用户名: 密码: 验证码:
底部框架砖房抗火性能与抗火设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑火灾是发生频度较高的灾种。既有底部框架砖房在我国既有建筑中约占15%,《建筑抗震设计规范》(GB50011-2010)中关于底部框架砖房的设计条款有一定篇幅,故仍会继续建造底部框架砖房。一般作为商业用房使用的底部框架层含有大量可燃物,火灾荷载相对较大;上部楼层为砖砌体结构,底部框架承受的永久荷载在全部荷载中所占比例较纯框架大,当设计轴压比相同时,底部框架柱承担的实际荷载较纯框架柱大。由于梁柱截面选择和配筋构造与抗震构造等级相关,非抗震设防区和6度抗震设防区的底部框架砖房,底部框架柱长期处于高轴压比、低配筋率的状态,底部框架可能是此类建筑的抗火薄弱层,火灾下易因底部框架抗力不足而发生整体坍塌。7度和8度抗震设防区的底部框架砖房,尽管底部框架梁柱截面尺寸相对较大,配筋相对多些,但能否确保底部框架砖房在火灾下的安全,也需要开展研究。既有底部框架砖房和新建底部框架砖房的抗火性能与火灾安全问题,是工程界十分关注的热点问题之一。本文针对底部框架砖房抗火问题开展以下研究工作:
     (1)考虑到粘土砖砌体线膨胀系数为5×10-6/℃,混凝土的线膨胀系数为1×10-5/℃,粘土砖砌体线膨胀系数仅为混凝土线膨胀系数的一半;同时考虑到底部框架发生火灾,其托梁顶的温度一般不超过160℃,砖砌体温度会更低,且离托梁距离越大,受火灾影响越小。进行底部框架砖房在底部框架层发生火灾时的受火分析时,假定上部砖砌体不受火灾影响。底部框架层发生火灾时上部砖砌体与框架梁(墙梁的托梁)间的荷载传递机制,是底部框架砖房受火分析必须解决的问题之一。采用Hill屈服准则和Rankine屈服准则,合理考虑压应力对砖砌体抗剪强度的影响,通过在砖砌体两个材料主轴方向上定义不同的材料属性,构建了考虑材料各向异性硬化和软化的砖砌体弹塑性整体化模型,采用Newton-Raphson方法和隐式Euler积分回映算法,实现了对塑性屈服面非线性方程组的求解和应力更新。通过对试验结果和计算结果的对比分析,得出与各向同性砖砌体材料模型相比,考虑材料各向异性的砖砌体弹塑性模型能够更为准确的分析砖砌体在平面应力下的弹塑性性能。为包括底部框架层发生火灾时上部砖砌体与框架梁(墙梁的托梁)间的荷载传递机制在内的底部框架砖房抗火计算分析提供了模型。
     (2)实现对火灾下底部框架砖房的全过程分析,是把握该类建筑抗火性能的关键。分析确定了高温下钢筋和混凝土的热力学参数,基于热传导理论建立了底部框架温度场分析模型,编制了混凝土瞬态热应变和高温徐变的计算程序及钢筋高温蠕变的计算程序,合理考虑了高温下钢筋与混凝土间粘结滑移性能,结合ABAQUS有限元软件的顺序耦合热力分析平台,引入考虑材料各向异性的砖砌体弹塑性模型,建立了底部框架砖房抗火分析精细化模型,实现了火灾和外荷载共同作用下底部框架从起火到坍塌的全过程分析。通过已有钢筋混凝土构件和结构抗火试验对该精细化模型进行验证,结果表明钢筋混凝土构件和结构抗火分析时,考虑混凝土的瞬态热应变、高温徐变以及钢筋的高温蠕变是有必要的,火灾下底部框架温度场分析模型和力学性能分析精细化模型具有较好的准确性。
     (3)基于底部框架砖房抗火分析精细化模型,通过变参数,考察了火灾下框架梁(墙梁的托梁)顶面竖向荷载分布的变化、底部框架所承受荷载效应的变化及底部框架的破坏过程。获得了荷载水平、梁柱截面尺寸和配筋、保护层厚度和上部砖砌体房屋层数等参数影响的底部框架从起火到坍塌的发展过程和规律。结果表明,火灾下高温引起的框架梁(墙梁的托梁)轴向膨胀变形和向下挠曲变形对墙拱传力机制不利,使框架梁(墙梁的托梁)内力显著增大,加速边柱顶端外侧纵向钢筋受拉屈服,内侧混凝土被压碎。边柱上端损伤后中柱混凝土被压溃,砖墙的大拱效应使中柱承担的荷载减小。
     (4)底部框架砖房的底部框架设计时应同时满足抗火与抗震的双重要求。基于底部框架砖房抗火性能参数分析结果,对不同耐火极限相应的底部框架柱轴压比、梁柱截面尺寸和配筋率与不同抗震等级相应的底部框架柱轴压比限值、梁柱最小截面尺寸和配筋率进行了对比分析,结果表明,非抗震设防区的底部框架柱截面尺寸大于500mm×500mm,边柱纵向钢筋配筋率大于1.5%,以满足耐火等级大于3.0h;抗震等级为三级的底部框架边柱纵向钢筋配筋率需大于0.8%、1.0%和1.2%,以满足耐火等级大于2.0h、2.5h和3.0h;抗震等级为一级和二级的底部框架耐火极限均大于3.0h。基于柱轴压比、梁柱截面尺寸与配筋、保护层厚度等关键参数对底部框架抗火性能的影响规律,提出了底部框架梁柱截面选择、配筋构造、保护层厚度取值等抗火设计建议,以使底部框架抗火设计与抗震设计相协调。
     (5)底部框架层发生火灾后,根据受火损伤程度不同,一些受火损伤后的底部框架加固后可继续使用。抗震设防区火灾后受火损伤的底部框架砖房需进行抗震加固计算。针对以往水平荷载下底部框架的内力计算时,上部砖砌体材料假设为各向同性,以及框架梁内力计算未考虑其与上部砖砌体共同工作的问题,开展了780个常温时水平荷载下该类房屋的底部框架计算分析,获得了梁柱线刚度比、托梁高跨比等对托梁内力、柱反弯点和柱剪力分配的影响规律,提出了考虑上部砖砌体和构造柱影响的水平荷载下底部框架的内力计算方法。为火灾后底部框架砖房安全性评估及对火灾后受火损伤的底部框架合理进行抗震加固提供了参考依据。
Building fire is a high frequency disaster. The existing bottom frames of multi-story masonry buildings take a certain proportion of existing buildings in our country.Code for seismic design of buildings (GB50011-2010) has a certain amount ofclauses for the bottom frames of multi-story masonry buildings design, so manybuildings of this structural type will still to be constructed. The fire load of thebottom frames is large for the reason that the bottom floor is commonly used asmercantile occupancy. The upper floors of the bottom frames are masonry structures,the ratio of the constant load to the total loads is larger for bottom frames, socolumns of bottom frames endure more actual load than that of bare frames, whendesigned axial compression ratios are equal for them. For the reason that sectionselection and reinforcement design of structural members are related to seismicclasses, in non-seismic fortification zone and6degree seismic fortification zone,columns of bottom frames are in high axial compressive ratio and low steel ratio stateduring their inservice time, bottom frames are the unsubstantial floors of this type ofbuildings in fire, these buildings are prone to collapse for the resistance of bottomframes is inadequate. In7and8degree seismic fortification zone, though dimensionsof structural members and reinforced steel ratios are respectively large, the safety ofthese buildings exposed to fire is necessary to be studied. Fire resistance and firesafety of the bottom frames of multi-story masonry buildings is one of the hot issuesin civil engineer. The following works are carried out:
