用户名: 密码: 验证码:
TiAl-5Nb合金定向凝固过程中组织演化规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiAl合金是一种极具潜力的高温结构材料,它的重要发展方向之一是具有单轴应力状态的发动机叶片。为了充分发挥TiAl基合金用于叶片材料方面的优势,期望TiAl基合金以全β凝固方式进行定向凝固,从而获得与生长方向相平行或成45°夹角的片层组织。Nb元素的加入不仅可以提高TiAl合金的高温性能和室温塑性,而且Nb元素的加入对获得全β凝固的TiAl基合金起到十分重要的作用。因此,Nb元素的添加为设计高铝含量的、全β凝固的、可控片层取向的TiAl基合金提供了可能。
     本文首先利用Thermo-Calc软件对Ti-Al-Nb三元合金系进行了热力学计算。通过分析Nb含量低于15at.%的TiAl-Nb三元合金系的变温截面图得出,Nb含量分别为5at.%、10at.%和15at.%时,Al含量分别低于52.3at.%、55.8at.%和56.9at.%的TiAl-Nb三元合金的初生相均为β相。将Ti-Al-Nb三元合金系的变温截面图进一步简化得到了Ti-Al伪二元相图,根据Ti-Al伪二元相图得到了TiAl-Nb合金的“铝当量”表达式,为获得全β相凝固的TiAl-Nb三元合金提供了理论依据。
     为了进一步确定全β凝固的TiAl-Nb合金的成分范围和验证Ti-Al伪二元相图中全β凝固的成分点,对非自耗电弧熔炼得到的TiAl-Nb合金锭的组织演化规律进行了研究。对于TiAl-5Nb合金锭而言,当Al含量小于或等于48at.%时,其初生相为β相;Al含量大于48at.%时,其初生相为α相。本文综合考虑了Ti-Al伪二元相图和非自耗电弧熔炼的实验结果,同时为了保持TiAl基合金的低密度的特性和获得较好的综合性能,本文确定用于TiAl-Nb合金定向凝固实验的成分为:Ti-45Al-5Nb、Ti-47Al-5Nb和Ti-50Al-5Nb合金。
     对Ti-45Al-5Nb、Ti-47Al-5Nb和Ti-50Al-5Nb三种合金分别在6.9K/mm和11.4K/mm两种温度梯度下进行了定向凝固实验。研究发现温度梯度为6.9K/mm的TiAl-5Nb合金的宏观组织的定向效果较差。但是,从其片层取向与生长方向的夹角可以发现,当温度梯度为6.9K/mm时三种成分的TiAl-5Nb合金在凝固过程中的初生相为β相。当温度梯度为11.4K/mm时,Ti-50Al-5Nb合金的宏观组织具有较好的定向效果。通过对温度梯度为11.4K/mm的Ti-50Al-5Nb合金定向凝固组织的研究可知,生长速度小于20μm/s的Ti-50Al-5Nb合金在定向凝固过程中的初生相均为β相。其中,生长速度小于15μm/s时,Ti-50Al-5Nb合金的片层取向大多与生长方向相平行,实现了在高铝TiAl-5Nb合金中的片层取向的控制。因此,通过实验证明了TiAl-5Nb合金在不同的温度梯度和生长速度条件下都可以得到全β凝固。并且在温度梯度为11.4K/mm、生长速度小于15μm/s条件下Ti-50Al-5Nb合金具有较好的片层组织,在高铝的TiAl-5Nb合金中获得了我们所期望得到的定向凝固组织。本文利用成分过冷和充分形核假设(NCU模型),建立了Ti-(44-53)Al-5Nb合金定向凝固过程中的相和组织选择图,计算结果与实验结果吻合很好。
The engine vanes with monoaxial stress condition are one of the important developmental directions. In order to fully display the advantage of TiAl-based alloys using in engine vanes, we hope that the solidification mode is the full beta solidification during the directional solidification of TiAl-based alloys. Consequently, we obtain the lamellar microstructure inclined at angle of 0°or 45°to the growth direction. Nb additions not only can enhance the high temperature properties and the temperature ductility of TiAl alloys, but also Nb additions play very important role for obtained TiAl-based alloys of the full beta solidification. In summary, Nb additions offer the possibility in order to design the full beta solidified high Al content TiAl alloys of high properties and controllable lamellar orientation.
