用户名: 密码: 验证码:
巴西红耳龟红细胞血影蛋白质组学及对其低温缺氧抗性机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龟类在动物界中属于脊索动物门、脊椎动物亚门、爬行纲、龟鳖亚纲、龟鳖目。龟类在进化史上属于活化石类的生物,以长寿而闻名,具有超强的耐低温和耐缺氧特性。耐低温耐缺氧机理研究具有非常重要的意义,例如在细胞冷冻过程中防止细胞被冰晶损伤,在器官移植手术中,离体器官长期保存而不会出现缺血/缺氧而造成的衰竭,保证再充血再充氧这样的再灌注过程中不被大量产生的自由基损伤,提高被远距离运送的重伤员的成活率等,甚至还有些仿生学科学家希望通过将人体通过类似的低温低氧“窖藏”的方式来延长生命。
     龟类具有一些非常特殊的身体结构,其红细胞尤为特殊。龟类红细胞像大多数低等脊椎动物的红细胞一样为椭圆形,体积大且有核,不同之处在于成熟的龟类红细胞不含有线粒体。有的研究者指出龟类红细胞在进化史上与哺乳动物最接近,所以,可以把龟的红细胞定位于低等脊椎动物与高等脊椎动物红细胞之间。但是到目前为止,科学界对龟类红细胞的组成,尤其是对细胞保护,信号转导,物质运输有重要意义的细胞膜的组成知之甚少。如此特殊的红细胞结构及其与龟类超强的抗缺氧抗应激耐力的关系是本研究探讨的关键科学问题。本文以蛋白质组学及相关技术对巴西红耳龟血影的全蛋白质组学进行了研究,并发现了一些与巴西红耳龟低温缺氧耐受直接相关的蛋白,进而研究了其在巴西红耳龟低温缺氧过程中可能发挥的作用及作用机理。
     首先,本文以巴西红耳龟(Red-eared turtle, Trachemys scripta)为研究材料,着眼于如何获得高纯度的巴西红耳龟红细胞血影,由于巴西红耳龟红细胞既有类似体细胞的复杂性,其细胞膜又具有哺乳动物红细胞的脆弱性,以至于分离体细胞的剧烈细胞破碎方法和分离哺乳动物红细胞的相对温和的低渗裂解法都不适用于分离龟类的红细胞。所以,纯化其红细胞血影是一项挑战。在本研究之前,未发现有详细的关于如何分离纯化巴西红耳龟红细胞血影的方法。本实验室在已有的研究报道的基础上通过反复摸索,最终总结出了一套有效的分离方法,通过富集红细胞,低渗裂解,具特殊针头注射器的吹打,低速匀浆以及差速离心的方法,我们最终获得了满足蛋白质组学鉴定要求的血影。并通过4种不同的样品前处理与不同的质谱鉴定方法相结合,介绍了一套有效的巴西红耳龟红细胞血影的蛋白质组学分析方法,共鉴定得到169个非冗余蛋白质并对其中有意义的蛋白质进行了深入的探讨,发现了一些与巴西红耳龟超强耐力相关的蛋白,如微管蛋白,热休克蛋白,以及定位在“红细胞膜上”的与产能直接相关的蛋白——F型ATP合酶亚单位。红细胞“非线粒体微生物样供能”为巴西红耳龟的抗逆生存机理研究打开了一个全新的视野。
     其次,我们对巴西红耳龟进行了一周低温潜水处理,测定了一些与能量代谢相关的关键生化指标,发现了巴西红耳龟在短期低温潜水期间无氧糖酵解与糖异生同时进行的能量代谢方式。对短期低温潜水期间巴西红耳龟体内肝糖原和肌糖原储备没有被消耗而血糖升高的现象作出了独特的阐释。
     最后,我们结合短期低温潜水期间能量代谢的特点以及前人的研究基础,进行了血液体外ATP剥夺实验,证实了巴西红耳龟红细胞具有向细胞外产生ATP的特性。可能的产能机理是红细胞利用细胞内比细胞外高出约5倍的氢离子推动细胞膜上的ATP合酶合成ATP。并在此基础上提出了巴西红耳龟短期低温潜水期间的能量代谢模型假说。
     总之,本研究从巴西红耳龟血影的分离纯化到血影蛋白的高效酶切,再到质谱鉴定,生物信息学分析,系统地提出了一套针对巴西红耳龟甚至是有核红细胞血影的组学分析方法。同时,对巴西红耳龟短期低温缺氧能量代谢机理进行了探讨,发现巴西红耳龟红细胞除了携带氧的作用外,还可能具有供能作用。本课题的研究发现为今后更加深入地研究巴西红耳龟以至整个龟类的能量代谢机制和低温缺氧应对机制提供了全新的有重要进化生物学价值和临床医学意义的实验数据和理论假说。
Turtles in the animal kingdom belong to the chordates, vertebrate subphylum, reptilia, turtle subclass, chelonia. Turtles are living fossil creatures during the evolutionary history. Turtles are famous as longevity and its super-tolerance to low-temperature and hypoxia are impressing. Scientists have fascinated at the mechanism of low-temperature and hypoxia tolerance for many years. The research on low-temperature/hypoxia tolerance mechanism has very important significance. Such as prevent the cells be damaged by ice crystal during freezing, In vitro, organ transplants fields, preserve isolated organ long-term without failure, which caused by ischemia/hypoxia, avoid the free-radical damage during the process of re-oxygenation or ischemia and reperfusion, improve the survival rate of injured personnel who have to be transported over a long distance to medical care, etc. And even some scientists hope to prolong lifespan similar to low-temperature/hypoxia cellaring.
     The turtles have some very specific body composition, such as their erythrocytes. Turtle erythrocyte has the same oval-shaped, huge, and nuclear as the other red blood cell (RBC) of low vertebrates, however, mature trutle RBCs does not contain mitochondria, which is a common existence in most of the low vertebrate RBCs. Some researchers consider that the turtle erythrocyte is closest with mammals RBC during evolutionary history. Erythrocyte of turtle between the RBCs of low vertebrates and higher vertebrates. However, the researchers still know very little about the components of turtle erythrocyte. Especially about cell membrane which plays an important role in cell protection, signal transduction, material transport, etc. in cell. The special structure of turtle erythrocyte may have direct correlation with the super endurance. Red-eared turtles were used to analyze the erythrocyte ghost proteomics in this study. We hope to partially explain the mechanism of low-temperature and hypoxia tolerance of turtle.