     (1) Considering the liner expansion coefficient of masonry is5×10-6/℃, whichis only half of that of concrete,1×10-5/℃. The temperature of the top of joist is lowerthan160℃, the temperature of upper masonry is lower than that of the top of joist,and the effect of temperature on masonry decreases with the distance betweenmasonry and joist increases. In the process of fire resistance analysis of bottomframes, masonry is considered as temperature-independent material. The mechanicalmodel of load transmitting between upper masonry and joist during the bottomframes exposed to fire is one of the problems in analysis of fire resistance of thebottom frames. Hill yield criterion and Rankine yield criterion are adopted, the effectof pressure on shear strength is introduced reasonably, the anisotropic hardening and softening macro material model is put forward for elasto-plastic analysis of masonry,by means of defining different material properties in two material principal axis ofmasonry. Newton-Raphson method and implicit Euler backward return mappingalgorithm are employed to solve nonlinear equations of yield surfaces and to updatestresses. From the comparison anlysis between experiment results and calculationresults, the proposed anisotropic material model shows better performance thanisotropic material models in elasto-plastic analysis of masonry in plane stress states.The proposed anisotropic material model provides the practicability for fireresistance analysis of the bottom frames of multi-story masonry buildings, whichcontains the mechanical model of load transmitting between upper masonry and joistduring the bottom frames exposed to fire.
     (2) The key issue for the fire resistance of the bottom frames of multi-storymasonry buildings is to realize the entire process analysis of the bottom frames ofmulti-story masonry buildings exposed to fire. After the determinations of materialthermal and mechanical parameters at elevated temperatures, temperature fieldanalysis model of the bottom frames is set up based on heat conduction theory.Calculation subroutine of concrete creep, transient thermal strain and steel creep atelevated temperatures is written. Bond-slip behavior between concrete and steel baris also adopted reasonably. The fine model for mechanical behavior analysis of thebottom frames of multi-story masonry buildings exposed to fire is established basedon sequential coupling temperature and stress analysis platform in ABAQUS andconcrete plastic finite element theory. By introducing the anisotropic masonry model,the fine models can be used to analyze the entire process from fire breaking out tothe frames collapse on condition that the vertical load is invariable. The experimentalresults comparison shows that it is necessary to introduce concrete transient thermalstrain and creep, and steel creep at elevated temperatures in fire resistance analysis ofconcrete structures. The temperature field analysis model and fine mechanicalbehavior analysis model have good accuracy.
     (3) The changes of vertical stress distribution on the top of joist and load effectof bottom frames, the failure process of bottom frames are studied by parametricanalysis, using the established fine finite element models. A parametric study isconducted to investigate the effects on the entire process from fire breaking out to thebuilding collapses when the bottom floors exposed to fire due to the change in loadratio, sectional dimension, reinforcement ratio of columns and beams, and number of masonry storeys. Axial expansion deformations and flexural deflections of joistcaused by high temperature produce adverse effect on arch mechanism fortransmitting the vertical loads of masonry structures, which increases the inner forceof joist, and accelerates longitudinal reinforcement outside of the top of edge columnyield for tensile, then concrete inside of the top of edge columns yields for pressure.Concrete of the middle columns crushes after the damage of the top of outsidecolumns.