     Firstly, Ti-Al-Nb ternary phase diagrams were calculated by Thermo-Calc software. By the analysis of the vertical sections of Ti-Al-Nb with lower Nb content than 15at.%, the following are the results. First, when Nb content is 5at.% and Al content is lower than 52.3at.%, the primary phase isβphase during solidification. Second, when Nb content is 10at.% and Al content is lower than 55.8at.%, the primary phase isβphase. Third, when Nb content is 15at.% and Al content is lower than 56.9at.%, the primary phase isβphase. The vertical sections of Ti-Al-Nb ternary system are further simplified into pseudo-Ti-Al binary phase diagram. According to the pseudo-Ti-Al binary phase diagram, the expression of the aluminum equivalent is obtained in TiAl-Nb, which provides the theoretical foundation for obtained TiAl-Nb alloys of the beta solidification.
     In order to further confirm the beta solidification of TiAl-Nb alloys and verify the full beta solidification critical values in the pseudo-Ti-Al binary phase diagram, the microstructure evolution of TiAl-Nb button ingots is investigated by non-consumable tungsten electrode arc melting equipment. For TiAl-5Nb button ingots, when Al content is lower than 48at.%, the primary phase isβphase. If Al content is higher than 48at.%, the primary phase isαphase. We synthetically analyzed the pseudo-Ti-Al binary phase diagram and the experimental results of non-consumable tungsten electrode arc melting, and considered that the directional solidification process is the quasi-equilibirium state. Simultaneously, in order to retain low density of TiAl-based alloys and obtain good comprehensive mechanical properties, the composition is confirmed to use in the directional solidification experiment. These alloys are Ti-45Al-5Nb, Ti-47Al-5Nb, and Ti-50Al-5Nb alloy.
     The directionally solidified microstructures of Ti-45Al-5Nb, Ti-47Al-5Nb, and Ti-50Al-5Nb alloys were investigated under the temperature gradient of 6.9K/mm and 11.4K/mm. The results show that when the temperature gradient is 6.9K/mm the macrostructures of TiAl-5Nb alloys have the poor directional effect. Whereas, when the temperature gradient is 6.9K/mm we can find that the primary phase isβphase under the directional solidification of TiAl-5Nb alloys according to make an angle of the lamellar orientation with the growth direction. When temperature gradient is 11.4K/mm, the macrostructures of Ti-50Al-5Nb alloys have the good directional effect. Experimental studies show that the primary phase isβphase during the directional solidification when the temperature gradient is 11.4K/mm and the growth rate is lower than 20μm/s. Therein the lamellar orientations of Ti-50Al-5Nb alloys mainly have paralleled to the growth direction when the growth rate is lower than 15μm/s. It is realized to control the lamellar orientation in high Al containing TiAl-5Nb alloys. In conclusion, the experimental results show that the beta solidification can be obtained in TiAl-5Nb alloys under the experimental condition. Moreover, the microstructures of Ti-50Al-5Nb alloys have the good lamellar orientations under the temperature gradient is11.4K/mm and the growth rate is lower than 15μm/s. In TiAl-5Nb alloy containing high Al content, we obtain expecting directionally solidified microstructure. Based on the criterion of nucleation and constitutional undercooling (NCU model), the phase and microstructure selection of Ti-(44-53)Al-5Nb alloys was constructed during the directional solidification, which is in good agreement with the experimental results.
引文
1 E. Donald, J. Larsen, Status of investment cast gamma titanium aluminides in USA. Materials Science and Engineering. 1996, A213:128~133