     First, we focused on how to obtain high-purity red-eared turtle erythrocyte ghost (TEG). As nucleated cells, turtle erythrocytes have a complexity of somatic cell; on the other hand, as RBCs, its plasma membrane has the fragility as mature human RBCs. Purification method of somatic cell and mature mammalian erythrocyte ghosts is unsuitable for the TEG. Therefore, how to purify TEG is a huge challenge. Before this study, we did not find any detailed information on how to separate and purify TEG. Based on existing knowledge and combined with our repeated experiments, eventually we summarized an effective separation method for the preparation of TEG. Namely, after hypotonic lysis with specific buffer, forcing through a syringe with specially shaped needle, low speed homogenizes and differential centrifugation, highly purified TEG fractions were separated effectively, which is a key to successful TEG proteomics. The TEG proteins were digested and dissociated in4different methods combined with different mass spectrum analysis; a total of169TEG proteins was identified. After further bioinformatic analyzing of these identified proteins, tubulins, heat shock proteins were identified in the TEG, which provided important insights into the low-temperature and hypoxia tolerance of Trachemys scripta. We also identified membrane located F-type ATP synthase subunits, which closely related with the production of ATP. The proteomics analysis of TEG opened a new direction of super-tolerance research of red-eared turtle.
     Secondly, we studied the important biochemical indicators energy metabolism of red-eared turtle by short-term low-temperature and diving exposure. We found anaerobic glycolysis and gluconeogenesis simultaneously during this short term low-temperature/hypoxic exposure. This finding gave a good explanation for why liver glycogen and muscle glycogen reserved but blood glucose elevated during a shot-term low-temperature and diving exposure.
     Finally, we combined the characteristics of the energy metabolism of short-term low temperature and diving exposure, blood ATP deprivation experiment in vitro and previous studies; we found that red-eared turtle red blood cells can generate ATP to the extracellular. The possible mechanism was high concentration of H+promoting the RBC plasma membrane located ATP synthase generated ATP. Meanwhile, we propose a model of RBCs energy supply for short-term low-temperature/hypoxia exposure.
     Therefore, in this study, an effective isolation method to prepare TEG was developed in combination with predissociation, enzymolysis and CapLC-MS/MS identification. A data set of TEG proteins were provided, which allows for more comprehensive characterization of TEG. Furthermore, we studied the energy metabolism mechanism of low-temperature/hypoxia red-eared turtle. We opened a new research field for understanding the super-tolerance of turtles when they face severe environment.
引文
1.吴平,周开亚,龟鳖目系统学系统概况[J].动物学杂志.1998.(33).38-45.
    2.刘广宇,保护龟鳖类动物特种多样性势在必行[J].四川动物.2000.(19).190-190.
    3.许设科,刘志霄,四爪陆龟骨骼系统的解剖[J].新疆大学学报(自然科学版).1993.(1).
    4. Meylan, P. A., Skeletal morphology and relationships of the Early Cretaceous side-necked turtle, Araripemys barretoi (Testudines:Pelomedusoides: Araripemydidae), from the Santana Formation of Brazil [J]. Journal of Vertebrate Paleontology.1996. (16).20-33.
    5.马克勤,郑光美,脊椎动物比较解剖学.1984:高等教育出版社.
    6.许设科,刘志霄,四爪陆龟消化,呼吸系统的解剖[J].动物学杂志.1996.(31).36-39.
    7.洪美玲,傅丽容,et al.,四眼斑龟消化,呼吸系统的解剖[J].动物学杂志.2004.(39).68-71.
    8. Li, F., Z. Yang, et al., Malondialdehyde suppresses cerebral function by breaking homeostasis between excitation and inhibition in turtle Trachemys scripta [J]. PLoS One.2010. (5). e15325.
    9.王晓玲,尖突水龟虫形态结构的观察[J].东北林业大学学报.2011.(39).141-142.
    10. Harry, J. L.,K. L. Williams, Differential growth of male and female urinogenital systems of Caretta caretta, within the sex-determining period [J]. Journal of Experimental Zoology.1991. (258).204-211.
    11. Ceriani, S. A.,J. Wyneken, Comparative morphology and sex identification of the reproductive system in formalin-preserved sea turtle specimens [J]. Zoology (Jena).2008. (111).179-87.
    12. Wood, F. E.,G. K. Ebanks, Blood cytology and hematology of the green sea turtle, Chelonia mydas [J]. Herpetologica.1984.331-336.
    13. Overgaard, J., J. A. W. Stecyk, et al., Adrenergic control of the cardiovascular system in the turtle Trachemys scripta [J]. Journal of experimental biology. 2002. (205).3335-3345.
    14. Ritchie, K., R. Iino, et al., The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (Review) [J]. Mol Membr Biol.2003. (20).13-8.
    15. Zs-Nagy, I., Pharmacological interventions against aging through the cell plasma membrane:a review of the experimental results obtained in animals and humans [J]. Ann N YAcad Sci.2002. (959).308-20; discussion 463-5.
    16. Hopkins, A. L.,C. R. Groom, The druggable genome [J]. Nat Rev Drug Discov. 2002. (1).727-30.
    17. Cao, R., X. Li, et al., Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins [J]. Journal of proteome research.2006. (5).634-642.
    18. Singer, S.,G. L. Nicolson, The fluid mosaic model of the structure of cell membranes [J]. Landmark Papers in Cell Biology.1972.296-307.
    19. Lipka, G., J. A. Op den Kamp, et al., Lipid asymmetry in rabbit small intestinal brush border membrane as probed by an intrinsic phospholipid exchange protein [J]. Biochemistry.1991. (30).11828-36.
