.M.Hao, J.X.Cao, J.J.Ding, X.Zhang,Intermetallics,4(1):13, 1996
    124. J.L.Taylor, P.Duwez, Trans AIME, 197:253, 1953
    125. I.I.Kornilov, V.S.Mikheyev, T.S.Chernova, ZH Neorg Khim, 3:786, 1958
    126. T.V.Tagunaova, ZHNeorg Khim, 3:815, TR:Russ J Inorganic Chem, 308, 1958
    127. E.Ence, P.A.Farrar, H.Margolin, Wright Air Development Division Tech Rep,1~20, 1960
    128. 间博, 中山, 日本金属学会会报, 30(1):24, 1991
    129. F.H.Hayes, J Phase Equilibria, 13(1):79, 1992
    130. 曾宁华, 东北大学硕士学位论文, 沈阳, 1994
    131. 郝士明, 曾宁华, 金属学报, 31(4):B152, 1995
    132. 蒋敏, 东北工学院博士学位论文, 沈阳, 1992
    133. F.N.Rhines, Application of Phase Diagram in Metallurgy and Ceramics, G.C. Carter, eds, vol.1:142, Washington, 1978
    134. Z.P.Jin, Scand J Metallurgy, 10:279, 1981
    135. S.M.Hao, T.Takayama, K.Ishida, T.Nishizama, Metall Trans, 15A:1819, 1984
    136. S.M.Hao, K.Ishida, T.Nishizama, Metall Trans, 16A:179, 1985
    137. F.J.J.Van.Loo, G.F.Bastin, J Less-common Met, 81:61, 1981
    138. F.J.J.Van.Loo, J.W.G.A.Vrolijk, G.F.Bastin, J Less-common Met, 77:121, 1981
    139. J.H.Hildebrand, J.Am. Chem Soc, 51:66, 1929
    140. H.K.Hardy, Acta Metall, 1:202, 1953; 2:348, 1954
    141. C.Wanger and W.Schotty, Z Phys Chem, 11B:163, 1930
    142. E.A.Guggenheim, Mixtures, Clarend on Press, Oxford, 1952
    143. R.Kikuchi, Phys Rev, 81:988, 1951
    144. W.J.Boesch and J.S.Slaney, Met Prog, 86(1):109, 1964
    145. M.Hillert, in 合金状态图共同研究会讨议资料, 1, 186~1991
    146. K.S.Kumar, Inter Materials Rev, 35:293, 1990
    147. L.Kaufman and H.Bernstein, Computer calculation of phase diagram, Academic Press, New York, 1970
    148. L.Kaufman and H.Nesor, Metall Trans, 5A:1617, 1974; 6A:2115, 1975
    149. L.Kaufman, Calphad, 15:243, 261, 1991
    150. O.Redlich and A.T.Kister, Ind Eng Chem, 40:345, 1948
    151. R.J.Weiss and K.J.Tauer, Phys Rev, 102;1490, 1956
    152. L.Kaufaman, E.V.Clougherty and R.J.Weiss, Acta Metall, 11:323, 1963
    153. T.Nishizawa, S.M.Hao, M.Hasebe and K.Ishida, Acta Metall, 31:1403, 1983
    154. 郝士明, 日本东北大学博士论文, 仙台, 1982
    155. C.Zener, Trans AIME, 203:619, 1955
    156. M.Hillert, T.Wada and H.Wada, J Iron Steel Inst, 205:539, 1967
    157. M.Hillert, in Pase Transformation, eds, M.Cohen, ASM, 81, 1969
    158. T.Nishizawa, M.Hasebe and M.Ko, Acta Metall, 27:817, 1979
    159. 郝士明, 西泽泰二等, 东北工学院学报, 38:13, 1984; 39:25, 1984; 40:23, 1984; 41:11, 1984
    160. 西泽泰二等, 日本金属学会会报, 26:600, 1987
    161. S.M.Hao, K.Ishida and T.Nishizawa, Metall Trans, 16A:179, 1985
    162. L.E.雷克著,黄昀等译校,统计物理现代教程,北京大学出版社, 39, 1983
    163. 郝士明, 蒋敏, 材料科学进展, 6:369, 1992
    164. 郝士明, 蒋敏, 金属学报, 28: 482, 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700