    2 S. Malinov, W. Sha. Application of artificial neural networks for modelling correlations in titanium alloys. Materials Science and Engineering. 2004, A365(1-2):202~211
    3 I. Gurrappa. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Materials Characterization. 2003, 51(2-3):131~139
    4 J. Lapin. Creep behaviour of a cast TiAl-based alloy for industrial applications. Intermetallics. 2006, 14(2):115~122
    5 T. Noda. Application of cast gamma TiAl for automobiles. Intermetallics. 1998, 6(7-8):709~713
    6 M. L. Weaver, C. W. Calhoun. Microstructure, texture and mechanical properties of continuously cast gamma TiAl. Journal of Materials Science. 2002, 37:2483~2490
    7 L. Kaczmarek, B. G. Wendler, D. Siniarski, A. Ryski, D. Bielinski, O. Dobrowolski, P. Lipinski. Oxidation resistance of refractoryγ-TiAlW coatings. Surface & Coatings Technology. 2007, 201(13):6167~6170
    8 W. F. Cui, C. M. Liu, V. Bauer, H.–J. Christ. Thermomechanical fatigue behaviours of a third generationγ-TiAl based alloy. Intermetallics. 2007, 15(5-6):675~678
    9傅恒志,苏彦庆,郭景杰,徐达鸣.高温金属间化合物的定向凝固特征.金属学报. 2002, 38(11):1127~1132
    10 Mitsuo Niinomi. Recent Research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials. 2003, 4(5):445~454
    11 M. Charpentier, A. Hazotte, D. Daloz. Lamellar transformation in near-γTiAl alloys—Quantitative analysis of kinetics and microstructure. Materials Science and Engineering A. 2008, 491(1-2):321~330
    12 Gilbert Hénaff, Anne-Lise Gloanec. Fatigue properties of TiAl alloys. Intermetallics. 2005, 13(5):543~558
    13 H. E. Dève, A. G. Evans, G. R. Odette, R. Mehrabian, M. L. Emiliani. Ductilereinforcement toughening ofγ-TiAl: Effects of debonding and ductility. Acta Metallurgica et Materialia. 1990, 38(8):1491~1502
    14 W. F. Cui, C. M. Liu. Fracture characteristics ofγ-TiAl alloy with high Nb content under cyclic loading. Journal of Alloys and Compounds. 2009, 477(1-2):596~601
    15 D. Hu, X. Wu, M. H. Loretto. Advances in optimization of mechanical properties in cast TiAl alloys. Intermetallics. 2005, 13(9):914~919
    16 J. P. Lin, X. J. Xu, Y. L. Wang, S. F. He, Y. Zhang, X. P. Song, G. L. Chen. High temperature deformation behaviors of a high Nb containing TiAl alloy. Intermetallics. 2007, 15(5-6):668~674
    17 Hui-ren JIANG, Zhong-lei WANG, Wen-shuai MA, Xiao-ran FENG, Zi-qiang DONG, Liang ZHANG, Yong LIU. Effects of Nb and Si on high temperature oxidation of TiAl. Transactions of Nonferrous Metals Society of China. 2008, 18(3):512~517
    18 Yong Wang, J. N. Wang, Jie Yang, Bin Zhang. Control of a fine-grained microstructure for cast high-Cr TiAl alloys. Materials Science and Engineering. 2005, A392(1-2):235~239
    19 H. Saari, J. Beddoes, D. Y. Seo, L. Zhao.Development of directionally solidifiedγ-TiAl structures. Intermetallics. 2005, 13(9):937~943
    20 S. E. Kim, Y. T. Lee, M. H. Oh, H. Inui, M. Yamaguchi. Directional solidification of TiAl-Si alloys using a polycrystalline seed. Intermetallics. 2000, 8(4):399~405
    21 M. Lamirand, J.–L. Bonnentien, G. Ferrière, S. Guérin, J.–P. Chevalier. Relative effects of chromium and niobium on microstructure and mechanical properties as a function of oxygen content in TiAl alloys. Scripta Materialia. 2007, 56(5):325~328
    22 Z. W. Huang, T. Cong. Microstructure instability and embrittlement behaviour of an Al-lean, high-Nbγ-TiAl-based alloy subjected to a long-term thermal exposure in air. Intermetallics. 2010, 18(1):161~172
    23沈勇,丁晓非,王富刚等.高铌TiAl基合金高温抗氧化性能研究.中国腐蚀与防护学报. 2004, 24(4):203~207
    24 Shusuo Li, Xikong Su, Yafang Han, Xiangjun Xu, Guoliang Chen. Simulation of hot deformation of TiAl based alloy containing high Nb. Intermetallics. 2005, 13(3-4):323~328
