用户名: 密码: 验证码:
活性粉末混凝土高温后动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代建筑工程结构向大跨、高层、重载及特殊环境(如核设施、航天工程等)方向发展,普通性能混凝土已经不能满足当代工程建设发展的需要。活性粉末混凝土(Reactive Powder Concrete,简称RPC)应运而生,其以细砂为骨料,掺入大量硅灰等矿物掺合料、高效减水剂和微细钢纤维,成型后材料内部结构致密,是一种高强度、高韧性、低孔隙率的超高性能水泥基复合材料。RPC在桥梁结构、高层建筑、军事防护、核电工程及航天工程等领域极具应用前景。然而,随着RPC在工程中的应用,其服役环境也越来越复杂,除了可能经受冲击加载、高温的作用外,还存在高温后承受冲击载荷的情况(如火箭发射台导流槽、发动机点火试验台等)。这对RPC材料的抗火(高温)设计提出了更高的要求,即需要考虑高温后的抗冲击性能。
     目前,对于RPC材料高温后抗冲击性能的研究尚比较缺乏。研究RPC材料高温后的力学特性,特别是动力学特性及纤维的影响规律,可以为考虑高温后抗冲击性能的RPC材料抗火(高温)设计提供实验依据和理论指导。
     基于以上背景,本文首先针对混凝土材料SHPB实验方法展开研究,以确保SHPB冲击压缩实验的有效性;在此基础上,以RPC材料为研究对象,系统地研究了RPC材料高温后的静、动态力学行为特性,重点分析了温度效应及钢纤维、混杂纤维对RPC材料高温后动力学行为的影响规律;结合高温后微观结构扫描电镜分析,探讨了RPC材料宏观力学性能变化的微观机理;结合细观热力耦合仿真结果,定性地分析了钢纤维抗高温爆裂的机理;依据实验分析结果,对ZWT粘弹性本构模型进行温度项的修正,讨论了修正模型的适用性;最后,利用实验与数值仿真相结合的方法,获得了适用于SHPB冲击压缩应变率范围(102s-1)内的RPC材料HJC本构模型参数。本文的主要研究内容如下:
     第一,利用SHPB实验过程数值模拟手段,对混凝土材料SHPB实验方法进行研究。探讨了入射加载脉冲形式的选取原则,从波形弥散、应力均匀性、应变率等指标上评价了三种典型的入射加载脉冲形式(矩形波、半正弦波、三角形波)的优劣,发现半正弦波符合SHPB实验精度要求;分析了试样端面平行度加工精度对SHPB实验结果的影响规律,获得了应变直测法修正的有效范围;明确了波头起始位置的选取方法;最后,利用自制PVDF应力计监测RPC试样端面的应力状态,验证了SHPB冲击压缩实验的有效性。
     第二,利用压折试验机和压力试验机对RPC材料高温后静态压缩和弯折性能进行测试。根据实验结果,获得了RPC材料高温后抗压、抗折强度随过火温度的变化规律,并提出了相应的经验公式;分析了钢纤维掺量对RPC材料高温后静态压缩和弯折性能的影响规律;利用SEM扫描电镜对高温后RPC材料微观结构进行观察分析,建立了宏观力学性能与微观结构变化之间的关系;最后,通过细观热力耦合仿真定性分析了钢纤维的抗高温爆裂机理,发现钢纤维减轻了过火时试样的温度梯度,降低了试样棱角处的拉应力值,有利于RPC材料抗高温爆裂性能的提高。
     第三,利用SHPB设备对RPC材料进行高温后相近应变率(75~85s-1)下的冲击压缩实验。根据实验结果,分析了RPC材料动态力学性能的温度效应,发现RPC材料动态力学性能的转折温度值约为600℃;研究了钢纤维及混杂纤维(钢纤维+PVA纤维)对RPC材料高温后动力学行为的影响规律,讨论了纤维的混杂效应,发现混杂纤维RPC材料高温后抗冲击性能和材料完整性普遍优于单掺同体积钢纤维的情况,表现出正混杂效应;讨论了纤维掺量的优化设计,从抗高温爆裂及抗冲击性能角度考虑,在本文研究范围内,混杂纤维最优体积掺量为:钢纤维2.0%,PVA纤维0.1%。
     第四,利用SHPB设备对RPC材料进行高温后大应变率范围(75~150s-1)内的冲击压缩实验。根据实验结果,分析了高温后RPC材料冲击压缩应力应变曲线的特征;从材料微结构特征和能量的角度分析了应变率效应和温度效应;基于高温后RPC材料动态力学性能的特性,构造了一个包含临界转折温度的修正函数,修正了ZWT粘弹性本构模型并获得相关参数,通过模型预测结果和实验结果对比验证,发现该修正模型适用于描述RPC高温过火后率型本构关系。
     第五,利用SHPB实验与数值模拟相结合的方法,在分析HJC本构模型部分参数物理意义的基础上,获得了适用于SHPB冲击压缩应变率范围(102s-1)内的RPC材料HJC本构模型参数,通过仿真重构应力应变曲线与实验曲线对比分析,验证了模型参数的准确性;讨论了模型的适用性,发现HJC本构模型无法准确模拟混凝土材料破碎压实过程的力学行为,该模型只适用于损伤演化不太剧烈的初始阶段。
     综上,通过本文的研究系统地得到了RPC材料高温后静、动态力学特性及纤维的影响规律,并从细观的角度分析了钢纤维抗高温爆裂的机理。所取得的研究成果为RPC材料的开发应用、特别是考虑高温后抗冲击性能的抗火(高温)设计提供必要的实验与理论基础,具有一定的工程应用价值和理论指导意义。
With the rapid development of modern large-span, high-rise, over-load and special environment (e.g. nuclear constructions, space facilities) engineering construction industry, just normal strength grade of concrete would not accommodate for the nowadays engineering requirements. However, reactive powder concrete, RPC for short, emerges as the times required. Its basic physical properties are greatly different from the traditional concretes. By mixing fine sands as aggregate and large amount of silica fume, high efficiency water reducing agent and minuteness steel fibers, its weak interface is substantially strengthened and fracture energy is improved to double orders of magnitude. Recently, RPC has become a kind of high strength, high toughness, low porosity super-performance concrete. Though, the RPC material has great promotional value and potential capability in bridge constructions, high-rise buildings, military shield structures and nuclear power engineering. Nevertheless, with the increases of engineering applications for RPC, this material always involves in more complex load conditions, like dynamic impact, fire burn and even load after burnt (e.g. diversion trench of rocket launching pad, experimental platform of engine ignitions). All of these require higher design rules, especially for impact resistance performances after high temperature burnt.