     (4) The bottom frames should be designed to satisfy to seimic design and firesafety requirements. Comparative analysis is carried out between the effect of axialcompression ratio, section dimensions and reinforcement ratio of joists and columnson fire resistance of the bottom frames, and criterion on axial compression ratio,section dimensions and reinforcement ratio of the bottom frames in current seismiccode. The result shows that the sectional dimension of columns should be lager than500mm×500mm, and longitudinal reinforcement ratio of edge column is lager than1.5%, so that the fire resistance of the bottom frames in non-seismic region is aboveto3.0h. The longitudinal reinforcement ratios should be larger than0.8%,1.0%and1.2%, so that the fire resistances of the bottom frames in seismic grade three is aboveto2.0h,2.5h and3.0h respectively. The fire resistances of the bottom fames designedwith seismic grade one and two are larger than3.0h. Based on the effect laws of keyparameters on fire resistance of the bottom frames, including axial compressive ratioof columns, sectional dimension and reinforcement ratio of columns and beams, andthickness of concrete cover, the details of fire safety design for the bottom frames tomatch different fire resistance construction degrees are put forward, such as sectionaldimension, reinforcement ratio, and thickness of concrete cover of columns andbeams, so that the fire safety design of the bottom frames is coordinate with seimicdesign.
     (5) Many damaged bottom frames can be used continuely after reinforcement, onthe basis of different damage degrees of the bottom frames after fire. Seismicreinforcement calculation is required for the damaged bottom frames of multi-storymasonry buildings after fire in earthquake fortification zones. Focus on the problemthat masonry is assume as isotropic material in force analysis of the bottom frames,and no effect of upper masonry introduced in calculating the force of joist in theprocess of the bottom frames force calculation on condition that the buildings underhorizontal load, which is treated as pure frame beam,780bottom frames are analyzedby finite element method considering the effect of upper masonry, taking the masonry as anisotropic material. The effects of stiffness ratio of beams to columnsand depth-span ratio of the joists on the force of joists, the inflection point ofcolumns and shear force distribution in bottom columns are obtained. Calculationmethod for the force of the bottom frames with the effect of brick masonry andconstructional column under horizontal load is proposed. The calculation methodprovides reasonable reference for safety evaluation of the bottom frames after fire andseismic reinforcement design of the damaged bottom frames after fire.
引文
[1]公安部消防局.中国消防年鉴2004[J].北京:中国人事出版社,2004:273-279.
    [2] Ingberg S H. Tests of the Severity of Building Fires[R]. Quarterly of theNational Fire Protection Association,1928,22(1):43-61.
    [3]唐岱新.砌体结构[M].北京:高等教育出版社,2010:1-2.
    [4]施楚贤.砌体结构理论与设计[M].北京:中国建筑工业出版社,2003:36-89.
    [5] Pedreschi R F, Sinha B P. The stress and strain relationship of brickwork[C].Proceedings of the6th International Brick and Block Masonry Conference,Roman,1982:321-334.
    [6]曾晓明,杨伟军,施楚贤.砌体受压本构关系模型的研究[J].四川建筑科学研究,2001,27(3):8-10.
    [7] Senthivel R, Sinha S N, Madan A. Influence of bed joint orientation on thestress-strain characteristics of sand plast brick masonry under uniaxialcompression and tension[C]. Proceedings of the12th International Brick andBlock Masonry Conference, Spain,2000:1655-1666.
    [8] Powell B, Hodgkinson H R. The Determination of Stress and StrainRelationship of Brickwork[C]. Proceedings of the4th International BrickMasonry Conference, Bruges,1976:52-55.
    [9]朱伯龙.砌体结构设计原理[M].上海:同济大学出版社,1998:13-16.
    [10]庄一舟,黄承逵.模型砖砌体力学性能的试验研究[J].建筑结构,1997,27(2):22-25.
    [11] Naraine K, Sinha S. Behavior of brick masonry under cyclic compressiveloading[J]. Journal of Construction Engineering and Management,1989,115(6):1432-1444.
    [12] Naraine K, Sinha S. Cyclic behavior of brick masonry under biaxialcompression[J]. Journal of Structural Engineering, ASCE,1991,117(5):1336-1355.
    [13] Naraine K, Sinha S. Stress-strain curves for brick masonry in biaxialcompression[J]. Journal of Structural Engineering, ASCE,1992,118(6):1451-1461.
    [14] Samarasinghe W, Hendry A W. A finite element model for the in-planebehavior of brickwork[J]. Proceedings of the Institution of Civil Engineers,1982,73(3):171-178.
    [15] Rahman M A, Anand S C. Empirical Mohr-Coulomb failure criterion forconcrete block-mortar joints[J]. Journal of Structural Engineering, ASCE,1994,120(8):2408-2422.
    [16] Riddington J R, Ghazali M Z. Hypothesis for shear failure in masonry joints[J].Proceedings of the Institution of Civil Engineers,1990,89(1):89-102.
    [17] Zucchini A, Lourenco P B. A micro-mechanical homogenisation model formasonry: Application to shear walls[J]. International Journal of Solids andStructures,2009,46(3-4):871-886.
    [18] Sandoval C, Roca P, Bernat E. Testing and numerical modelling of bucklingfailure of masonry walls[J]. Construction and Building Materials,2011,25(12):4394-4402.