    25闵乃本.晶体生长的物理学基础.上海:上海科学技术出版社. 1989:1~6
    26 Jingjie Guo, Xinzhong Li, Yanqing Su, Shiping Wu, Bangsheng Li, Hengzhi Fu. Phase-field simulation of structure evolutiong at high growth velocities during directional solidification of Ti55Al45 alloy. Intermetallics. 2005, 13(3-4):275~279
    27 K. F. Wang, J. J. Guo, G. F. Mi, C. Y. Li, H. Z. Fu. Numerical simulation of columnar to equiaxed transition for directionally solidified Ti-44Al alloy. Acta Metallurgica Sinica (English Letters). 2008, 21(2):146~156
    28 T. S. Lo, S. Dobler, M. Plapp, A. Karma, W. Kurz. Two-phase microstructure selection in peritectic solidification: from island banding to coupled growth. Acta Materialia. 2003, 51(3):599~611
    29 A. Zambon, B. Badan, K. Eckler, F. G?rtner, A. F. Norman, A. L. Greer, D. M. Herlach, E. Ramous. Microstructure and phase selection in containerless processing of Fe-Ni droplets. Acta Materialia. 1998, 46(13):4657~4670
    30 C. J. Paradies, R. N. Smith, M. E. Glicksman. The influence of convection during solidification on fragmentation of the mushy zone of model alloy. Metallurgical and Materials Transactions A. 1997, 28:875~883
    31 A. Das, I. Manna, S. K. Pabi. A numerical model of peritectic transformation. Acta Metallurgica. 1999, 47(4):1379~1388
    32 J.–S. Park, R. Trivedi. Convection-induced novel oscillating microstructure formation in peritectic systems. Journal of Crystal Growth. 1998, 187:511~515
    33 H. W. Kerr, W. Kurz. Solidification of peritectic alloys. Int Mater Rev. 1996, 41(4):129~164
    34 R. Trivedi, J. H. Shin. Modelling of microstructure evolution in peritectic systems. Materials Science and Engineering. 2005, A413-414:288~295
    35张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤.金属键化合物结构材料.北京:国防工业出版社. 2001:546~907
    36 H. F. Chladil, H. Clemens, H. Leitner, A. Bartels, R. Gerling, F.–P. Schimansky, S. Kremmer. Phase transformations in high niobium and carbon containingγ-TiAl based alloys. Intermetallics. 2006, 14(10-11):1194~1198
    37 Yanhang WANG, Junpin LIN, Yuehui HE, Yanli WANG, Guoliang CHEN. Diffusion behabior of Nb element in high Nb containing TiAl alloys by reactive hot pressing. Rare Metals. 2006, 25(4):349~354
    38 G. L. Chen, J. G. Wang, X. T. Wang, X. D. Ni, S. M. Hao, J. J. Ding. Reply to the“Comment on‘Investigation on the 1000, 1150 and 1400°C isothermal section of the Ti-Al-Nb system’”–Part I. Ordering of Nb inγ-TiAl andγ1 phase.Intermetallics. 1998, 6(4):323~327
    39黄伯云,曲选辉.钛铝有序合金研究综述.材料导报. 1992, 2:22~28
    40孙福生,曹春晓. Ti-Al基合金研究的进展.金属学报. 1999, 35(1):39~43
    41 D. Eylon, M. M. Keller, P. E. Jones. Development of Permanent-mold Cast TiAl Automotive Valves. Intermetallics. 1998, 46:703~708
    42 E. A. Loria. Gamma Titanium Aluminides as Prospective Structural Materials. Intermetallics. 2000, 48:1339~1345
    43 T. Tetsui. Development of a TiAl Turbocharger for Passenger Vehicles. Materials Science and Engineering. 2002, A329-331:582~588
    44陈国良,林均品.有序金属间化合物结构材料物理金属学基础.北京:冶金工业出版社. 1999, 11-340
    45 R. Kainuma, M. Palm, G. Inden. Solid-phase equilibria in the Ti-rich part of the Ti-Al system. Intermetallics. 1994, 2(4):321-332
    46 R. Kainuma, I. Ohnuma, K. Ishikawa, K. Ishida. Stability of B2 ordered phase in the Ti-rich portion of Ti-Al-Cr and Ti-Al-Fe ternary system. Intermetallics. 2000, 8:869~875
    47 V. T. Witusiewicz, A. A. Bondar, U. Hecht, S. Rex, T. Ya. Velikanova. The Al-B-Nb-Ti system III. Thermodynamic re-evaluation of the constituent binary system Al-Ti. Journal of Alloys and Compounds. 2008, 465(1-2):64~77
    48 J. G. Wang, G. L. Chen, Z. Q. Sun. Phase relations in TiAl+Nb system. J. Mater. Sci. Technol. 1994, 10:359~367