     Up to now, studies on impact resistance performances of RPC after exposure in fire or high temperature are less in open literatures. To investigate the mechanism properties after exposure in high temperature especially for the dynamic mechanical behaviors and influence of fiber mixture have effective and theoretical references on material development, application and design.
     Based on the background mentioned above, this paper firstly investigates the SHPB experimental techniques for concrete-like materials, to insure the reliability of experiments data; based on the experimental results, the quasi-static and dynamic properties of RPC after exposure in high temperature are investigated. And emphasis investigates the thermal effect, steel fibers and hybrid fibers reinforced effect on mechanical behaviors and temperature resistance detonation for RPC; combine with analysis of material micro-structures with scanning electron microscope, the macroscopical properties on micro-mechanism is discussed; combine with micron thermo-mechanical coupling simulation results, the steel fibers high temperature and detonation resistance mechanism is studied; a temperature modified ZWT constitutive model is published based on stress-strain curves; finally, based on the experiment data and by using a combine method of both experiment and simulation, the parameters of HJC constitutive model with strain rate (102s-1) is deduced. The investigation contents of this paper show below:
     Firstly, by using a SHPB experimental process simulation method, the methods for SHPB experimental techniques is investigated. Selection principle methods of input load pulses are discussed. Dispersion effect, stress uniformity, strain rate index are evaluated for three typical input waveforms (rectangular wave, semi-sine wave and triangular wave), the results show the semi-sine is an ideal input waveform which has less dispersion effect and also can fit the requirements of stress uniformity; The influence between parallelism on the double sides of specimens and experimental precision is investigated. An evident error is found with unparallel of two sides. The strain direct measurement method validity is discussed by numerical simulation; the selection method for wave head initialization is studied; finally, a self made PVDF is used to monitor the stress profiles on both sides of specimens in order to verify the experimental results.
     Secondly, quasi-static compression and bending experiments are preformed after exposure in high temperature RPC specimens by using compression and compress-bend testing devices. Based on the experimental results, the variety pattern between compression, bending strength and temperature is published, and corresponding empirical formulas are deduced; the influence among steel fiber ratio, compression and bending mechanical properties is discussed; the variety between inner micro-structures of RPC and temperature is discussed by a SEM micro-analysis, and connection between macro-mechanism and micro-structure is established; finally based on the micron thermo-mechanical coupling simulation results, the mechanism of steel fibers effect on detonation is investigated. The results show, the temperature gradient decreases with steel fibers, the tensile grade also decreases which could improve the RPC detonation properties after high temperature burnt.
     Thirdly, dynamic compression experiments under strain rate ranging from 75~85s-1 are preformed after exposure in high temperature RPC by using SHPB devices. Based on the experimental results, the influence between dynamic mechanical behaviors and temperature effect for RPC is discussed, the results show: material properties knee point with temperature is around 600℃; the influence between the dynamic mechanical behaviors and steel fibers mixture, hybrid fibers (steel fibers + PVA fibers) mixture ratio is also investigated, and hybrid effect is studied. It shows, the hybrid fibers reinforced material has better mechanical properties, a positive effect is found for hybrid fibers reinforced concrete by comparing with the same volume ratio steel fibers reinforced material; an optimum design is discussed. By the view of high temperature and impact resistance properties, and in the experiment capability of this paper, the superior hybrid reinforced ratio is: 2.0% of steel fibers and 0.1% of PVA fibers.
     Fourthly, dynamic compression experiments under large strain rate ranging from 75~150s-1 are preformed after exposure in high temperature RPC by using SHPB devices. Based on the experimental results, the stress-strain curves characteristic is discussed for RPC under different temperature burnt; the strain rate effect and temperature effect is analyzed based on a micro-structures and energy properties; based on the dynamic mechanical characterizes of RPC after exposure in high temperature, a temperature modification is discussed on ZWT constitutive model and the corresponding parameters are also deduced. And a best fit is got between modified model and experimental results which indicated the validation of this model for RPC material after exposure in high temperature.