    20. Manno, S., Y. Takakuwa, et al., Identification of a functional role for lipid asymmetry in biological membranes:Phosphatidylserine-skeletal protein interactions modulate membrane stability [J]. Proc Natl Acad Sci USA.2002. (99).1943-8.
    21. Singer, S. J.,G. L. Nicolson, The structure and chemistry of mammalian cell membranes [J]. Am J Pathol.1971. (65).427-37.
    22. Krogh, A., B. Larsson, et al., Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes [J]. J Mol Biol. 2001.(305).567-80.
    23. Wallin, E.,G. von Heijne, Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms [J]. Protein Sci. 1998.(7).1029-38.
    24. Zhou, J., T. Zhou, et al., Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane [J]. J Proteome Res.2006. (5).2547-53.
    25. Hurwitz, N., M. Pellegrini-Calace, et al., Towards genome-scale structure prediction for transmembrane proteins [J]. Philosophical Transactions of the Royal Society B:Biological Sciences.2006. (361).465-475.
    26. Santoni, V., S. Kieffer, et al., Membrane proteomics:use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties [J]. Electrophoresis.2000. (21).3329-3344.
    27. Rahbar, A. M.,C. Fenselau, Integration of Jacobson's pellicle method into proteomic strategies for plasma membrane proteins [J]. Journal of proteome research.2004. (3).1267-1277.
    28. Miura, T.,S. Mizushima, Separation by density gradient centrifugation of two types of membranes from spheroplast membrane of Escherichia coli K12 [J]. Biochim Biophys Acta.1968. (150).159-61.
    29. Boyum, A., H. Brincker Fjerdingstad, et al., Separation of human lymphocytes from citrated blood by density gradient (NycoPrep) centrifugation:monocyte depletion depending upon activation of membrane potassium channels [J]. Scand J Immunol.2002. (56).76-84.
    30. Adam, P. J., R. Boyd, et al., Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer[J]. J Biol Chem.2003. (278).6482-9.
    31. Aivaliotis, M., M. Karas, et al., High throughput two-dimensional blue-native electrophoresis:a tool for functional proteomics of cytoplasmatic protein complexes from Chlorobium tepidum [J]. Photosynth Res.2006. (88).143-57.
    32. Graham, J. M., Purification of a crude mitochondrial fraction by density-gradient centrifugation [J]. Curr Protoc Cell Biol.2001. (Chapter 3). Unit 34.
    33. Chaney, L. K.,B.S. Jacobson, Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins [J]. J Biol Chem.1983. (258).10062-72.
    34. Li, X., X. Jia, et al., Development of cationic colloidal silica-coated magnetic nanospheres for highly selective and rapid enrichment of plasma membrane fractions for proteomics analysis [J]. Biotechnol Appl Biochem.2009. (54). 213-20.
    35. Oh, P., Y. Li, et al., Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy [J]. Nature.2004. (429). 629-35.
    36. Durr, E., J. Yu, et al., Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture [J]. Nat Biotechnol.2004. (22).985-92.
    37. Roesli, C., V. Mumprecht, et al., Identification of the surface-accessible, lineage-specific vascular proteome by two-dimensional peptide mapping [J]. The FASEB Journal.2008. (22).1933-1944.
    38. Conn, E. M., M. A. Madsen, et al., Cell surface proteomics identifies molecules functionally linked to tumor cell intravasation [J]. J Biol Chem. 2008. (283).26518-27.
    39. Sostaric, E., A. S. Georgiou, et al., Global profiling of surface plasma membrane proteome of oviductal epithelial cells [J]. J Proteome Res.2006. (5). 3029-37.
    40. Rybak, J. N., A. Ettorre, et al., In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature [J]. Nat Methods. 2005.(2).291-8.
    41. Zhao, Y., W. Zhang, et al., Proteomic analysis of integral plasma membrane proteins [J]. Anal Chem.2004. (76).1817-23.
    42. Scheurer, S. B., J. N. Rybak, et al., Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping [J]. Proteomics.2005. (5).2718-2728.
    43. Sabarth, N., S. Lamer, et al., Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis [J]. JBiol Chem.2002. (277).27896-902.
    44. Peirce, M. J., S. Begum, et al., Two-stage affinity purification for inducibly phosphorylated membrane proteins [J]. Proteomics.2005. (5).2417-21.
    45. Braschi, S., W. C. Borges, et al., Proteomic analysis of the schistosome tegument and its surface membranes [J]. Mem Inst Oswaldo Cruz.2006. (101 Suppl 1).205-12.
    46. Tang, X., W. Yi, et al., Profiling the membrane proteome of Shewanella oneidensis MR-1 with new affinity labeling probes [J]. Journal of proteome research.2007. (6).724-734.
    47. Elia, G., Biotinylation reagents for the study of cell surface proteins [J]. Proteomics.2008. (8).4012-24.
    48. Santoni, V., Plant plasma membrane protein extraction and solubilization for proteomic analysis [J]. Methods Mol Biol.2007. (355).93-109.
    49. Marmagne, A., M. A. Rouet, et al., Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome [J]. Mol Cell Proteomics.2004. (3). 675-91.
    50. Komatsu, S., Plasma membrane proteome in Arabidopsis and rice [J]. Proteomics.2008. (8).4137-45.
    51. Morre, D. J.,D. M. Morre, Preparation of mammalian plasma membranes by aqueous two-phase partition [J]. Biotechniques.1989. (7).946-8,950-4, 956-8.
    52. Schindler, J., U. Lewandrowski, et al., Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning [J]. Mol Cell Proteomics.2006. (5).390-400.
    53. Ekblad, L., B. Jergil, et al., Purification of rabbit lacrimal gland plasma membranes by aqueous two-phase affinity partitioning [J]. J Chromatogr B Biomed Sci Appl.2000. (743).397-401.
    54. Persson, A.,B. Jergil, The purification of membranes by affinity partitioning [J]. FASEB J.1995. (9).1304-10.
    55. Chen, P., X. Li, et al., Proteomic analysis of rat hippocampal plasma membrane:characterization of potential neuronal-specific plasma membrane proteins [J]. JNeurochem.2006. (98).1126-40.