    49 G. L. Chen, J. G. Wang, X. T. Wang, et al. Reply to the“Comment on‘Investigation on the 1000, 1150 and 1400°C isothermal section of the Ti-Al-Nb system’”-partΙ. Ordering of Nb inγ-TiAl andγ1 phase. Intermetallics. 1998, 6:323~327
    50 G. L. Chen, J. G. Wang, X. D. Ni, J. P. Lin, Y. L. Wang. A new intermetallic compound in TiAl+Nb composition area of the Ti-Al-Nb ternary system. Intermetallics. 2005, 13(3-4):329~336
    51 X. D. Ni, X. D. Hui, G. L. Chen. Distribution of Nb atom in the TiAl+Nb system. Rare Metals. 2001, 20(1):5~12
    52 G. L. Chen, X. T. Wang, K. Q. Ni, et al. Investigation on the 1000, 1150 and 1400°C isothermal section of the Ti-Al-Nb system. Intermetallics. 1996, 4:13~22
    53 T. J. Jewett. Comment on“Investigation on the 1000, 1150 and 1400℃isothermal section of the Ti-Al-Nb system”. Intermetallics.1997, 45:157~159
    54 A. Hellwing, M. Palm, G. Inden. Phase equilibria in the Al-Nb-Ti system at high temperatures. Intermetallics. 1998, 6:79~97
    55 M. Takeyama, Y. Ohmura, Makoto Kikuch, et al. Phase equilibria and microstrucrual control of gamma TiAl based alloys. Intermetallics. 1998, 6:643~646
    56 V. T. Witusiewicz, A. A. Bondar, U. Hecht, T. Ya, Velikanova. The Al-B-Nb-Ti system IV. Experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems. Journal of Alloys and Compounds. 2009, 472(1-2):133~161
    57刘贵仲. TiAl基合金ISM过程中熔体成分变化与控制.哈尔滨工业大学工学博士学位论文. 2003, 1~27
    58 D. Hu, J. F. Mei, M. Wickins, et al. Microstructure and tensile properties of investment cast Ti-46Al-8Nb-1B alloy. Scripta Meterialia. 2002, 47:273~278
    59 U. Hecht, V. Witusiewicz, A. Drevermann, J. Zollinger. Grain refinement by low boron additionas in niobium-rich TiAl-based alloys. Intermetallics. 2008, 16(8):969~978
    60 Xinhua Wu, D. Hu. Microstructural refinement in cast TiAl alloys by solid state transformations. Scripta Materialia. 2005, 52(8):731~734
    61周怀营,湛永钟. TiAl金属间化合物的研究进展.广西大学学报(自然科学版). 1999, 24(4):262~264
    62 K. S. Chan. Understanding fracture toughness in gamma TiAl. JOM. 1992, 44(5):30~38
    63 S. K. Jha, J. M. Larsen, A. H. Rosenberger. The role of competing mechanisms in the fatigue life variability of a nearly fully-lamellarγ-TiAl based alloy. Acta Materialia. 2005, 53(5):1293~1304
    64 C. T. Liu, P. J. Maziasz. Microstructural control and mechanical properties of dual-phase TiAl alloys. Intermetallics. 1998, (6):653~661
    65 Z. C. Liu, J. P. Lin, S. J. Li, et al. Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys. Intermetallics. 2002, 10:653~659
    66 J. Kumpfert, Y. W. Kim, D. M. Dimiduk. Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W. Materials Science and Engineering. 1995, A192/193:465~473
    67 K. T. Venkateswara Rao, Y. W. Kim, C. L. Muhlstein, et al. Fatigue crack growth and fracture resistance of a two phase (γ+α2) TiAl alloy in duplex and lamellar microstructures. Materials Science and Engineering. 1995, A192/193:474~482
    68陈伶晖,贺跃辉,曹鹏等. TiAl基合金显微组织对高温抗氧化性的影响.热加工工艺. 1995, 6:7~9
    69刘文胜,黄伯云,贺跃辉. TiAl基合金显微组织与室温断裂韧性关系的研究.稀有金属. 1997, 21(1):26~28
    70郑瑞廷,张永刚,陈昌麒等.显微组织应变率对全片层TiAl合金室温塑性的影响.材料科学与工程. 2004, 12(3):225~229
    71贺跃辉,黄伯云,周科朝等. TiAl基合金显微组织对高温拉伸力学性能的影响.中国有色金属学报. 1997, 7(1):75~79
    72林建国,张永刚,陈昌麒.γ-TiAl合金显微组织对其蠕变性能的影响.北京航空航天大学学报. 1998, 24(6):734~737
    73付连峰,林建国,曹国鑫等.全片层TiAl基合金的屈服强度与显微组织关系.稀有金属材料与工程. 2001, 30(3):178~182
    74 C. T. Liu, J. L. Wright, S. C. Deevi. Microstructures and properties of a hot-extruded TiAl containing no Cr. Materials Science and Engineering. 2002, A329-331:416~423
    75 Y. G. Jin, J. N. Wang, J. Yang, Y. Wang. Microstructure refinement of cast TiAl alloys byβsolidification. Scripta Mater. 2004, 51(2):113~117