     Fifty, by using a combined method of both experiment and simulation, and based on the analysis of physical significance for HJC parameters, the HJC constitutive parameters for RPC within SHPB strain rate range (102s-1) are determined. The validation of this model is confirmed by comparison with SHPB numerical simulation and experimental curves; a discussion of the applicability of this model, the results show, HJC model cannot get an accurate result for material fragmentation and compaction behavior, and this model only validate for initial proportion with little damage.
     In conclusion, the result of this paper is a basic technical knowledge for quasi-static and dynamic mechanical behaviors, effect of fibers for powder reactive concrete, and micro, meso-level recognition of its basic mechanism. The result can provide the basic experimental and theoretical ideas to RPC material development, application and fire (high temperature) resistance and has an effective and theoretical guidance values to concrete design.
引文
[1]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社. 2004:5-30.
    [2]赵国藩.混凝土及其增强材料的发展与应用[J].建筑材料学报,2000,3(1):1-6.
    [3] S. Rostam. High Performance Concrete Cover-Why It Is Needed, and How to Achieve It in Practive[J]. Construction and Building Materials, 1996, 10(5): 407-421.
    [4] P. Richard, M. Cheyrezy. Composition of Reactive Powder Concretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511.
    [5]柯开展,蔡文尧.活性粉末混凝土(RPC)在工程结构中的应用与前景[J].福建建材,2006,(2):17-19.
    [6] K. Doroud, A. Moshaii, Y. Pezeshkian, J. Rahighi, H. Afarideh. Simulation of Temperature Dependence of RPC Operation[J]. Nuclear Instruments and Methods in Physics Research A, 2009, 602: 723-726.
    [7] M. G. Lee, Y. C. Wang, C. Chiu. A Preliminary Study of Reactive Powder Concrete as a New Repairmaterial[J]. Construction and Building Materials, 2007, (21): 182-189.
    [8]屈文俊,秦宇航.活性粉末混凝土(RPC)研究与应用评述[J].结构工程师,2007,23(5):86-92.
    [9] A. Loennermark, H. Ingason. Gas Temperatures in Heavy Goods Vehicle Fires in Tunnels[J]. Fire Safety Journal, 2005, 40: 506-527.
    [10] K. Savov, R. Lackner, H. A. Mang. Stability Assessment of Shallow Tunnels Subjected to Fire Load[J]. Fire Safety Journal, 2005, 40: 745-763.
    [11] F. A. Ali, D. O'Connor, A. Abu-Tair. Explosive Spalling of High-Strength Concrete Columns in Fire[J]. Magazine of Concrete Research, 2001, 53(3): 197-204.
    [12] C. Mareel. Structural Application of RPC[J]. Concrete, 1999: 20-23.
    [13] Y. S. Zhang, W. Sun, S. F. Liu, C. J. Jiao, J. Z. Lai. Preparation of C200 Green Reactive Powder Concrete and Its Static Dynamic Behaviors[J]. Cement & Concrete Composites, 2008, 30: 831-838.
    [14] Y. S. Tai. Uniaxial Compression Tests at Various Loading Rates for Reactive Powder Concrete[J]. Theoretical and Applied Fracture Mechanics, 2009, 52: 14-21.
    [15] Y. Halit, Y. Mert, Y. Hüseyin, A. Serdar, T. Sel?uk. Mechanical Properties ofReactive Powder Concrete Containing High Volumes of Ground Granulated Blast Furnace Slag[J]. Cement & Concrete Composites, 2010, 32: 639-648.
    [16] F. Lange, H. Mortel, V. Rudent. Dense Packing of Cement Pastes and Resulting Consequences on Mortar Properties[J]. Cement and Concrete Research, 1997, 27(10): 1481-1488.
    [17] G. H. Pan, W. Sun, Y. M. Zhang. Experimential Study on the Micro-Aggregate Effect in High-Strength and Super-High-Strength Cementitious Composites[J], Cement and Concrete Research, 1998, 28(2): 171-176.
    [18] J. Dugat, N. Roux, G. Bernier. Mechanical Properties of Rective Powder Concretes[J]. Materials and Structures, 1996, 29(5): 233-240.
    [19] S. Philippot, J. P. Korb, D. Petit. Analysis of Microporosity and Setting of Reactine Powder Concrete by Proton Nuclear Relaxation[J]. Magnetic Resonance Imaging, 1998, 16(5-6): 515-519.
    [20] P. Richard. Reactive Powder Concretes, a New Ultra-High-Strength Cementitious Material[C]. Proceedings of the 4th International Symposium on Utilization of High-Performance Concrete, Paris, 1996: 1343-1349.
    [21] N. Roux, C. Andrade. Experimental Study of Durability of Reactive Powder Concretes[J]. Journal of Materials in Civil Engineering, 1996, 8(1): 1-6.
    [22] P. Richard, M. Cheytezy. Reactive Powder Concrete with High Ductility and 200~800Mpa Compressive Strength[J]. ACI Sp144, 1997: 507-518.
    [23]张明波.基于承载力控制的预应力RPC梁设计理论研究[D].北京:北京交通大学博士论文,2009:6~20.