    56. Chen, P., L. Zhang, et al., Evaluation of strategy for analyzing mouse liver plasma membrane proteome [J]. Sci China C Life Sci.2007. (50).731-8.
    57. Wessel, D.,U. I. Flugge, A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids [J]. Anal Biochem.1984. (138).141-3.
    58. Mirza, S. P., B. D. Halligan, et al., Improved method for the analysis of membrane proteins by mass spectrometry [J]. Physiol Genomics.2007. (30). 89-94.
    59. Speers, A. E., A. R. Blackler, et al., Shotgun analysis of integral membrane proteins facilitated by elevated temperature [J]. Anal Chem.2007. (79). 4613-20.
    60. Zhang, L., J. Xie, et al., Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins [J]. Proteomics.2005. (5).4510-4524.
    61. Nielsen, P. A., J. V. Olsen, et al., Proteomic mapping of brain plasma membrane proteins [J]. Mol Cell Proteomics.2005. (4).402-8.
    62. Olsen, J. V., J. R. Andersen, et al., HysTag—a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain [J]. Molecular & Cellular Proteomics.2004. (3).82-92.
    63. Olsen, J. V., P. A. Nielsen, et al., Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent:Mapping of neurotransmitter receptors and ion channels [J]. Brain research.2007. (1134).95-106.
    64. Rodriguez-Ortega, M. J., N. Norais, et al., Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome [J]. Nature biotechnology.2006. (24).191-197.
    65. Berlanda Scorza, F., F. Doro, et al., Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli DeltatolR IHE3034 mutant [J]. Mol Cell Proteomics.2008. (7).473-85.
    66. Marmagne, A., D. Salvi, et al., Purification and fractionation of membranes for proteomic analyses [J]. Methods Mol Biol.2006. (323).403-20.
    67. Wu, C. C., M. J. MacCoss, et al., A method for the comprehensive proteomic analysis of membrane proteins [J]. Nat Biotechnol.2003. (21).532-8.
    68. Florens, L., X. Liu, et al., Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes [J]. Mol Biochem Parasitol.2004. (135).1-11.
    69. Kristiansen, T. Z., H. Harsha, et al., Differential membrane proteomics using 18O-labeling to identify biomarkers for cholangiocarcinoma [J]. Journal of proteome research.2008. (7).4670-4677.
    70. Dormeyer, W., D. van Hoof, et al., Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells [J]. J Proteome Res.2008. (7).2936-51.
    71. Zhang, W., G. Zhou, et al., Affinity enrichment of plasma membrane for proteomics analysis [J]. Electrophoresis.2003. (24).2855-63.
    72. Harsha, H., H. Molina, et al., Quantitative proteomics using stable isotope labeling with amino acids in cell culture [J]. Nature Protocols.2008. (3). 505-516.
    73. Washburn, M. P., D. Wolters, et al., Large-scale analysis of the yeast proteome by multidimensional protein identification technology [J]. Nature biotechnology.2001. (19).242-247.
    74. Han, D. K., J. Eng, et al., Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry [J]. Nature biotechnology.2001. (19).946.
    75. Zischka, H., C. J. Gloeckner, et al., Improved mass spectrometric identification of gel-separated hydrophobic membrane proteins after sodium dodecyl sulfate removal by ion-pair extraction [J]. Proteomics.2004. (4). 3776-3782.
    76. Zischka, H., H. Keller, et al., Proteome analysis of the thermoreceptive pit membrane of the western diamondback rattlesnake Crotalus atrox [J]. Proteomics.2003. (3).78-86.
    77. Zhou, J., T. Zhou, et al., Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane [J]. Journal of proteome research.2006. (5).2547-2553.
    78. Norris, J. L., M. J. Hangauer, et al., Nonacid cleavable detergents applied to MALDI mass spectrometry profiling of whole cells [J]. Journal of mass spectrometry.2005. (40).1319-1326.
    79. Fischer, F., D. Wolters, et al., Toward the complete membrane proteome [J]. Molecular & Cellular Proteomics.2006. (5).444.
    80. Chen, E. I., D. Cociorva, et al., Optimization of mass spectrometry-compatible surfactants for shotgun proteomics [J]. Journal of proteome research.2007. (6). 2529-2538.
    81. Von Heijne, G., Membrane protein structure prediction* 1::Hydrophobicity analysis and the positive-inside rule [J]. Journal of molecular biology.1992. (225).487-494.
    82. Andersson, H.,G. Von Heijne, Membrane protein topology:effects of delta mu H+ on the translocation of charged residues explain the'positive inside'rule [J]. The EMBO journal.1994. (13).2267.
    83. McGuffin, L. J., K. Bryson, et al., The PSIPRED protein structure prediction server [J]. Bioinformatics.2000. (16).404.
    84. Punta, M., L. R. Forrest, et al., Membrane protein prediction methods [J]. Methods.2007. (41).460-474.
    85. Krogh, A., B. E. Larsson, et al., Predicting transmembrane protein topology with a hidden markov model:application to complete genomes 1 [J]. Journal of molecular biology.2001. (305).567-580.
    86. Hirokawa, T., S. Boon-Chieng, et al., SOSUI:classification and secondary structure prediction system for membrane proteins [J]. Bioinformatics.1998. (14).378-379.
    87. Mitaku, S., M. Ono, et al., Proportion of membrane proteins in proteomes of 15 single-cell organisms analyzed by the SOSUI prediction system [J]. Biophysical Chemistry.1999. (82).165-171.
    88. Nilsson, J., B. Persson, et al., Consensus predictions of membrane protein topology [J]. FEBS letters.2000. (486).267-269.
    89. Tusnady, G. E.,I. Simon, The HMMTOP transmembrane topology prediction server [J]. Bioinformatics.2001. (17).849-850.
    90. Chen, K., J. Liu, et al., Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis [J]. Proc Natl Acad Sci USA.2009. (106).17413-8.