    76 G. Hénaff, A. L. Gloanec. Fatigue properties of TiAl alloys. Intermetallics. 2005, 13(5):543~558.
    77 W. Lu, C. L. Chen, Y. J. Xi, et al. The oxidation behavior of Ti-46.5Al-5Nb at 900°C. Intermetallics. 2007, 15(8):989~998
    78 J. D. H. Paul, F. Appel, R. Wagner. The compression behaviour of niobium alloyedγ-Titanium Aluminides. Acta Mater. 1998, 46(4):1075~1085
    79 J. N. Wang, J. Zhu, J. S. Wu, et al. Effects of alloying elements on creep of TiAl alloys with a fine lamellar structure. Acta Mater. 2002, 50:1307~1318
    80 Toshimitsu Tetsui. Effects of high niobium addition on the mechanical properties and high temperature deformability of gamma TiAl alloy. Intermetallics. 2002, 10:239~245
    81 M. Yoshihara, K. Miura. Effects of Nb addition on oxidation behavior of TiAl. Intermetallics. 1995, 3:357~363
    82 Yonggang Jin, J. N. Wang, Jie Yang, Yong Wang. Microstructure refinement of cast TiAl alloys byβsolidification. Scripta Materialia. 2004, 52:113~117
    83 D. Hu. Effect of boron addition on tensile ductility in lamellar TiAl alloys. Intermetallics. 2002, 10:851~858
    84 D. Hu. Effect of composition on grain refinement in TiAl-based alloys. Intermetallics. 2001, 9:1037~1043
    85 J. N. Wang, K. Xie. Grain size refinement of a TiAl alloy by rapid heat treatment. Scripta Materialia. 2000, 43:441~446
    86 M. Yamaguchi, D. R. Johnson, H. N. Lee, et al. Directional solidification of TiAl-base alloys. Intermetallics. 2000, 8:511~517
    87 R. Cao, Y. Z. Lin, D. Hu, J. H. Chen. Fracture behaviour for a TiAl alloy under various loading modes. Engineering Fracture Mechanics. 2008, 75(15):4343~4362
    88 K. Maruyama, N. Yamada, H. Sato. Effects of lamellar spacing on mechanical properties of fully lamellar Ti-39.4mol%Al alloy. Materials Science and Engineering. 2001, A319-321:360~363
    89 A. Fallahi, A. Ataee. Effects of crystal orientation on stress distribution near the triple junction in a tricrystalγ-TiAl. Materials Science and Engineering A. 2010, 527(18-19):4576~4581
    90 T. Mastsuo, T. Nozaki, T. Asai, et al. Effect of lamellar plates on creep resistance in near gamma TiAl alloys. Intermetallics. 1998, 6:695~698
    91 M. Takeyama, Y. Yamamoto, H. Morishima, et al. Lamellar orientation control of Ti-48Al PST crystal by unidirectional solidification. Materials Science and Engineering. 2002, A329-331:7~12
    92 I. S. Jung, H. S. Jang, M. H. Oh, J. H. Lee, D. M. Wee. Microstructure control of TiAl alloys containingβstabilizers by directional solidification. Materials Science and Engineering. 2002, A329-331:13~18
    93 H. Inui, A. Nakamura, M. Yamaguchi. Room-temperature tensile deformation of Polysynthetically Twined (PST) Crystals of TiAl. Acta Metall. 1992, 40:3059~3104
    94 K. Kishida, D. R. Johnson, Y. Masuda, et al. Deformation and fracture of PST crystals and directionally solidified ingots of TiAl-based alloys. Intermetallics. 1998, 6:679~683
    95 S. Yokoshima, M. Yamaguchi. Fracture behavior and toughness of PST crystals of TiAl. Acta Mater. 1996, 44(3):873~883
    96 M. C. Kim, M. H. Oh, J. H. Lee, H. Inui, M. Yamaguchi, D. M. Wee. Composition and growth rate effects in directionally solidified TiAl alloys. Materials Science and Engineering. 1997, A239-240:570~576
    97 M. Rappaz, C. A. Gandin, A. Jacot, et al. Modeling of microstructure formation. Modeling of Casting, Welding and Advanced Solidification Processes VII. 1995, 501~516
    98 W. A. Tiller, K. A. Jackson, J. W. Rutter, B. Chalmers. The redistribution of solute atoms during the solidification of metals. Acta Metall.. 1953, 1(4):428~437
    99 W. W. Mullins, R. F. Sekerka. Morphological stability of a partical growing by diffusion or heat flow. J. Appl. Phys.. 1963, 34:323~329