    [24]覃维祖,曹峰.一种超高性能混凝土—活性粉末混凝土[J].工业建筑,1999,29(4):16-18.
    [25] V. Matte, M. Moranville. Durability of Reactive Powder Composites: Influence of Silica Fume on the Leaching Properties of Very Low Water/Binder Pastes[J]. Cement & Concrete Composites, 1999, 21: 1-9.
    [26] P. C. Aitcin, P. Richard. The Pedestrian/Bikeway Bridge of Sherbrooke[C]. 4th International Symposium on Utilization of High Strength/High performance concrete, Paris, 1996: 1399-1403.
    [27] C. Dauriac. Special Concrete May Give Steel Stiff Competition. Seattle Daily Journal of Commerce, 1997.
    [28] E. Dallaire, P. C. Aitcin, M. Lachemi. Reactive Powder Concrete. Construction Canada, January/February, 1998: 6-9.
    [29] Gilliland, K. Scott. Reactive Powder Concrete (RPC), a New Material for Prestressed Concrete Bridge Girders[C]. Structures Congress-Proceedings 1, 1996, Sponsored by: ASCE: 125-132.
    [30] W. M. Dowd, C. E. Dauriac. Reactive Powder Concrete[J]. Construction Specifier, 1996, 49(12): 47-52.
    [31] E. Dallaire, P. C. Aitcin, M. Lachemi. High-Performance Powder. Civil Engineering (New York), 1998, 68(1), ASCE: 48-51.
    [32] O. Bonneau, M. Lchemi, E. Dallaire, J. Dugat, P. C. Aitcin. Mechanical Properties and Durability of Two Industrial Reactive Powder Concretes[J]. ACI Materials Journal, 1997, 94(4), American Concrete Inst: 286-290.
    [33] B. Fortner. Fhwa Gives Superior Marks to Concrete Bridge Girder[J]. Civil Engineering Magazine, 2001, 71(10): 12-13.
    [34] G. Brouwer. Bridge to the Future[J]. Civil Engineering Magazine, 2001, 71(11): 14-18.
    [35] Y. B. Pierre, M. C. Precast. Prestressed Pedestrian Bridge-World's First Reactive Powder Concrete Structure[J]. PCI Journal, 1999, 40(5): 60-71.
    [36] B. Behloul, K. C. Lee, R. Ductal. Seonyu Footbridge[J]. Structure Concrete, 2003, 4(4): 195-201.
    [37] C. Brian, C. Gordan. The Worlds First Ductal Road Bridge Shepherds Gully Creek Bridge[C]. CIA 21st Biennial Conference, Brisbane, 2003: 1-11.
    [38] D. Bierwagen, A. A. Hawash. Ultra High Performance Concrete Highway Bridge[C]. Proceeding of the 2005 Mid-Continebt Transportation Symposium, Iowa, 2005: 1-14.
    [39]闫光杰,阎贵平,方有亮. RPC200人行道板抗弯承载力试验研究[J].中国安全科学学报,2004(2):87-90.
    [40]毕巧巍,杨兆鹏.活性粉末混凝土的研究与应用概述[J].山西建筑,2008,34(17):5-6.
    [41]颜祥程,许金余,段吉祥,冷冰林.超高强活性粉末混凝土的抗侵彻特性数值仿真研究[J].弹箭与制导学报,2009,29(6):103-106.
    [42]陈万祥,郭志昆.活性粉末混凝土基表面异形遮弹层的抗侵彻特性[J].爆炸与冲击,2010,30(1):51-57.
    [43] H. Kolsky. An Investigation of the Mechanical Pproperties of Materials at Very High Rates of Loading[J]. Proc. R. Soc. B, 1949, 62: 676-700.
    [44]王礼立.应力波基础[M].北京:国防工业出版社,第2版,2005:1-60.
    [45] F. Pervin, W. W. Chen. Dynamic Mechanical Response of Bovine Gray Matter and White Matter Brain Tissues under Compression[J]. Journal of Biomechanics, 2009, 42(6): 731-735.
    [46] J. Bhargava, A. Rhenstrom. Dynamic Strength of Polymer Modified and Fiber-Reinforced Concretes[J]. Cement and Concrete Research, 1977, 7: 199-208.
    [47] C. A. Ross, P. Y. Thompson, J. W. Tedesco. Split-Hopkinson Pressure Bar Tests on Concrete and Motar in Tension and Compression[J]. ACI Material Journal, 1989, 86(5): 475-481.
    [48]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击,2002,22(3):242-246.
    [49]陈德兴,胡时胜,张守保等.大尺寸hopkinson压杆及其应用[J].实验力学,2005,20(3):398-402.
    [50] Z. Li, J. Lambros. Determination of the Dynamic Response of Brittle Composites by Using Hopkinson Pressure Bar[J]. Composites science and technology, 1999, 59: 1097-1107.
    [51]胡时胜.研究混凝土材料动态力学性能的实验技术[J].中国科学技术大学学报, 2007, 37(10): 1312-1319.
    [52]巫绪涛.钢纤维高强混凝土动态力学性质的研究[D].安徽:中国科学技术大学博士学位论文,2006:107-133.
    [53]刘孝敏,胡时胜.应力脉冲在变截面shpb锥杆中的传播特性[J].爆炸与冲击,2000,20(3):110-114.