    [19] Chaimoon K, Attard M M. Modeling of unreinforced masonry walls undershear and compression[J]. Engineering Structures,2007,29(9):2056-2068.
    [20] Mario M A, Alfonso N, Francis T L. Modeling Fracture in Masonry[J]. Journalof Structural Engineering,2008,133(10):1385-1392.
    [21] Chen S Y, Moon F L, Yi T. A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers[J]. Engineering Structures,2008,30(8):2242-2252.
    [22] Salerno G, Felice G. Continuum modeling of periodic brickwork[J].International Journal of Solids and Structures,2009,46(5):1251-1267.
    [23] Hemant B K, Durgesh C R, Sudhir K J. Effectiveness of Some StrengtheningOptions for Masonry-Infilled RC Frames with Open First Story[J]. Journal ofStructural Engineering,2009,135(8):925-937.
    [24] Brasile S, Casciaro R, Formica G. Finite Element Formulation for NonlinearAnalysis of Masonry Walls[J]. Computers and Structures,2010,88(3-4):135-143.
    [25] Koutromanos I, Shing P B. A Cohesive Crack Model to Simulate CyclicResponse of Concrete and Masonry Structures[J]. ACI Structural Journal,2012,109(3):349-358.
    [26] Cerrolaza M, Sulem J, Elbied A. A cosserat non-linear finite element analysissoftware for blocky structures[J]. Advances in Engineering Software,1999,30:69-83.
    [27] Louren o P B, Rots J G, Blaauwendraad J. Continuum model for masonry:parameter estimation and validation[J]. Journal of Structural Engineering,1998,124(6):642-652.
    [28] Drysdale R G, Khat M M. In-plane behavior of grouted concrete masonryunder biaxial tension-compression[J]. ACI Structural Journal,1995,92(6):653-664.
    [29] Dhanasekar M, Kleeman P W, Page A W. Biaxial stress-strain relations forbrick masonry[J]. Journal of Structural Engineering,1985,111(5):1085-1100.
    [30] Dhanasekar M. The performance of brick masonry subjected to inplaneloading[D]. Australia: University of Newcastle,1985:79-134.
    [31] Zhuge Y. Nonlinear dynamic response of unreinforced masonry under inplanelateral loads[D]. Australia: Queensland University of Technology,1995:53-81.
    [32] Lofti H R, Shing P B. An appraisal of smeared crack models for masonry shearwalls analysis[J]. Computers and Structures,1991,41(3):413-425.
    [33] Berto L, Saetta A, Scotta R. An orthotropic damage model for masonrystructures[J]. International Journal for Numerical Method in Engineering,2002,55(2):127-157.
    [34]单荣民,唐岱新.双向受压砖砌体强度的试验研究[J].哈尔宾建筑工程学院学报,1988,21(2):39-46.
    [35]蔡勇,施楚贤,马超林.砌体在剪-压作用下抗剪强度研究[J].建筑结构学报,2004,25(5):118-123.
    [36]刘桂秋.砌体结构基本受力性能的研究[D].长沙:湖南大学,2005:39-51.
    [37]许琪楼,姬同庚.砖砌体双向受力单元非线性分析模式[J].工程力学,1992,9(3):73-80.
    [38] Wood R H. The Composite Action of Brink Panel Walls Supported onReinforced Concrete Beams[R]. Studies in Composite Construction Part I,National Building Studies,1952:71-88.
    [39] Rosenhaupt S. Experimental Study of Masonry Walls on Beams[J]. Journal ofthe Structural Division,1962,88(3):137-166.
    [40]龚绍熙,陈力奋,李翔.单跨框支墙梁的有限元分析及内力计算[J].工程力学(增刊),1997,176-181.
    [41]梁兴文,李晓文,王庆霖等.竖向及水平荷载共同作用下框支连续墙梁受力性能研究[J].西安建筑科技大学学报,1995,27(4):375-380.
    [42]李翔,龚绍熙.双跨框支墙梁的有限元分析及内力计算[J].工程力学(增刊),1998,34-38.
    [43]梁兴文,王庆霖,易文宗等.框支连续墙梁抗震性能研究及设计计算[J].建筑结构学报,1998,19(4):9-18.
    [44]全学友,白绍良.单跨无洞框支墙梁抗震受力性能研究[J].重庆建筑大学学报(增刊),2000,22:53-59.
    [45]黄维平,奚肖凤,邬瑞锋.框支组合墙房屋框墙梁受荷状态分析[J].工程抗震,1996(1):1-5.
    [46]郑山锁,薛建阳,王斌.砌体结构抗震[M].北京:中国建材工业出版社,2008.
    [47]唐岱新,龚绍熙,周炳章.砌体结构设计规范理解与应用[M].北京:中国建筑工业出版社,2002.
    [48]包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2001.
    [49]董毓利.混凝土结构的火安全设计[M].北京:科学出版社,2001:1-22.
    [50]马忠诚.火灾下钢筋混凝土结构损伤评估与抗震修复[D].哈尔滨:哈尔滨建筑大学,1997.
    [51]郑文忠,侯晓萌,闫凯.预应力混凝土高温性能及抗火设计[D].哈尔滨:哈尔滨工业大学出版社,2012:53-60.
    [52]孔详谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [53]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [54]朱伯芳.不稳定温度场数值分析的分区异步长解法[J].水利学报,1995,184(8):46-52.
    [55]顾元宪,陈飙松,张洪武等.非线性瞬态热传导的精细积分方法[J].大连理工大学学报,2000,40(S1):24-28.