    91. Granger, B. L., E. A. Repasky, et al., Synemin and vimentin are components of intermediate filaments in avian erythrocytes [J]. J Cell Biol.1982. (92). 299-312.
    92. Low, T. Y., T. K. Seow, et al., Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry [J]. Proteomics.2002. (2).1229-39.
    93. Alexandre, B. M., Proteomic mining of the red blood cell:focus on the membrane proteome [J]. Expert Rev Proteomics.2010. (7).165-8.
    94. Ghatpande, S. S., P. K. Choudhary, et al., In vivo pharmaco-proteomic analysis of hydroxyurea induced changes in the sickle red blood cell membrane proteome [J]. J Proteomics.2010. (73).619-26.
    95. Peker, S., N. Akar, et al., Proteomic identification of erythrocyte membrane protein deficiency in hereditary spherocytosis [J]. Mol Biol Rep.2012. (39). 3161-7.
    96. Bruschi, M., C. Seppi, et al., Proteomic analysis of erythrocyte membranes by soft Immobiline gels combined with differential protein extraction [J]. J Proteome Res.2005. (4).1304-9.
    97. Maathuis, M. H., H. G. Leuvenink, et al., Perspectives in organ preservation [J]. Transplantation.2007. (83).1289-98.
    98. Collins, M. J., S. L. Moainie, et al., Preserving and evaluating hearts with ex vivo machine perfusion:an avenue to improve early graft performance and expand the donor pool [J]. Eur J Cardiothorac Surg.2008. (34).318-25.
    99. Storey, K. B.,J. M. Storey, Metabolic rate depression in animals: transcriptional and translational controls [J]. Biol Rev Camb Philos Soc.2004. (79).207-33.
    100. Storey, K. B.,J. M. Storey, Tribute to P. L. Lutz:putting life on 'pause'-molecular regulation of hypometabolism [J]. J Exp Biol.2007. (210). 1700-14.
    101. Geiser, F., Metabolic rate and body temperature reduction during hibernation and daily torpor [J]. Annu Rev Physiol.2004. (66).239-74.
    102. Geiser, F., Reduction of metabolism during hibernation and daily torpor in mammals and birds:temperature effect or physiological inhibition? [J]. J Comp Physiol B.1988. (158).25-37.
    103. Austad, S. N., Diverse aging rates in metazoans:targets for functional genomics [J]. Mech Ageing Dev.2005. (126).43-9.
    104. Lyman, C. P., R. C. O'Brien, et al., Hibernation and longevity in the Turkish hamster Mesocricetus brandti[J]. Science.1981. (212).668-70.
    105. Brauch, K. M., N. D. Dhruv, et al., Digital transcriptome analysis indicates adaptive mechanisms in the heart of a hibernating mammal [J]. Physiol Genomics.2005. (23).227-34.
    106. Williams, D. R., L. E. Epperson, et al., Seasonally hibernating phenotype assessed through transcript screening [J]. Physiol Genomics.2005. (24). 13-22.
    107. Yan, J., B. M. Barnes, et al., Modulation of gene expression in hibernating arctic ground squirrels [J]. Physiol Genomics.2008. (32).170-81.
    108. Crawford, F. I., C. L. Hodgkinson, et al., Influence of torpor on cardiac expression of genes involved in the circadian clock and protein turnover in the Siberian hamster (Phodopus sungorus) [J]. Physiol Genomics.2007. (31). 521-30.
    109. Srere, H. K., D. Belke, et al., alpha 2-Macroglobulin gene expression during hibernation in ground squirrels is independent of acute phase response [J]. Am J Physiol.1995. (268). R 1507-12.
    110. McCarron, R. M., D. G. Sieckmann, et al., Hibernation, a state of natural tolerance to profound reduction in organ blood flow and oxygen delivery capacity.2001, DTIC Document.
    111. Storey, K. B., Gene hunting in hypoxia and exercise [J]. Hypoxia and Exercise. 2007.293-309.
    112. Gettins, P. G, Serpin structure, mechanism, and function [J]. Chem Rev.2002. (102).4751-804.
    113. Carey, H. V., M. T. Andrews, et al., Mammalian hibernation:cellular and molecular responses to depressed metabolism and low temperature [J]. Physiol Rev.2003.(83).1153-81.
    114. Hermes-Lima, M., J. M. Storey, et al., Antioxidant defenses and animal adaptation to oxygen availability during environmental stress [J]. Cell and Molecular Response to Stress.2001. (2).263-287.
    115. Drew, K. L., O. Toien, et al., Role of the antioxidant ascorbate in hibernation and warming from hibernation [J]. Comp Biochem Physiol C Toxicol Pharmacol.2002. (133).483-92.
    116. Tan, D. X., L. C. Manchester, et al., Physiological ischemia/reperfusion phenomena and their relation to endogenous melatonin production [J]. Endocrine.2005. (27).149-157.
    117. Okamoto, I., T. Kayano, et al., Up-regulation of an extracellular superoxide dismutase-like activity in hibernating hamsters subjected to oxidative stress in mid- to late arousal from torpor [J]. Comp Biochem Physiol C Toxicol Pharmacol.2006. (144).47-56.
    118. Ohta, H., I. Okamoto, et al., Enhanced antioxidant defense due to extracellular catalase activity in Syrian hamster during arousal from hibernation [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology.2006. (143).484-491.
    119. Catling, D. C., C. R. Glein, et al., Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time" [J]. Astrobiology.2005. (5).415-38.
    120. Bennett, A. F.,J. A. Ruben, Endothermy and activity in vertebrates [J]. Science. 1979. (206).649-54.
    121. Bennett, A. F., The metabolic foundations of vertebrate behavior [J]. Bioscience.1980.452-456.
    122. Leblond, J.,K. Krnjevic, Hypoxic changes in hippocampal neurons [J]. J Neurophysiol.1989. (62).1-14.
    123. Watkins, W. A., K. E. Moore, et al., Sperm whale acoustic behaviors in the southeast Caribbean.1985:Biological Systems, Incorporated.