    100 W. W. Mullins, R. F. Sekerka. Stability of planar interface during solidificaiton of a dilute binary alloy. J. Appl. Phys.. 1964, 35:444~451
    101胡汉起.金属凝固原理.北京:机械工业出版社. 2000, 25~59
    102常国威,王建中.金属凝固过程中的晶体生长与控制.北京:冶金工业出版社. 2002, 64~86
    103 W. J. Boettinger, D. Shechtman, R. J. Schaefer, F. S. Biancaniello. The effects of rapid solidification velocity on the microstructure of Ag-Cu alloys. Metal. Trans. A. 1984, 15:55~66
    104 M. Gremaud, M. Carrard, W. Kurz. The microstructure of rapidly solidified Al-Fe alloys subjected to laser suface-treatment. Acta Metall.. 1990, 38(12):2587~2599
    105 M. Zimmermann, M. Carrard, W. Kurz. Rapid solidification of Al-Cu eutectic alloy by laser remelting. Acta Metall.. 1989, 37(12):3305~3313
    106马东,黄卫东. KF稳定性判据的进一步分析.材料研究学报. 1994, 37(12):3305~3313
    107 W. Kurz, D. J. Fisher. Dendrite growth at the limit of stability-tip radius and spacing. Acta Metall.. 1981, 29(1):11~20
    108李新中.定向凝固包晶合金相选择理论及其微观组织模拟.哈尔滨工业大学博士学位论文. 2004, 3~23
    109骆良顺. Fe-Ni包晶合金定向凝固过程中组织演化规律.哈尔滨工业大学博士学位论文. 2008, 4~32
    110苏云鹏. Zn-Cu包晶合金激光快速定向凝固研究.西北工业大学博士学位论文. 2004, 10~20
    111 W. Kurz, D. J. Fisher. Fundamentals of solidification. Swithzerland: Trans Pub Ltd. 1989, 19~100
    112 M. J. Aziz. Model for solute redistribution during rapid solidification. J. Appl. Phys.. 1982, 53(2):1158~1168
    113 K. A. Jackson, G. H. Gilmer, H. L. Leamy. Solute trapping during laser and electron beam processing of materials. New York: Academic Press. 1980, 104~110
    114 R. F. Wood. Macroscopic theory of pulsed-laser annealing III. Nonequilibrium segregation effects. Phys. Rev. B. 1982, 25(4):2786~2811
    115 W. Kurz, B. Giovanola, R. Trivedi. Theory of microstructureal development during rapid solidification. Acta Metall.. 1986, 34(5):823~830
    116 D. J. Wollkind, L. A. Segel. A nonlinear stability analysis of the freezing of a dilute binary alloy. Philos. Trans. R. Soc. London, Ser. A. 1970, 268(12):351~380
    117 J. A. Warren, J. S. Langer. Prediction of dendritic spacing in a directional solidification experiment. Phys. Rev. E. 1993, 47(1):2702~2712
    118王猛. Zn-Cu包晶合金定向凝固组织及相选择.西北工业大学博士学位论文. 2002, 1~89
    119 W. Kurz. Solidification microstructure processing maps: Theory and application. Adv. Eng. Mater.. 2001, 3(7):443~452
    120 W. J. Boettinger, S. R. Coriell, A. L. Greer, A. Karma, W. Kurz, M. Rappaz, R. Trivedi. Solidification microstructures: Recent development, future directions. Acta Mater.. 2000, 48(1):43~70
    121 R. Trivedi, W. Kurz. Dendritic growth. Int. Mater. Rev.. 1994, 39(2):49~74
    122 M. J. Aziz, W. J. Boettinger. The transition from short-range diffusion-limited to collision-limited growth in alloy solidification. Acta Metall.. 1994, 42(2):527~537
    123 T. Umeda, T. Okane, W. Kurz. Phase selection during solidification of peritectic alloys. Acta Mater.. 1996, 44(10):4209~4216
    124 T. F. Bower, H. D. Brody, M. C. Flemings. Solute redistribution in dendritic solidification. Trans. AIME. 1996, 236:624~631
    125 M. H. Burden, J. D. Hunt. Cellular and dendritic growth. I. J. Crystal Growth. 1974, 22:99~108
    126 M. H. Burden, J. D. Hunt. Cellular and dendritic growth. II. J. Crystal Growth. 1974, 22:109~116
    127 M. Gaumann, R. Trivedi, W. Kurz. Nucleation ahead of the advancing interface in directional solidification. Mater. Sci. Eng. A. 1997, 226:763~769
    128 G. P. Ivantsov. Temperature field around a spherical, cylindrical and acicular crystal growth in a supercooled melt. Doklady Akademii Nauk SSSR. 1947, 58:567~572
    129 Y. Q. Su, C. Liu, X. Z. Li, et al. Microstructure selection during the directionally peritectic solidification of Ti-Al binary system. Intermetallics. 2005, 13:267~274
    130 Y. C. Liu, Q. Z. Shi, G. C. Yang. Y. H. Zhou. Mechanism for metastable phase formation in undercooled Ti–Al peritectic alloys. Materials Letters. 2004, 58:428~431