    [56]时旭东,过镇海.钢筋混凝土结构的温度场[J].工程力学,1996,13(1):35-44.
    [57] Ohashi H, Kodaira A. Calculation of Load and Deformation Behavior ofStructure Elements Taking Intoaccount3-Dimensional Heat Flow[C].Proceedings of the Fifth International Symposium on Fire Safety Science,Australia,1997:1021-1032.
    [58] Huang Z H, Platten A. Nonlinear Finite Element Analysis of Planar ReinforcedConcrete Members Subjected to Fires[J]. ACI Structural Journal,1997,94(3):272-281.
    [59] Lie T T, Celikkol B. Method to Calculate the Fire Resistance of CircularReinforced Concrete Columns[J]. ACI Materials Journal,1991,88(1):84-91.
    [60] Lie T T. Fire Resistance of Circular Steel Columns Filled with Bar-reinforcedConcrete[J]. Journal of Structural Engineering,1994,120(5):1489-1509.
    [61]李引擎,马道贞,徐坚.建筑结构防火设计计算和构造处理[M].北京:中国建筑工业出版社,1991.
    [62]陆洲导.钢筋混凝土梁对火灾反应的研究[D].上海:同济大学,1989.
    [63] Kodur V K R, Wang T C, Cheng F P. Predicting the Fire Resistance Behaviourof High Strength Concrete Columns[J]. Cement and Concrete Composite,2004,26(4):141-153.
    [64]陆洲导,朱伯龙.钢筋混凝土梁在火侵袭下的反应分析[J].火灾科学,1996,5(2):35-43.
    [65]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990,16(1):37-43.
    [66] Shoaib M M, Ahmed S A, Balaha M M. Effect of Fire and Cooling Mode onthe Properties of Slag Mortars[J]. Cement and Concrete Research,2001,31(11):1533-1538.
    [67] Luo X, Sun W, Chan S Y N. Effect of Heating and Cooling Regimes onResidual Strength and Microstructure of Normal Strength and High-Performance Concrete[J]. Cement and Concrete Research.2000,30(3):379-383.
    [68]陈礼刚,李晓东,董毓利.钢筋混凝土三跨连续板边跨受火性能试验研究[J].工业建筑,2004,34(1):66-75.
    [69]袁爱明,孙宝俊,董毓利.无粘结预应力混凝土简支板火灾试验研究[J].工业建筑,2005,35(4):38-42.
    [70] Usmani A S, Cameron N J K. Limit Capacity of Laterally RestrainedReinforced Concrete Floor Slabs in Fire[J]. Cement and Concrete Composites,2004,26(2):127-140.
    [71] Lim L, Buchanan A, Moss P. Computer Modeling of Restrained ReinforcedConcrete Slabs in Fire Conditions[J]. Journal of Structural Engineering,2004,130(12):1964-1971.
    [72] Lim L, Buchanan A, Moss P. Numerical Modeling of Two-way ReinforcedConcrete Slabs in Fire[J]. Engineering structures,2004,26(8):1081-1091.
    [73] Shirley T S, Burg G R, Fiorato E A. Fire Endurance of High-strength ConcreteSlabs[J]. ACI Materials Journal,1988,85(2):102-108.
    [74] Kodur V K R, Bisby L A, Foo S H C. Thermal Behavior of Fire-exposedConcrete Slabs Reinforced with Fiber-reinforced Polymer Bars[J]. ACIStructural Journal,2005,102(6):799-807.
    [75] Cooke G M E. Behaviour of Precast Concrete Floor Slabs Exposed toStandardised Fires[J]. Fire Safety Journal,2001,36(5):459-475.
    [76] Huang Z H, Burgess I W, Plank R J. Nonlinear Analysis of ReinforcedConcrete Slabs Subjected to Fire[J]. ACI Structural Journal,1999,96(1):127-135.
    [77] Huang Z H, Burgess I W, Plank R J. Modeling Membrane Action of ConcreteSlabs in Composite Buildings in Fire. I: Theoretical Development[J]. Journalof Structural Engineering,2003,129(8):1093-1102.
    [78]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993,26(3):47-54.
    [79]时旭东,过镇海.高温下钢筋混凝土连续梁的受力性能研究[J].土木工程学报,1997,30(4):26-34.
    [80] Shi X D, Tan T H, Tan K H. Effect Of Force-temperature Paths on Behaviorsof Reinforced Concrete Flexural Members[J]. Journal of StructuralEngineering,2002,128(3):365-373.
    [81] Saafi M. Effect of Fire on FRP Reinforced Concrete Members[J]. CompositeStructures,2002,58(1):11-20.
    [82] Abbasi A, Hogg P J. Fire Testing of Concrete Beams with Fibre ReinforcedPlastic Rebar[J]. Composites Part A: Applied Science and Manufacturing,2006,37(8):1142-1150.
    [83]万志军.碳纤维布加固钢筋混凝土梁的耐火性能研究[D].广州:华南理工大学,2006.
    [84]洪州.钢筋混凝土梁柱构件耐火极限的计算研究[D].广州:华南理工大学,2005.
    [85]苏南,林铜柱, Lie T T.钢筋混凝土柱的抗火性能[J].土木工程学报,1992,25(6):25-36.
    [86]时旭东,李华东,过镇海.三面受火钢筋混凝土轴心受压柱的受力性能试验研究[J].建筑结构学报,1997,18(4):13-22.