    124. Hindell, M., D. Slip, et al., The Diving Behavior of Adult Male and Female Southern Elephant Seals, Mirounga-Leonina (Pinnipedia, Phocidae) [J]. Australian Journal of Zoology.1991. (39).595-619.
    125. Bickler, P. E.,L. T. Buck, Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability [J]. Annu Rev Physiol.2007. (69). 145-70.
    126. Ponganis, P. J., L. N. Starke, et al., Development of diving capacity in emperor penguins [J]. J Exp Biol.1999. (202).781-6.
    127. Lenfant, C., K. Johansen, et al., Gas transport and oxygen storage capacity in some pinnipeds and the sea otter [J]. Respir Physiol.1970. (9).277-86.
    128. Elsner, R., Splenic oxygen storage and blood viscosity in seals [J]. Marine mammal science.1995. (11).93-96.
    129. Snyder, G. K., Respiratory adaptations in diving mammals [J]. Respir Physiol. 1983.(54).269-94.
    130. Burns, J., A. Blix, et al., Physiological constraint and diving ability:a test in hooded seals, Cystophora cristata [J]. FASEB J.2000. (14). A440.
    131. Hochachka, P. W., Defense strategies against hypoxia and hypothermia [J]. Science.1986. (231).234-41.
    132. Storey, K. B., Survival under stress:molecular mechanisms of metabolic rate depression in animals [J]. South African Journal of Zoology.1998. (33). 55-64.
    133. Hulbert, A. J., P. L. Else, et al., Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodiles) and allometric relationships for ectotherms [J]. J Comp Physiol B.2002. (172).387-97.
    134. Bishop, T., J. St-Pierre, et al., Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells [J]. Am J Physiol Regul Integr Comp Physiol.2002. (282). R372-82.
    135. Barger, J. L., M. D. Brand, et al., Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels [J]. Am J Physiol Regul Integr Comp Physiol.2003. (284). R1306-13.
    136. Boutilier, R. G.,J. St-Pierre, Adaptive plasticity of skeletal muscle energetics in hibernating frogs:mitochondrial proton leak during metabolic depression [J]. J Exp Biol.2002. (205).2287-96.
    137. Else, P. L.,A. J. Hulbert, Evolution of mammalian endothermic metabolism: "leaky" membranes as a source of heat [J]. Am J Physiol.1987. (253). Rl-7.
    138. Perez-Pinzon, M. A., M. Rosenthal, et al., Downregulation of sodium channels during anoxia:a putative survival strategy of turtle brain [J]. Am J Physiol. 1992. (262). R712-5.
    139. Donohoe, P. H., T. G. West, et al., Factors affecting membrane permeability and ionic homeostasis in the cold-submerged frog [J]. J Exp Biol.2000. (203). 405-14.
    140. Hansen, A. J., Effect of anoxia on ion distribution in the brain [J]. Physiol Rev. 1985. (65).101-48.
    141. Jackson, D. C., Surviving extreme lactic acidosis:the role of calcium lactate formation in the anoxic turtle [J]. Respir Physiol Neurobiol.2004. (144). 173-8.
    142. Jackson, D. C., Acid-base balance during hypoxic hypometabolism:selected vertebrate strategies [J]. Respir Physiol Neurobiol.2004. (141).273-83.
    143. Jackson, D. C., A. L. Ramsey, et al., Lactic acid buffering by bone and shell in anoxic softshell and painted turtles [J]. Physiol Biochem Zool.2000. (73). 290-7.
    144. Jackson, D. C., Living without oxygen:lessons from the freshwater turtle [J]. Comp Biochem Physiol A Mol Integr Physiol.2000. (125).299-315.
    145. Krumschnabel, G., P. J. Schwarzbaum, et al., Oxygen-dependent energetics of anoxia-tolerant and anoxia-intolerant hepatocytes [J]. J Exp Biol.2000. (203). 951-9.
    146. Vig, E.,J. Nemcsok, The effects of hypoxia and paraquat on the superoxide dismutase activity in different organs of carp, Cyprinus carpio L [J]. Journal of fish biology.1989. (35).23-25.
    147. Hermes-Lima, M.,T. Zenteno-Savin, Animal response to drastic changes in oxygen availability and physiological oxidative stress [J]. Comp Biochem Physiol C Toxicol Pharmacol.2002. (133).537-56.
    148. Rosenmund, C.,G. Westbrook, Calcium-induced actin depolymerization reduces NMD A channel activity [J]. Neuron.1993. (10).805.
    149. Raymond, P. A.,S. S. Easter, Jr., Postembryonic growth of the optic tectum in goldfish. Ⅰ. Location of germinal cells and numbers of neurons produced [J]. J Neurosci.1983.(3).1077-91.
    150. Zupanc, G. K., Neurogenesis, cell death and regeneration in the adult gymnotiform brain [J]. J Exp Biol.1999. (202).1435-46.
    151. Polenov, A. L.,V. K. Chetverukhin, Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus of the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus. Ⅱ. Types of neuronal cells produced [J]. Cell Tissue Res.1993. (271).351-62.
    152. Font, E., E. Desfilis, et al., Neurogenesis and neuronal regeneration in the adult reptilian brain [J]. Brain Behav Evol.2001. (58).276-95.
    153. Garcia-Verdugo, J. M., S. Ferron, et al., The proliferative ventricular zone in adult vertebrates:a comparative study using reptiles, birds, and mammals [J]. Brain Res Bull.2002. (57).765-75.
    154. Lopez-Garcia, C., A. Molowny, et al., Delayed postnatal neurogenesis in the cerebral cortex of lizards [J]. Brain Res.1988. (471).167-74.
    155. Goodman, S. R., A. Kurdia, et al., The human red blood cell proteome and interactome [J]. Exp Biol Med (Maywood).2007. (232).1391-408.
    156. Pasini, E. M., H. U. Lutz, et al., Red blood cell (RBC) membrane proteomics--Part Ⅱ:Comparative proteomics and RBC patho-physiology [J]. J Proteomics.2010. (73).421-35.
    157. Pasini, E. M., M. Kirkegaard, et al., In-depth analysis of the membrane and cytosolic proteome of red blood cells [J]. Blood.2006. (108).791-801.