    131 Y. C. Liu, G. C. Yang, X. F. Guo, et al. Coupled growth behavior in the rapidly solidified Ti-Al peritectic alloys. J. Cryst. Growth. 2001, 222(3):645~654
    132吕海燕. Cu-Sn包晶合金定向凝固组织研究.西北工业大学博士论文. 2004, 20~26
    133 J. S. Park, R. Trivedi. Convection-induced novel oscillating microstructure formation in peritectic systems. J. Cryst. Growth. 1998, 187(3-4):511~515
    134李金富,杨根仓,吕衣礼,周尧和.深过冷Cu-30Ni合金单向凝固组织的力学性能.材料研究学报. 1997, 2:137~142
    135郑魁.钛合金等离子电弧熔炼温度场数值模拟及相关参数的研究.哈尔滨工业大学. 2006, 11~48
    136杨森,黄卫东,林鑫,周尧和.定向凝固技术的研究进展.兵器材料科学与工程. 2000, 2:44~50
    137刘畅. Ti-Al二元包晶合金定向凝固组织形成规律研究.哈尔滨工业大学博士学位论文. 2007, 30~35
    138 I. Cheng, A. Mitchell, I. Beddoes, et al. Microstructure of directionally solidified Ti-52Al-2W-0.5Si. Intermetallics. 2004, 8:20~26
    139 W. Z. Luo, J. Shen, Z. X. Min, et al. A band microstructure in directional solidified hypo-peritectic Ti-45Al alloy. Materials Letters. 2009, 63:1419~1421
    140 R. Kainuma, Y. Fujita, H. Mitsui, I. Ohnuma, K. Ishida. Phase equilibria amongα(hcp),β(bcc) andγ(L10) phases in Ti-Al base ternary alloys. Intermetallics. 2000, 8:855~867
    141 Z. Annie, DC. Madeleine, D. Jean, D. Francis. Experimental investigation of high temperature phase equilibria in the Nb-Al-Ti system. Z. Metallkund. 1995,86~91
    142 J. Keith, Leonard, C. Joseph, Mishurda, K. Vijay, Vasudevan. Phase equilibria at 1100°C in the Nb–Ti–Al system. Mater. Sci. Eng. 2002, A329-331:282~288
    143 U. R. Kattner, W. J. Boettinger. Thermodynamic calculation of the ternary Ti-Al-Nb system. Mater. Sci. Eng. 1992, A152:9~17
    144 N. Saunders, Y-W. Kim et al.“Gamm Titanium Aluminides 1999”eds.(TMS Warrendale, PA). 1999:183
    145 F. S. Sun, C. X. Cao, Seung-Eon Kim, Y. T. Lee, M. G. Yan. Alloying mechanism of beta stabilizer in a TiAl alloy. Metallurgical and Materials Transactions A. 2001, 32:1573~1589
    146 Y. L. Hao, R. Yang, Y. Y. Cui, D. Li. The effect of Ti/Al ratio on the site occupancies of alloying elements inγ-TiAl. Intermetallics. 2000, 8:633~636
    147 R. M. Imayev, B. M. Imayev, M. Oehring, et al. Alloy design concepts for refined gamma titanium aluminide based alloys. Intermetallics. 2007, 15:451~460
    148 D .J. Larson, C. T. Liu, M. K. Miller. Boron solubility and boride compositions inα2+γtitanium aluminides. Intermetallics. 1997, 5:411~414
    149 T. T. Chen. The mechanism of grain refinement in TiAl alloys by boron addition-an alternative hypothesis. Intermetallics. 2000, 8:29~37
    150 M. C. Kim, M. H. Oh, J. H. Lee, et al. Composition and directionally solidified TiAl alloys. Mater. Sci. Eng. 1997, A239-240:570~576
    151 S. Nishikiori, K. Matsuda, Y. G. Nakagawa. Microstructural effects on tensile properties of cast TiAl-Fe-V-B alloy. Mater. Sci. Eng. 1997, A239-240:592~599
    152 S. Nishikiori, S. Takahash, S. Satou, et al. Microstructure and creep strength of fully-lamellar TiAl alloys containing beta-phse. Mater. Sci. Eng. 2002, A329-331:802~809
    153 M. Palm, J. Lacaze. Assessment of the Al-Fe-Ti systerm. Intermetallics. 2006, 14:1291~1303
    154 A. Tokar, A. Berner, L. Levin. The origin of a new phase observed during quenching of a TiAl-2Fe alloy. Mater. Sci. Eng. 2001, A308:13~18
    155 W. Z. Luo, J. Shen, Z. X. Min, et al. A band microstructure in directional solidified hypo-peritectic Ti-45Al alloy. Materials Letters. 2009, 63:1419~1421
    156 I. S. Jung, M. H. Oh, N. J. Park, et al. Lamellar boundary alignment of DS-processed TiAl-W alloys by a solidification procedure. 2007, 13(6):455~462
    157 O. Hunziker, M. Vandyoussefi, W. Kurz. Phase and microstructure selection inperitectic alloys close to the limit of constitution undercooling. Acta Mater. 1998, 46:6325~6336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700