    [87] Kodur V K R, Wang T C, Cheng F P. Predicting the Fire Resistance Behaviorof High Strength Concrete Columns[J]. Cement and Concrete Composites,2004,26(2):141-153.
    [88] Tan K H, Yao Y. Fire Resistance of Four-face Heated Reinforced ConcreteColumns[J]. Journal of Structural Engineering,2003,129(9):1220-1229.
    [89] Tan K H, Yao Y. Fire Resistance of Reinforced Concrete Columns Subjected to1-,2-, and3-face Heating[J]. Journal of Structural Engineering,2004,130(11):1820-1828.
    [90] Dotreppe J C, Franssen J M, Vanderzeypen Y. Calculation Method for Designof Reinforced Concrete Columns under Fire Conditions[J]. ACI StructuralJournal,1999,96(1):9-18.
    [91] SidibéK, Duprat F, Pinglot M. Fire Safety of Reinforced Concrete Columns[J].ACI Structural Journal,2000,97(4):642-647.
    [92]王超.不同受火方式下普通混凝土柱的耐火性能研究[D].广州:华南理工大学,2006.
    [93]吴波,唐贵和,王超.不同受火方式下混凝土柱耐火性能的试验研究[J].土木工程学报,2007,40(4):27-31.
    [94] Crozier A D, Sanjayan G J. Tests of Load-bearing Slender Reinforced ConcreteWalls in Fire[J]. ACI Structural Journal,2000,97(2):243-251.
    [95]肖建庄,李杰,吴树勋.矿渣高性能混凝土剪力墙火灾反应试验研究[J].同济大学学报,2003,31(7):783-787.
    [96] Becker J M, Bresler B. Reinforced Concrete Frames In Fire Environments[J].ASCE,1977,103(1):211-223.
    [97] Vechio F J, Sato J A. Thermal Gradient Effect in Reinforced Concrete FamesStructures[J]. ACI Structures Journal,1990,87(3):262-275.
    [98]时旭东,过镇海.高温下钢筋混凝土框架的受力性能试验研究[J].土木工程学报,2000,26(1):36-45.
    [99]时旭东,过镇海.高温下钢筋砼框架的破坏特征及破坏机构研究[J].工程力学(增刊),1996,14-18.
    [100]姚亚雄,朱伯龙.钢筋混凝土框架结构抗火试验研究[J].同济大学学报,1996,24(6):619-624.
    [101]姚亚雄,朱伯龙.钢筋混凝土框架结构火灾反应分析[J].同济大学学报,1997,33(6):256-261.
    [102]陆州导,李刚,许立新.无粘结预应力混凝土框架火灾下的结构反应分析[J].土木工程学报,2003,15(10):30-35.
    [103]陆州导,李刚,许立新.有粘结与无粘结预应力混凝土框架结构抗火性能的比较研究[J].建筑结构,2004,38(4):35-39.
    [104]肖建庄,谢猛,潘其健.高性能混凝土框架火灾反应与抗火性能研究[J].建筑结构学报,2004,25(4):1-7.
    [105]吴波,何喜洋.高温下钢筋混凝土框架的内力重分布研究[J].土木工程学报,2006,39(9):54-61.
    [106]吴波,卢锦钟.约束钢筋混凝土框架的耐火性能试验研究[J].华中科技大学学报(城市科学版),2009,26(1):12-18.
    [107]邓济玉.火灾高温下钢筋混凝土框架结构内力计算及耐火极限分析[D].长沙:湖南大学硕士论文,2006.
    [108]李国强,韩林海,楼国彪等.钢结构及钢-混凝土组合结构抗火设计[M].北京:中国建筑工业出版社,2006.
    [109] Dhanasekar M, Page A W. The influence of brick masonry infill properties onthe behavior of infilled frames[J]. Proceedings of the Institution of CivilEngineers,1986,81(4):593-605.
    [110] Dhanasekar M, Page A W, Kleeman P W. The failure of brick masonry underbiaxial stresses[J]. Proceedings of the Institution of Civil Engineers,1985,79(2):295-313.
    [111] Seim W. Numerical modeling of the failure of biaxially loaded masonry wallswith consideration of anisotropy[D]. Germany, Karlsruhe: University ofKarlsruhe,1994.
    [112] Ganz H R, Thürlimann B. Tests on masonry walls under normal and shearloading[R]. Institute of Structural Engineering, ETH Zurich, Switzerland,1984,7502-4:155-173.
    [113] Feenstra P H, Borst R D. A plasticity model and algorithm for mode-I crackingin concrete[J]. International Journal for Numerical Methods in Engineering,1995,38(15):2509-2529.
    [114] Rots J G. Computational modeling of concrete fracture[D]. Netherlands, Delft:University of Technology,1988.
    [115] Hill R. The mathematical theory of plasticity[M]. Oxford University Press,London, UK,1950.
    [116] Sullivan R C, Kizhatil R, Mcclellan G H. Correction of Equivalent Elastic-Plastic Anisotropic Properties of Thick Tubesheets to Preclude OverstiffResponse to Monotonic Loading[J]. ASME PVP.1997,354:121-126.
    [117] Alshebani M M, Sinha S N. Stress-strain characteristics of brick masonryunder cyclic biaxial compression[J]. Journal of structural engineering,2000,126(9):1004-1007.
    [118] Wolf D R. Yield Criteria for the Elastic-Plastic Design of Tube Sheets withTriangular Penetration Pattern[J]. Journal of pressure vessel technology,2001,123(9):118-123.