    [54] J. C. Gong, L. E. Malvern, D. A. Jenkins. Dispersion Investigation in the Split Hopkinson Pressure Bar[J]. Journal of Engineering Materials and Technology, 1990, 112: 309-314.
    [55] H. Zhao, G. Gary. On the Use of Shpb Techniques to Determine the Dynamic Behavior of Materials in the Range of Small Strains[J]. International Journal of Solids and Structures, 1996, 33(23): 3363-3375.
    [56] H. Zhao. A Study on Testing Techniques for Concrete-Like Materials under Compressive Impact Loading[J]. Cement and Concrete Composites, 1998, 20: 293-299.
    [57] P. S. Follansbee, C. Frantz. Wave Propagation in the Split Hopkinson Pressure Bar[J]. Journal of Engineering Materials and Technology, 1983, 105: 61-66.
    [58] D. J. Frew, M. J. Forrestal, W. Chen. Pulse Shaping Techniques for Testing Brittle Materials with a Split Hopkinson Pressure Bar[J]. Experimental Mechanics, 2002, 42: 93-106.
    [59] W. Chen, B. Song, etal. Dynamic Small Strain Measurements of a Metal Specimen with a Split Hopkinson Pressure Bar[J]. Experimental Mechanics, 2003, 43: 20-23.
    [60]周凤华,王礼立,胡时胜.高聚合SHPB试验中试件早期应力不均匀性的影响[J].实验力学,1992,7(1):23-29.
    [61]孟益平,胡时胜.混凝土材料冲击压缩试验中的一些问题[J].实验力学, 2003, 18(1): 106-112.
    [62] F. Bauer. Method and Device for Polarizing Ferroelectric Materials. United States Patent: 4611260. 1986,9.
    [63]刘孝敏,胡时胜.大直径shpb弥散效应的二维数值分析[J].实验力学,2000,15(4):371-376.
    [64]董钢,巫绪涛,杨伯源,李和平.直锥变截面hopkinson压杆实验的数值模拟[J].合肥工业大学学报(自然科学版),2005,28(7):795-798.
    [65] P. Verleysen, J. Degrieck. Non-Homogeneous and Multi-Axial Stress Distribution in Concrete Specimens During Split Hopkinson Tensile Tests[J]. Computers and Structures, 2000, 77(6): 669-676.
    [66] Q. M. Li, H. Meng. About the Dynamic Strength Enhancement of Concrete-Like Materials in a Split Hopkinson Pressure Bar Test[J]. International Journal of Solids and Structures, 2003, 40: 343-360.
    [67]巫绪涛,杨伯源,李和平,董钢.大直径shpb装置的数值模拟及实验误差分析[J].应用力学学报,2006,23(3):431-435.
    [68]孙善飞,巫绪涛,李和平,孟益平. Shpb实验中试样形状和尺寸效应的数值模拟[J].合肥工业大学学报(自然科学版),2008,31(9):1509-1512.
    [69] T. J. Holomquist, G. R. Johnson, W. H. Cook. A Computational Constitutive Model for Concrete Subjective to Large Strains, High Strain Rates, and High Pressures[A]. N. Jackson, S. Dickert. Proceedings of the 14th International Symposium on Ballistics[C]. USA: American Defense Prepareness Association. 1993: 591-600.
    [70]王勇华,袁玉娟. RPC材料Hopkinson压杆冲击压缩试验的数值模拟与分析[J].建筑与结构设计. 2007, 8: 34-38.
    [71]曹吉星,陈虬,张吉萍.混凝土SHPB试验的数值模拟及应力均匀性[J].西南交通大学学报,2008,43(1):67-70.
    [72]张圆,洪志权,董新龙.大尺寸混凝土一维动态拉伸实验及其数值分析[J].宁波大学学报(理工版),2009,22(1):107-111.
    [73]巫绪涛,孙善飞,李和平.用HJC本构模型模拟混凝土SHPB实验.爆炸与冲击,2009,29(2):137-142.
    [74]李耀,李和平,巫绪涛.混凝土HJC动态本构模型的研究.合肥工业大学学报(自然科学版). 2009,32(8):1244-1248.
    [75] B. T. Scott, R. Park, M. J. N. Priestley. Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates[J]. ACI journal,1982, 79(10): 13-27.
    [76] W. H. Dilger, R. Koch, R. Kowalczyk. Ductility of Plain and Confined Concrete under Different Strain Rates[J]. ACI journal, 1984, 81(1): 73-81.
    [77] P. Soroushian, K. B. Choi, A. Abdulaziz. Dynamic Constitutive Behavior of Concrete[J]. ACI journal, 1986, 83(26): 251-259.
    [78]朱兆祥,徐大本,王礼立.环氧树脂在高应变率下的热粘弹性本构方程和时温等效性[J].宁波理工大学学报(理工版),1988,1:58-68.
    [79]周风华,王礼立,胡时胜.有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J].爆炸与冲击,1992,12(4):333-342.
    [80]李为民,许金余.玄武岩纤维混凝土的冲击力学行为及本构模型[J].工程力学,2009,26(1):86-91.
    [81] S. W. Park, Y. R. Kim, R. A. Schapery. A Viscoelastic Continuum Damage Model and Its Application to Uniaxial Behavior of Asphalt Concrete[J]. Mechanics of Materials, 1996, 24: 241-255.