    158. Morgan, D. A., R. Class, et al., Cytokine mediated proliferation of cultured sea turtle blood cells:morphologic and functional comparison to human blood cells [J]. Tissue Cell.2009. (41).299-309.
    159. Hopp, W. B., Studies on the morphology and life cycle of Neoechinorhynchus emydis (Leidy), and acanthocephalan parasite of the map turtle, Graptemys geographica (Le Sueur) [J]. J Parasitol.1954. (40).284-99.
    160. Maginniss, L. A., S. S. Tapper, et al., Effect of chronic cold and submergence on blood oxygen transport in the turtle, Chrysemys picta [J]. Respir Physiol. 1983. (53).15-29.
    161. Maginniss, L. A.,B. M. Hitzig, Acid-base status and electrolytes in red blood cells and plasma of turtles submerged at 3 degrees C [J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.1987. (253). R64-R70.
    162. Mauro, N.,R. Isaacks, Metabolic and functional characteristics of erythrocytes from Glycera and Noetia [J]. Comparative Biochemistry and Physiology Part A:Physiology.1987. (88).397-403.
    163. Costanzo, J. P., J. D. Litzgus, et al., Seasonal changes in physiology and development of cold hardiness in the hatchling painted turtle Chrysemys picta [J]. JExp Biol.2000. (203).3459-70.
    164. Mauro, N. A.,R. E. Isaacks, Relative oxidation of glutamate and glucose by vertebrate erythrocytes [J]. Comp Biochem Physiol A Comp Physiol.1989. (94).95-7.
    165. Mauro, N. A.,R. E. Isaacks, Examination of reptilian erythrocytes as models of the progenitor of mammalian red blood cells [J]. Comparative Biochemistry and Physiology Part A:Physiology.1997. (116).323-327.
    166. Harris, J. R.,J. N. Brown, Fractionation of the avian erythrocyte:an ultrastructural study [J]. J Ultrastruct Res.1971. (36).8-23.
    167. Jiang, X. S., H. Zhou, et al., A high-throughput approach for subcellular proteome [J]. Molecular & Cellular Proteomics.2004. (3).441-455.
    168. Ciocca, D. R., S. Oesterreich, et al., Biological and clinical implications of heat shock protein 27,000 (Hsp27):a review [J]. JNatl Cancer Inst.1993. (85). 1558-70.
    169. Mallouk, Y., M. Vayssier-Taussat, et al., Heat shock protein 70 and ATP as partners in cell homeostasis (Review) [J]. International journal of molecular medicine.1999. (4).463.
    170. Feder, M. E.,G. E. Hofmann, Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology [J]. Annual review of physiology.1999. (61).243-282.
    171. Krivoruchko, A.,K. B. Storey, Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans [J]. J Comp Physiol B.2010. (180).403-14.
    172. Liu, J., X. Guo, et al., Membrane remodeling during reticulocyte maturation [J]. Blood.2010. (115).2021-2027.
    173. Pellegrini, F.,D. R. Budman, Review:tubulin function, action of antitubulin drugs, and new drug development [J]. Cancer Invest.2005. (23).264-73.
    174. Lopez-Fanarraga, M., J. Avila, et al., Review:postchaperonin tubulin folding cofactors and their role in microtubule dynamics [J]. Journal of structural biology.2001. (135).219-229.
    175. Reese, S. A., C. E. Crocker, et al., The physiology of hibernation among painted turtles:the midland painted turtle (Chrysemys picta marginata) [J]. Respir Physiol.2001. (124).43-50.
    176. Li, J., G. Lykotrafitis, et al., Cytoskeletal dynamics of human erythrocyte [J]. Proc Natl Acad Sci USA.2007. (104).4937-42.
    177.倪张林,魏家绵,ATP合酶的结构与催化机理[J].植物生理与分子生物学学报.2003.(29).367-374.
    178.杨福愉,ATP合酶:一个最小的蛋白质分子转动马达[J].医学分子生物学杂志.2005.(2).243-249.
    179.王军萍,龟鳖类血液学研究概述[J].动物学杂志.2001.(36).47-51.
    180. Jackson, D. C., Hibernating without oxygen:physiological adaptations of the painted turtle [J]. J Physiol.2002. (543).731-7.
    181.陈业志,彭婧,et al.,安南龟冬眠前后乳酸脱氢酶的比较研究[J].四川动物.2007.(26).281-283.
    182. Ultsch, G. R., M. E. Carwile, et al., The physiology of hibernation among painted turtles:the Eastern painted turtle Chrysemys picta picta [J]. Physiol Biochem Zool.1999. (72).493-501.
    183. Warren, D. E.,D. C. Jackson, Effects of temperature on anoxic submergence: skeletal buffering, lactate distribution, and glycogen utilization in the turtle, Trachemys scripta [J]. Am J Physiol Regul Integr Comp Physiol.2007. (293). R458-67.
    184. Sephton, D. H.,W. R. Driedzic, Maintenance of enzyme activity levels during long-term aerobic diving in the red-eared turtle Trachemys scripta elegans [J]. Physiological zoology.1996.1156-1175.
    185. Reese, S. A., G. R. Ultsch, et al., Lactate accumulation, glycogen depletion, and shell composition of hatchling turtles during simulated aquatic hibernation [J]. Journal of experimental biology.2004. (207).2889-2895.
    186.林炎坤,常用的几种蒽酮比色定糖法的比较和改进[J].植物生理学通讯.1989.(4).53-55.
    187. Anthon, G. E.,D. M. Barrett, Modified method for the determination of pyruvic acid with dinitrophenylhydrazine in the assessment of onion pungency [J]. Journal of the Science of Food and Agriculture.2003. (83).1210-1213.
    188. Maginniss, L. A.,B. M. Hitzig, Acid-base status and electrolytes in red blood cells and plasma of turtles submerged at 3 degrees C [J]. Am J Physiol.1987. (253). R64-70.