    [119] Koiter W T. Stress-strain relations, uniqueness and variational theorems forelastic-plastic materials with a singular yield surface[J]. Quarterly AppliedMath,1953,11(3):350-354.
    [120] Simo J C, Kennedy J G, Govindjee S. Non-smooth multisurface plasticity andviscoplasticity, loading/unloading conditions and numerical algorithms[J].International Journal for Numerical Methods in Engineering,1988,26(10):2161-2185.
    [121] Ortiz M, Popov E P. Accuracy and stability of integration algorithms forelastoplastic constitutive relations[J]. International Journal for NumericalMethods in Engineering,1985,21(9):1561-1576.
    [122] Simo J C, Taylor R L. A return mapping algorithm for plane stresselastoplasticity[J]. International Journal for Numerical Methods in Engineering,1986,22(3):649-670.
    [123] Borst R D, Feenstra P H. Studies in anisotropic plasticity with reference to theHill criterion[J]. International Journal for Numerical Methods in Engineering,1990,29(2):315-336.
    [124] Schellekens J C J, Borst R D. The use of the Hoffman yield criterion in finiteelement analysis of anisotropic composites[J]. Computes and Structures,1990,37(6):1087-1096.
    [125] Lie T T, Chabot M. Evaluation of fire resistance of compression membersusing mathematical models[J]. Fire Safety Journal.1993(20):135-149.
    [126] Lie T T, Irwin R J. Fire resistance of rectangular steel columns filled with bar-reinforced Concrete[J]. Journal of Structural Engineering.1995,121(5):797-805.
    [127]孔样谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [128] Harada. Strength, elasticity and thermal properties of concrete subjected toelevated temperature[R]. Concrete for Nuclear Reactors. ACI SP-34, Detroit.1972:377-406.
    [129] Li L Y, Purlciss J. Stress-strain constitutive equations of concrete material atelevated temperatures[J]. Fire Safety Journal,2005,40(7):669-686.
    [130]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系[J].清华大学学报,1997,37(6):87-90.
    [131] Harmathy T Z. Fire safety design and concrete, Concrete design andconstruction series[R]. UK, Longman Scientific and Technical,1993.
    [132] Kodur V K R, Dwaikat M. A numerical model for predicting the fire resistanceof reinforced concrete beams[J]. Cement&Concrete Composites,2008,30(5):431-443.
    [133] Bratina S, Saje M, Planinc I. The effects of different strain contributions on theresponse of RC beams in fire[J]. Engineering Structures,2007,29(3):418-420.
    [134]郑永乾.型钢混凝土构件及梁柱连接节点耐火性能研究[D].福州:福州大学,2007.
    [135] Cruz C R. Apparatus for measuring creep of concrete at high temperatures[J].Journal of the PCA Research and Development Laboratories,1968,10(3):36-42.
    [136] Anderberg G Y, Thelandersson S. Stress and deformation characteristics ofconcrete at high temperatures:2Experimental investigation and materialbehaviour model[R]. Sweden: Lund Institute of Technolgy,1976.
    [137] Sadaoui A, Khennane A. Effect of transient creep on the behaviour ofreinforced concrete columns in fire[J]. Engineering Structures,2009,31(9):2203-2208.
    [138] Sadaoui A, Kaci S, Khennane A. Behaviour of reinforced concrete frames in afire environment including transitional thermal creep[J]. Austrlian Journal ofStructural Engineering,2007,7(3):167-184.
    [139] Yin J, Zha X X, Li L Y. Fire resistance of axially loaded concrete filled steeltube columns[J]. Journal of Constructional Steel Research,2006.62(7):723-729.
    [140] Thelandersson S. Modeling of combined thermal and mechanical action inconcrete[J]. Journal of Engineering Mechanics, ASCE,1987,113(6):893-906.
    [141] Khennane A, Baker G. Thermo-plasticity models for concrete under varyingtemperature and biaxial stress[J]. Proceedings of the Royal Society,1992,439(1905):59-80.
    [142] Nechnech W, Meftah F, Reynouard J M. An elasto-plastic damage model forplain concrete subjected to high temperatures[J]. Engineering Structures,2002,24(5):597-611.
    [143]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析[D].北京:清华大学,1992.
    [144]熊向军.钢筋混凝土材料抗火性能研究动态述评[J].四川建筑科学研究,1999,3:24-28.
    [145] Moss P J, Clifton G C. Modelling of the Cardington LBTF Steel FrameBuilding Fire Tests[J]. Fire and Materials.2004,28(2-4):177-198.
    [146]平修二.金属材料的高温强度一理论·设计[M].郭廷玮,李安定,徐介平译.北京:科学出版社,1983.
    [147]杨建平.高温下钢筋硅压弯构件的试验研究和理论分析及实用计算[D].北京:清华大学,2000.
    [148] Kodur V, Dwaikat M, Fike R. High-temperature properties of steel for fireresistance modeling of structures[J]. Journal of Materials in Civil Engineering,ASCE,2010,22(5):423-434.
    [149] Skowronski W. Buckling fire endurance of steel columns[J]. Journal ofStructural Engineering, ASCE,1993,119(6):1712-1732.
    [150] Zeng J L, Tan K H, Huang Z F. Primary creep buckling of steel columns infire[J]. Journal of Constructional Steel Research,2003,59(8):951-970.