    [82]商霖,宁建国.强冲击载荷下混凝土动态本构关系[J].工程力学,2005,22(2):116-119.
    [83] L. E. Malvern. The Propagation of Longitudinal Waves of Plastic Deformation in Bar of Material Exhibiting a Strain-Rate Effect[J]. Journal of Applied Mechanics, ASME, 1951, 18: 203-208.
    [84] F. Perzyna. Fundamental Problents in Viscoplasticity[J]. Advances in Applied Mechanics, 1966, 9: 243-377.
    [85] N. Bicanic, O. C. Zienckiewicz. Constitutive Model for Concrete under Dynamic Loading[J]. Earthquake Engineering and Structural Dunamics, 1983, 11: 689-711.
    [86] N. Burlion, F. Gatuingt, etc. Compaction and Tensile Damage in Concrete: Constitutive Modeling and Application to Dynamic[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183: 291-308.
    [87] F. Gatuingt, G. Piyaudier-Gabot. Coupled Damage and Plasticity Modeling in Transient Dynamic Analysis of Concrete[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 1-24.
    [88]陈江瑛,黄旭升,王礼立.混凝土的动态损伤演化[J].宁波大学学报(理工版),2000,13(增刊):170-173.
    [89]李庆斌,张楚汉,王光纶.单压状态下混凝土的动力损伤本构模型[J].水利学报. 1994(3): 85-89.
    [90] J. Eibl, B. Schmidt-Hurtienne. Stress Rate Sensitive Constitutive Law for Concrete[J]. Journal of Engineering Materials, ASCE, 1999, 125(12): 1411-1420.
    [91] U. Schneider. Concrete at High Temperatures-a General Review[J]. Fire Safety Journal, 1988, 13(1):55-68.
    [92]陆州导.钢筋混凝土梁对火灾反应的分析[D].上海:同济大学博士学位论文,1989:1-40.
    [93] I. Janotka, L. Bage. Pore Structures, Permeabilities, and Compressive Strengths of Concrete at Temperatures up to 800℃[J]. ACI Materials Journal, 2002, 99(2): 196-200.
    [94] T. L. Chin, S. H. Jong. Fire Performance of Highly Flowable Reactive Powder Concrete[J]. Construction and Building Materials, 2009, 23: 2072-2079.
    [95] X. Luo, W. Sun, Y. N. Chan. Effect of Heating and Cooling Refimes on Residual Strength and Microstructure of Normal Strength and High-Performance Concrete[J]. Cement and Concrete Research, 2000, 30(3): 379-383.
    [96] C. S. Poon, Z. H. Shui, L. Lam. Compressive Behavior of Fiber Reinforced High-Performance Concrete Subjected to Elevated Temperatures[J]. Cement and Concrete Research, 2004, 34(12): 2215-2222.
    [97] J. Z. Xiao, H. Falkner. On Residual Strength of High-Performance Concrete with and without Polypropylene Fibers at Elevated Temperatures[J]. Fire Safety Journal, 2006, 41(2): 115-121.
    [98]王珍,张泽江,祝杰.高温后掺防腐剂c35高性能混凝土剩余抗压强度试验研究[J].混凝土, 2010(9): 32-34.
    [99] H. Tanyildizi, A. Coskun. The Effect of High Temperature on Compressive Strength and Solitting Tensile Strength of Structural Lightweight Concrete Containing Fly Ash[J]. Construction and Building Materials, 2008, 22(11): 2269-2275.
    [100]A. Lau, M. Anson. Effect of High Temperatures on High Performance Steel Fibre Reinforced Concrete[J]. Cement and Concrete Research, 2006, 36: 1698-1707.
    [101]覃丽坤.高温及冻融循环后混凝土多轴强度和变形试验研究[D].大连:大连理工大学博士学位论文,2003:1-10.
    [102]孟宏睿.高温作用后混凝土力学性能及无损检测的试验研究[D].西安:西安建筑科技大学硕士学位论文,2005:18-21.
    [103]徐彧,徐志胜,朱玛.高温作用后混凝土强度与变形试验研究[J].长沙铁道学院学报,2000,18(2):13-17.
    [104]贾锋.受高温后混凝土抗压强度的试验研究[J].青岛建筑工程学院学报,1997,18(1):10-14.
    [105]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社, 2003:40-50.
    [106]何振军.高温前后高强混凝土多轴力学性能试验研究[D].大连:大连理工大学博士学位论文,2008:55-60.
    [107]蒋玉川.普通强度高性能混凝土的高温性能特征[D].北京:北京交通大学硕士学位论文,2007:67-73.
    [108]陈强.高温对活性粉末混凝土高温爆裂行为和力学性能的影响[D].北京:北京交通大学硕士学位论文,2010:47-53.
    [109]王峥.混凝土高温后力学性能的试验研究[D].大连:大连理工大学硕士学位论文,2010:49-54.
    [110]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003:10-25.
    [111]阎继红,林志伸,胡云昌.高温作用后混凝土抗压强度的试验研究[J].土木工程学报,2002,35(5):17-19.
    [112] C. S. Poon, S. Azhar, M. Anson, Y. L. Wong. Strength and Durability Recovery of Fire-Damaged Concrete after Post-Fire-Curing[J]. Cement and Concrete Research, 2001, 31(9): 1307-1318.
