用户名: 密码: 验证码:
磨细固硫渣作为大流动性混凝土掺合料试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大流动性混凝土已在实际工程中得到广泛应用。目前大流动性混凝土研究热点之一是开发新型掺合料。矿物掺合料的应用不仅可以改善混凝土的工作性和耐久性,提高混凝土强度,而且节约了水泥,具有一定的经济和环境效益。因此,矿物掺合料在混凝土中的应用具有广阔的前景。流化床燃烧技术是近年来发展起来的一种高效、低污染的清洁燃煤技术。但是
     由于人们对流化床燃煤的副产物—固硫渣的认识不足,造成固硫渣多是以堆积的方式处理,造成资源的大量浪费,并带来了环境污染。本文通过试验,将磨细的固硫渣作为一种混凝土新型掺合料,等量取代水泥,研究了其对大流动性混凝土拌合物的工作性、硬化混凝土抗压强度、干燥收缩和主要耐久性能的影响。得出结论如下:
     (1)由于固硫渣表面疏松多孔,使其具有较高的需水性,改善了大流动性混凝土拌合物的黏聚性,但是混凝土拌合物的坍落度略有降低,通过适当调整高效减水剂掺量就能满足大流动性混凝土坍落度的要求。
     (2)由于磨细固硫渣具有自硬性和火山灰活性,磨细固硫渣等量取代水泥后,早期抗压强度(3d和14d)增加缓慢,而后期抗压强度(28d、90d和180d)增加显著,这种趋势随着磨细固硫渣掺量增加而增加。由此导致磨细固硫渣大流动性混凝土28d抗压强度与取代前混凝土抗压强度相差不多,而多数大流动性磨细固硫渣混凝土后期抗压强度(90d和180d)赶上甚至超过了取代前混凝土抗压强度。
     (3)由于磨细固硫渣含有一定量硫酸盐(SO3含量约为6%),作为大流动性混凝土的掺合料,它的掺入能有效降低混凝土的干燥收缩率,且收缩率随着掺量的不断增加而逐渐降低。
     (4)由于磨细固硫渣火山灰活性,增加了混凝土密实度,大流动性磨细固硫渣混凝土抗水渗透性能高;磨细固硫渣等量取代水泥后,混凝土抗氯离子渗透性能得到了提高,提高程度随磨细固硫渣掺量的增加而增加。磨细固硫渣二次反应降低了氢氧化钙的含量,导致磨细固硫渣等量取代水泥后,混凝土抗碳化性能降低,降低程度随着磨细固硫渣掺量的增加而增加;但56d的大流动磨细固硫渣混凝土最大碳化深度远小于混凝土建筑结构要求的最小保护层厚度。
     由此可见,磨细固硫渣的掺入,改善了大流动性混凝土拌合物的工作性,可以提高大流动性混凝土的后期强度,在控制水胶比和掺合料掺量前提下,可提高混凝土的耐久性。
High-flowing concrete has wide application in practical projects. Development new material is a hot spots at present .The workability and durability has been improved by admixtures, and can saving cement, have certain economic benefits. The admixtures in concrete application has broad prospects.
     Fluidized-bed combustion technology is a high efficient, low pollution develop clean-coal combustion technology. But the fluidized bed combustion ashes was researched insufficiency, lack of awareness for fluidized bed combustion ashes, the way of deal with fluidized bed combustion ashes is stack. So caused the waste and environment pollution. The article through experimental study on ground fine fluidized bed combustion ashes-a new admixtures, replace cement for high-flowing concrete ,about the workability, compressive strength, shrinkage and durability. Some conclusions:
     (1)Because the surface of ground fine fluidized bed combustion ashes is loose, has higher hygroscopicity, the coherency of concrete was improved, but the slump of concretes mix has reduced slightly, through adjustment the amount of highly effective water to meet the request of slump.
     (2) Because degrades in size the solid sulfur dregs to have self-hardening and pozzolanic properly, after replace cement at same weight, the compressive strength (3d and 14 d)was increased slowly at early time, the compressive strength (28d, 90d and 180 d) was increased obviously at later time .This tendency is increases with the quantity of degrades in size the solid sulfur dregs to mix to increase. The disparity of datum concrete and high-flowing concrete with ground fine fluidized bed combustion ashes at 28d compressive strength is not obvious, the compressive strength of datum concrete is bigger than the compressive strength of high-flowing concrete with ground fine fluidized bed combustion ashes at later time.