    [151] Huang Z F, Tan K H. Effects of external bending moments and heatingschemes on the responses of thermally restrained steel columns[J]. EngineeringStructures,2004,26(6):769-780.
    [152] Huang Z F, Tan K H, Ting S K. Heating rate and boundary restraint effects onfire resistance of steel columns with creep[J]. Engineering Structures,2006,28(6):805-817.
    [153] Tan K H, Ting S K, Huang Z F. Visco-elasto-plastic analysis of steel frames infire[J]. Journal of Structural Engineering, ASCE,2002,128(1):105-114.
    [154]蔡跃.火灾下预应力混凝土结构计算理论及抗火设计方法研究[D].上海:同济大学,2003.
    [155] Fields B A, Fields R J. The prediction of elevated temperature deformation ofstructural steel under anisothennal conditions[R]. National Institute ofStandards and Technology. Gaithersburg, MD, NCSTIR4497,1991.
    [156] Diederichs U, Schneider U. Bond strength at high temperautes[J]. Magazine ofConcrete Research,1981.33(115):75-84.
    [157] Money P D, Royles R. Response of the bond in reinforced concrete to hightemperatures[J]. Magazine of Concrete Research,1983,35(123):67-74.
    [158]袁广林,郭操,吕志涛.高温下钢筋混凝土粘结性能的试验与分析[J].工业建筑,2006,36(2):57-60.
    [159]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990(1):37-43.
    [160]徐有邻,沈文都,汪洪.钢筋粘结锚固性能的试验研究[J].建筑结构学报,1994,15(3):26-37.
    [161] Lu H, Zhao X L, Han L H. Fire Behaviour of High Strength Self-ConsolidatingConcrete Filled Steel Tubular Stub Columns[J]. Journal of Constructional SteelResearch.2009,65(10-11):1995-2010.
    [162] Huo J S, Huang G W, Xiao Y. Effects of Sustained Axial Load and CoolingPhase on Post-Fire Behaviour of Concrete-Filled Steel Tubular StubColumns[J]. Journal of Constructional Steel Research.2009,65(8-9):1664-1676.
    [163] LaMalva K J, Barnett J R, Dusenberry D O. Failure Analysis of the WorldTrade Center5Building[J]. Journal of Fire Protection Engineering.2009,19(4):261-274.
    [164] Feng M, Wang Y C, Davies J M. Axial Strength of Cold-Formed Thin-WalledSteel Channels under Non-Uniform Temperatures in Fire[J]. Fire SafetyJournal.2003,38(8):679-707.
    [165] Bailey C G, Ellobody E. Whole-building behaviour of bonded post-tensionedconcrete floor plates exposed to fire[J]. Engineering Structures,2009,31(8):1800-1810.
    [166] Ellobody E, Bailey C G. Behaviour of Unbonded Post-Tensioned One-wayConcrete Slabs[J]. Advances in Structural Engineering,2008,11(1):107-120.
    [167] Hibbitt, Karlson, Sorensen, Inc. ABAQUS/standard User's Manual, Version6.8[CP]. Pawtucket, RI,2004.
    [168] Lubliner J, Oliver J, Oller S, et al. A Plastic-Damage Model for Concrete[J].International Journal of Solids and Structures.1989,25(3):299-326.
    [169] Lee J, Fenves G L. A Plastic-Damage Concrete Model for Earthquake Analysisof Dams[J]. Earthquake Engineering and Structural Dynamics.1998,27(9):937-956.
    [170] Lee J, Fenves G L. Plastic-Damage Model for Cyclic Loading of ConcreteStructures[J]. Journal of Engineering Mechanics.1998,124(8):892-900.
    [171]龚绍熙,李翔,张晔.框支墙梁的低周反复荷载试验及抗震承载力计算[J].建筑结构,2002,32(4):3-8.
    [172] Hertz K D, Sorensen L S. Test Method for Spalling of Fire ExposedConcrete[J]. Fire Safety Journal,2005,40(5):466-476.
    [173] Heijden G H A, Bijnen R M W, Pel L, et al. Moisture Transport in HeatedConcrete, as Studied by NMR, and its Consequences for Fire Spalling[J].Cement and Concrete Research,2007,37(6):894-901.
    [174] Gawin D, Pesavento F, Schrefler B A. Towards prediction of the thermalspalling risk through a multi-phase porous media model of concrete[J].Computer Methods in Applied Mechanics and Engineering,2006,195(41-43):5707-5729.
    [175]傅宇方,黄玉龙,潘智生等.高温条件下混凝土爆裂机理研究进展[J].建筑材料学报,2006,9(3):323-329.
    [176] Kodur V K R, Dwaikat M B. Effect of Fire Induced Spalling on the Responseof Reinforced Concrete Beams[J]. International Journal of Concrete Structuresand Materials.2008,2(2):71-81.
    [177] Majorana C E, Salomoni V A, Mazzuccoa G, et al. An approach for modellingconcrete spalling in finite strains[J]. Mathematics and Computers in Simulation,2010,80(8):1694-1712.
    [178] Zheng W Z, Hou X M, Shi D S, et al. Experimental study on concrete spallingin prestressed slabs subjected to fire[J]. Fire Safety Journal,2010,45(5):283-297.
    [179]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003.
    [180]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究[J].浙江大学学报.1998,32(5):597~602.
    [181]沈蓉,戎凯,凤凌云.高温(火灾)后钢筋力学性能评估[J].四川建筑科学研究.1991,6(2):5~9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700