    [113] R. Sarshar, G. A. Khoury. Material and Environmental Factors Influencing the Compressive Strength of Unsealed Cement Paste and Concrete at High Temperatures[J]. Magazine of Concrete Research, 1993, 45(162): 51-61.
    [114]覃丽坤,宋玉普,陈浩然等.高温后混凝土在双轴拉压下的强度和变形试验研究[J].工程力学,2006,23(1):112-116.
    [115] G. F. Peng. Evaluation of Fire Damage to High Performance Concrete[D]. PhD thesis, Hong Kong: Hong Kong Polytechnic University, 1999:5-20.
    [116]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2002:20-40.
    [117] Y. F. Chang, Y. H. Chen, M. S. Sheu, etal. Residual Stress-Strain Relationship for Concrete after Exposure to High Temperatures[J]. Cement and Concrete Research, 2006, 36(10): 1999-2005.
    [118] K. D. Hertz, L. S. Sorensen. Test Method for Appalling of Fire Exposed Concrete[J]. Fire Safety Journal, 2005, 40(5): 466-476.
    [119] P. Kalifa, G. Chene, C. Galle. High-Temperature Behavior of Hpc with Polypropylene Fibers from Spalling to Microstructure[J]. Cement and Concrete Research, 2001, 31: 1487-1499.
    [120]Y. Anderberg. Spalling Phenomena of Hpc and Oc. National Institute of Standards and Technology. International Workshop on Fire Performance of High-Strength Concrete. Gaithersburg, Md: Nist Special Publication 919, 1997, B.3: 69-73.
    [121]张伟.聚丙烯纤维高强混凝土的力学性能试验研究[D].太原:太原理工大学硕士学位论文,2010:30-40.
    [122]G. F. Peng, W. W. Yang, J. Zhao, Y. F. Liu, S. H. Bian, L. H. Zhao. Explosive Spalling and Residual Mechanical Properties of Fiber-Toughened High-Performance Concrete Subjected to High Temperatures[J]. Cement and Concrete Research, 2006, 36(4): 723-727.
    [123]A. N. Noumowe, R. Siddique, G. Debicki. Permeability of High Performance Concrete Subjected to Elevat Temperature (600℃)[J]. Construction and Building Materials, 2009, 23: 1855-1861.
    [124]B. Chen, J. Liu. Residual Strength of Hybrid-Fiber-Reinforced High-Strength Concrete after Exposure to High Temperatures[J]. Cement and Concrete Research, 2004, 34: 1065-1069.
    [125]朱江.聚丙烯纤维与高强高性能混凝土[J].混凝土,2000,5:49-51.
    [126]时术兆,齐砚勇,严云,潘思娟.纤维增强活性粉末混凝土高温力学性能的实验研究[J].材料导报,2009,23(5):65-68.
    [127]段旭杰.钢纤维混凝土的高温爆裂行为与渗透性演变特征[D].北京:北京交通大学硕士学位论文,2008:29-40.
    [128]董衍伟.混杂纤维混凝土高温和碳化性能试验研究[D].泉州:华侨大学硕士学位论文,2009:31-50.
    [129]程龙.混杂纤维混凝土高温后力学性能试验研究[D].武汉:武汉理工大学硕士学位论文,2007:27-40.
    [130]W. Sun, H. S. Chen, X. Luo, H. P. Qian. The Effect of Hybrid Fibers and Expansive Agent on the Shrinkage and Permeabiliby of High-Performance Concrete[J]. Cement and Concrete Research, 2001, 31: 595-601.
    [131]C. E. Majorana, F. Pesavento. Damage and Spalling in Hp and Uhp Concrete at High Temperature(Abstract). Structures and Materials, V6, Damage and Fracture Mechanics VI: Computer Aided Assessment and Control, 2000: 105-117.
    [132]U. Schneider, U. Diederichs, J. Horvath. Behaviour of Ultra High Performance Concrete(Uhpc) under Fire Exposure(Abstract). Beton-und Stahlbetonbau, 2003, 98(7): 408-417.
    [133]C. T. Liu, J. S. Huang. Fire Performance of Highly Flowable Reactive PowderConcrete[J]. Construction and Building Materials, 2009, 23(5): 2072-2079.
    [134]刘红彬,李康乐,鞠杨等.钢纤维活性粉末混凝土的高温爆裂试验研究[J].混凝土,2010,(8):6-8.
    [135]R. Felicetti, P. G. Gambarova, M. P. Natali-Sora, G. A. Khoury. Mechanical Behaviour of Hpc and Uhpc in Direct Tension at High Temperature and after Cooling[C]. Proc. 5th Symposium on Fibre-Reinforced Concrete BEFIB2000, Lyon (France), 2000: 749-758.
    [136]C. S. Poon, Z. H. Shui, L. Lam. Effect of Microstructure of Itz on Compressive Strength of Concrete Prepared with Recycled Aggregates[J]. Construction and Building Materials, 2004, (18): 461-468.
    [137]W. Y. Tam-Vivian. Carbonation around near Aggregate Regions of Old Hardened Concrete Cement Paste[J]. Cement and Concrete Research, 2005, 35(6): 1180-1186.