     (3)Ground fine fluidized bed combustion ashes has a litter of sulphate(the amount of SO3 about 6%), as a new kind of admixtures of high-flowing concrete admixtures, the shrinkage of concrete was reduced effectively and with the amount of admixture increases,the shrinkage was reduced gradually.Because ground fine fluidized bed combustion ashes has pozzolanic properly,the compactness of concretes enhance, the anti-water percolation of high-flowing concrete with groun fine fluidized bed combustion ashes is high-level ,after replace cement at same weight, anti-chloride ion penetration has been to enhance,the level enhance with the amount of groun fine fluidized bed combustion ashes increased. Because the amount of Ca(oH)_2 reduce in second hydration, anti-carbonation has been down after replace cement at same weight,the tendency was increased with the quantity of degrades in size the solid sulfur dregs to mix to increase.But the 56d carbonization depth smaller than the smallest concrete cover depth of request for structure.
     Therefore, the ground fine fluidized bed combustion ashes helpful for improving the workability of high-flowing concrete, can improve long-term strength of concrete, the durability of concrete was improve by control water cement ratio and amount of admixture can.
引文
[1]杨家才.关于大流动性高强混凝土的研究及应用[D].西安建筑科技大学.2008.
    [2]吴晓泉.继往开来与时俱进—国内混凝土技术的现状与展望[J].混凝土,2001(11),:39-41.
    [3]李继业,刘福胜.新型混凝土实用技术手册[M],化学工业出版社,65-66.
    [4]赵若鹏,吴配刚,郭自力,刘元鹤.掺粉煤灰的80Map高强大流动性混凝土研究[J].工业建筑,2002(2):12-14.
    [5]赵若鹏,郭自力,刘元鹤.C110高强度大流动性混凝土研究[J].工业建筑,2006(36):833-834.
    [6]吴建华.高强高性能大掺量粉煤灰混凝土研究[D].重庆大学, 2004.
    [7]邓初首.粉煤灰在大流动性混凝土中的应用[J].粉煤灰,2004(3):16-17.
    [8]鲁俊蓉.c60大流动性高性能混凝土研究[J].陕西水利.
    [9]王长瑞,高振国.大流动性粉煤灰混凝土配置技术研究[J].粉煤灰综合利用,2008(1):14-17.
    [10] Takada T, Hashimoto I, Tsutsumi K.Utilization of coal ash from fluidized bed combustion boilers as road base material[J]. Resources Conservation and Recycling, 1995,14(2):69–77.
    [11]Pandey K, Canty GA, AtalayA. Fluidized bed ash as a soil stabilizer in highway construction[J]. Geotechnical Special Publications, 1995,46(2):1422–1436.
    [12]Havlica J, Brandstetr J, Odler I.Possibilities of utilizing solid residues from pressured fluidized bed coal combustion (PSBC) for the production of blended cements[J]. Cement and Concrete Research.1998, 28(2):299–307.
    [13]Nader G, Garcia MCA. CoMPacted non-cement concrete utilizing fluidized bed and pulverized coal combustion by-products[J]. ACI Materials Journal, 1998, 95(5): 582–591.
    [14]梁文泉.固硫渣混合水泥的研究及钙矾石相得定量分析[J].武汉水利电力大学学报,1994(10).
    [15]赵风清,刘鹏蛟,武振刚,固硫灰渣水泥的开发[J].粉煤灰综合利用,2006(6):39-40.
    [16]Demir I, Hughes R E, De Maris P J.Formation and use of coal combustion residues from three types power plants burning Illinois coals[J].Fuel, 2001, 80(11): 1659–1673.
    [17]Siriwardane H J, Ziemkiewicz P F, Kannan R S S. Use of waste materials for control of acidmine drainage and subsidence[J].Journal of Environmental Engineering, 2003, 129(10):910–915.
    [18]Rio S, Delebarre A. Removal of mercury in aqueous solution by fluidized bedplant flyash[J].Fuel, 2003, 82(2): 153–159.
    [19]郑洪伟,王智,董孟能.流化床燃煤固硫灰渣的综合利用[J].粉煤灰综合利用,2004 (4):53–56.
    [20]万百千,路新瀛.用固硫渣作土壤固化剂的可行性研究[J].粉煤灰综合利用,2002 (3):21–22.