    189. Jabs, C. M., W. J. Ferrell, et al., Microdetermination of plasma ATP and creatine phosphate concentrations with a luminescence biometer [J]. Clin Chem.1977. (23).2254-7.
    190. Jackson, D. C., J. S. Wasser, et al., Effect of induced hypercapnia on anaerobic metabolic rate of anoxic musk turtles [J]. Am J Physiol.1988. (254). R944-8.
    191. Wasser, J. S., S. J. Warburton, et al., Extracellular and intracellular acid-base effects of submergence anoxia and nitrogen breathing in turtles [J]. Respir Physiol.1991.(83).239-52.
    192.李牧,刘敬业,et al.,脑外伤后脑脊液乳酸,丙酮酸变化的临床意义[J].中华神经外科杂志.1989,(3).
    193.郝洪军,伍其专,乳酸丙酮酸测定对筛选线粒体肌肉疾病的临床应用[J].中风与神经疾病杂志.1995.(12).92-93.
    194.唐胜南,伍期专,最小运动量试验对筛选线粒体肌病的意义[J].中国实验临床免疫学杂志.1999.(11).27-28.
    195. Tilton, W., C. Seaman, et al., Regulation of glycolysis in the erythrocyte:role of the lactate/pyruvate and NAD/NADH ratios [J]. The Journal of laboratory and clinical medicine.1991.(118).146.
    196. Clark, V. M.,A. T. Miller, Jr., Studies on anaerobic metabolism in the fresh-water turtle (Pseudemys scripta elegans) [J]. Comp Biochem Physiol A Comp Physiol.1973. (44).55-62.
    197. Birkedal, R.,H. Gesser, Effects of hibernation on mitochondrial regulation and metabolic capacities in myocardium of painted turtle (Chrysemys picta) [J]. Comp Biochem Physiol A Mol Integr Physiol.2004. (139).285-91.
    198. Jackson, D. C., Hibernating without oxygen:physiological adaptations of the painted turtle [J]. The Journal of physiology.2002. (543).731-737.
    199.詹球,高军,et al.,乌龟缺氧潜水呼吸的耐受性及巴西龟血液生理生化特性的研究[J].湖南师范大学自然科学学报.2010.(33).
    200. Marchat, L., P. M. Loiseau, et al., Purification and characterization of lactate dehydrogenase isoenzymes 1 and 2 from Molinema dessetae (Nematoda:Filarioidea) [J]. Parasitol Res.1996. (82).672-80.
    201. Williamson, J. R., R. A. Kreisberg, et al., Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver [J]. Proc Natl Acad Sci U S A.1966. (56).247-54.
    202. Sistare, F.,R. Haynes, Acute stimulation by glucocorticoids of gluconeogenesis from lactate/pyruvate in isolated hepatocytes from normal and adrenalectomized rats [J]. Journal of Biological Chemistry.1985. (260). 12754.
    203. Sistare, F.,R. C. Haynes Jr, The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action [J]. Journal of Biological Chemistry.1985. (260).12748-12753.
    204. Land, C.,P. W. Hochachka, Compartmentation of liver phosphoenolpyruvate carboxykinase in the aquatic turtle Pseudemys scripta elegans:a reassessment [J]. Journal of experimental biology.1993. (182).271-273.
    205. Willmore, W. G, K. J. Cowan, et al., Effects of anoxia exposure and aerobic recovery on metabolic enzyme activities in the freshwater turtle Trachemys scripta elegans [J]. Canadian journal of zoology.2001. (79).1822-1828.
    206. Warren, D. E.,D. C. Jackson, Lactate metabolism in anoxic turtles:an integrative review [J]. J Comp Physiol B.2008. (178).133-48.
    207. Reese, S. A., G. R. Ultsch, et al., Lactate accumulation, glycogen depletion, and shell composition of hatchling turtles during simulated aquatic hibernation [J]. JExp Biol.2004. (207).2889-95.
    208. Moser, T. L., D. J. Kenan, et al., Endothelial cell surface Fl-FO ATP synthase is active in ATP synthesis and is inhibited by angiostatin [J]. Proceedings of the National Academy of Sciences.2001. (98).6656.
    209. Xing, S. L., J. Yan, et al., Neuronal cell surface ATP synthase mediates synthesis of extracellular ATP and regulation of intracellular pH [J]. Cell Biol Int.2011.(35).81-6.
    210. Koszegi, T., M. Kellermayer, et al., Bioluminescent monitoring of ATP release from human red blood cells treated with nonionic detergent [J]. Clinical Chemistry and Laboratory Medicine.2009. (26).599-604.
    211. Yoshizaki, K., H. Watari, et al., Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR [J]. Biochim Biophys Acta. 1990.(1051).144-50.
    212. Jacobus, W. E., Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP [J]. Biochem Biophys Res Commun.1985. (133).1035-41.
    213. Mahler, M., First-order kinetics of muscle oxygen consumption, and an equivalent proportionality between QO2 and phosphorylcreatine level. Implications for the control of respiration [J]. J Gen Physiol.1985. (86). 135-65.
    214.邹玲莉,李秋莎,et al.,离子对反相高效液相色谱法同时测定大鼠血浆和红细胞中外源性磷酸肌酸及其代谢产物和相关三磷酸腺苷[J].分析化学(FENXl HuAxuE).2011. (39).
    215. Sharov, V. G, N. I. Afonskaya, et al., Protection of ischemic myocardium by exogenous phosphocreatine (neoton):pharmacokinetics of phosphocreatine, reduction of infarct size, stabilization of sarcolemma of ischemic cardiomyocytes, and antithrombotic action [J]. Biochem Med Metab Biol. 1986.(35).101-14.
    216. Ferraro, S., G. Maddalena, et al., Acute and short-term efficacy of high doses of creatine phosphate in the treatment of cardiac failure [J]. Current therapeutic research.1990. (47).917-923.
    217. Sharov, V. G, V. A. Saks, et al., Protection of ischemic myocardium by exogenous phosphocreatine. Ⅰ. Morphologic and phosphorus 31-nuclear magnetic resonance studies [J]. J Thorac Cardiovasc Surg.1987. (94).749-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700