    [138]W. M. Lin, T. D. Lin. Microstructures of Fire-Damaged Concrete[J]. ACI Material, 1996, 93(3): 199-205.
    [139]X. Liu, G. Ye, G. D. Schutter, Y. Yuan, L. Taerwe. On the Mechanism of Polypropylene Fibres in Preventing Fire Spalling in Self Compacting and High Performance Cement Paste[J]. Cement and Concrete Research, 2008, 38: 487-499.
    [140]周茗如,孙庆霞,曹万智,薛海儒,乔宏霞.高温后全轻混凝土性能及其微观分析[J].建筑科学,2009,25(9):30-34.
    [141]柳袁叶, G. D. Schutter.高性能混凝土高温爆裂的机理探讨[J].土木工程学报,2008,41(6):61-68.
    [142]刘娟红,宋少民.颗粒分布对活性粉末混凝土性能及微观结构影响[J].武汉理工大学学报,2007,29(1):26-29.
    [143]L. Rayleigh. On Wave Propagated Along the Plan Surface of an Elastic Solid[J]. Proceedings of the London Mathematical Society, 1885, 17: 4-11.
    [144]马宏伟,吴斌.弹性动力学及其数值方法[M].北京:中国建材工业出版社,2000:153-169.
    [145]宗福开.波传播问题中有限元分析的频散特性及离散化准则[J].爆炸与冲击,1984,4(4):16-23.
    [146]U. Zencker, R. Clos. Limiting Conditions for Compression Testing of Flat Specimens in the Split Hopkinson Pressure Bar[J]. Experimental Mechanics, 1998, 39: 343-348.
    [147]H. Kawai. The Piezoelectricity of Polyvinyldene Fluoride[J]. Japanese Journal of Applied Physics, 1969, 8(7): 975-976.
    [148]D. Broussoux, Micheron. Electro-Optic and Elasto-Optic Effects in Polyvinylidene Fluoride[J]. Journal of Applied Physics, 1980, 51(4): 2020-2023.
    [149]G. M. Sessler. Piezoeleetrieity in Polyvinylidene Fluoride[J]. Jounral of the Aeoustieal soeiety of Ameriea, 1981, 70: 1596-1608.
    [150]F. Buaer. Behvaior of Ferroeleetric Cermaics and Pvf2 Polymers under Shock Loadings[A]. Nellis W J, Seaman and Graham R A. Shock Waves in Condensed Matter 1981[C]. USA: American Institute of Physics, Ny, 1982: 251-266.
    [151]F. Buaer. Piezoelectric and Electric Properties of Pvf2 Polymers under Shock Wave Action: Application to Shock Transducers[A]. Asay J R, Graham R a and Staub G K. Shock Waves in Condensed Matter 1983[C]. North Hollnad, 1984: 225-228.
    [152]F. Bauer. Method and Device for Polarizing Ferroelectric Materials[R]. United States Patent: 4611260, 1986, 9.
    [153]F. Bauer, A. Lichtenberger. Use of Pvf2 Shock Gauges for Stress Measurements in Hopkinson Bar[A]. Schmidt S C, Holmes N C. Shock Waves in Condensed Matter-1987[C]. United State, 1988: 751-755.
    [154]席道瑛,郑永来. PVDF压电计在动态应力测量中的应用[J].爆炸与冲击,1995,15(2):174-178.
    [155]巫绪涛,胡时胜,田杰. PVDF应力测量技术及在混凝土冲击实验中的应用[J].爆炸与冲击,2007,27(5):141-145.
    [156]何峰,黄政宇.活性粉末混凝土原材料及配合比设计参数的选择[J].新型建筑材料,2007,(3):74-77.
    [157]吕天启,赵国藩,林志伸等.高温后静置混凝土的微观分析[J].建筑材料学报,2003,6(2):135-141.
    [158]M. Cheyrezy, V. Maret, L. Frouin. Microstructural Analysis of RPC (Reactive Powder Concrete)[J]. Cement and Concrete Research, 1995, 25(7): 1491-1500.
    [159]董毓利.混凝土结构的火安全设计[M].北京:科学出版社,2001:10-30.
    [160]方岱宁,周储伟.有限元计算细观力学对复合材料力学行为的数值分析[J].力学进展,1998,28(2):173-188.
    [161]张江涛.颗粒增强金属基复合材料动态力学性能的实验研究与数值模拟[D].武汉:武汉理工大学博士学位论文,2007:1-25.
    [162]陈桂斌,王立成.轻骨料混凝土应力-应变全曲线的数值模拟[J].建筑材料学报,2008,11(2):138-143.
    [163]夏晓舟.混凝土细观数值仿真及宏细观力学研究[D].南京:河海大学博士学位论文,2007:10-30.
    [164]庄惠平,李经纬,李艳丽,吴理更.纤维混凝土动力学性能试验研究[J].混凝土,2008,2:94-96.
    [165]P. H. Bischoff, S. H. Perry. Compression Behavior of Concrete at High Strain Rates[J]. Materials and Structures, 1991, 24: 425-450.
    [166]夏昌敬,谢和平,鞠杨.孔隙岩石的SHPB试验研究[J].岩石力学与工程学报,2006,25(5):896-900.
    [167]冯乃谦.实用混凝土大全[M].北京:科学技术出版社,2001:20-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700