    [21]宋远明,钱觉时,王智等.固硫灰渣对水泥胶砂耐久性影响研究[J].建筑材料学报,2010(1):66-69.
    [22]钱觉时,郑洪伟,宋远明等.流化床燃煤固硫灰渣的特性[J].硅酸盐学报,2008(10):1396-1400.
    [23]王智,钱觉时,汪宏涛.流化床燃煤固硫渣的物理特性[J].粉煤灰综合利用, 2003(5):32-33.
    [24]王智,钱觉时.流化床燃煤固硫渣—粉煤灰砂浆的研制[J].新型建筑材料,2003(11),43-45.
    [25]王智,钱觉时.流化床燃煤固硫渣混凝土的试验研究[J].粉煤灰综合利用,2002(5):19-22.
    [26]杨娟.固硫灰渣特性及其作为混凝土掺合料的研究[D].重庆大学,2006.
    [27]王智.流化床燃煤固硫渣特性及其建材资源化研究[D].重庆大学,2002.
    [28]陈建奎.混凝土外加剂原理与应用[M].北京:中国计划出版社, 2006.
    [29]姚燕,王玲,田培.高性能混凝土[M].北京:化学工业出版社, 2006.
    [30]康忠寿.硅灰和粉煤灰双掺技术配制高强度大流动性混凝土[J].浙江交通职业技术学院学报, 2005(6):13-15.
    [31]黄士元,蒋家奋,杨南如等.近代混凝土技术[M].西安:陕西科学技术出版社,1998.
    [32]乔凤蛟.掺粉煤灰高性能混凝土收缩性能研究[D].哈尔滨工业大学, 2007.
    [33]周艳.大掺量粉煤灰混凝土的干燥收缩性能研究[D].西北农林科技大学, 2010.
    [34]杨静.低强度自密实混凝土及其收缩性能的试验研究[D].河北农业大学,2008.
    [35]张海涛.复合矿物掺合料对混凝土收缩影响的研究[D].哈尔滨工业大学, 2007.
    [36]翁家瑞.高性能混凝土的干燥收缩和自生收缩试验研究[D].福州大学,2005.
    [37]张风臣.高性能混凝土的收缩和应用研究[D].兰州理工大学, 2005.
    [38]程云虹,闫俊,刘斌等.粉煤灰混凝土碳化性能试验研究[J].公路,2007(12):160-162.
    [39]宋少民,李红辉,邢峰.大掺量粉煤灰混凝土抵抗碳化和钢筋锈蚀研究[J].武汉理工大学学报,2008(8).
    [40]吴克刚,谢友均,丁薇薇等.粉煤灰混凝土的抗碳化性能[J].腐蚀与防护,2008(10): 596-598.
    [41]石明霞,龙广成.中等强度自密实混凝土的碳化性能[J].新型建筑材料,2009(5):1-5.
    [42]白柯,杨元霞.碳化作用对混凝土强度及氯离子渗透性能的影响[J].粉煤灰综合利用, 2008(6):23-25.
    [43]张新华,准确检测混凝土抗渗性能的思考[J].上海计量测试,2004(2):18-20.
    [44]易成,孙和平,孙华飞等。混凝土抗渗性能研究的现状与进展[J].混凝土,2003(2):7-11.
    [45]杨进忠,朱付广,张立勇等.高性能混凝土抗渗性的试验研究[J].混凝土,2006(9):75-76.
    [46]刘数华,方坤河,曾力等.粉煤灰对混凝土抗渗性能的影响[J].粉煤灰综合利用,2004(5):30-31
    [47]王宝民,刘伟.偏高岭土高性能混凝土氯离子抗渗性试验研究[J].防震减灾工程学报,2010(30):369-372.
    [48]胡红梅.矿物功能材料对混凝土氯离子渗透性影响的研究[D].武汉理工大学,2002.
    [49]朱宏军,程海丽,姜德民.特种混凝土和新型混凝土[M].北京:化学工业出版社,2005.
    [50]西德尼·明德斯,弗朗西斯·杨,戴维·达尔文.混凝土[M].北京:化学工业出版社, 2005.
    [51]《普通混凝土长期性能和耐久性试验方法标准》(GB/T 50082—2009).北京:中国建筑工业出版社,2009.
    [52]董鹏程.自密实混凝土优化配制及磨细固硫渣对其性能影响[D].河北农业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700