用户名: 密码: 验证码:
木质纤维素降解菌产糖特性及作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了减轻国内能源产业对国外进口燃油的依赖,木质纤维素能源化产业对传统的石油信赖型能源模式的转型提供了一种可持续发展的能源发展模式。木质纤维素能源产业的发展将对我国的经济增长,国家能源安全及环境质量产生深远的影响。当前木质纤维素生物能源产业的已经发展到瓶颈阶段,如何高效地降解木质纤维素释放出高质量及产能潜力大的糖类进行后续生物能源的生产是木质纤维素能源化的限速步骤。木质纤维素传统的化学糖化模式使得糖化成本居高不下难以投入实际生产应用,而生物糖化模式基于其低能耗、环境友好、工艺简单等特性成为当前木质纤维素糖化研究前沿。本研究针对高效降解木质纤维素产糖的微生物,从微生物降解木质纤维素产糖特性出发,结合微生物糖化水解液的产能潜力分析,选取降解木质纤维素产糖能力较高的菌株作为研究对象,利用基因组、转录组及蛋白质组分析手段对该微生物降解木质纤维素的糖化机制进行全面的解析,从系统生物学的角度解析降解木质纤维素产糖及高木质纤维素降解酶活的内在联系。
     优化了中温条件下降解木质纤维素产糖的细菌Shigella flexneri G3降解纤维素的产糖条件并对G3降解木质纤维素产糖能力进行全面的解析。以0.3%的AVICEL为底物,经过60h降解,G3对AVICEL的降解率达到~75%,产物中糖的含量为375mg g~(-1)AVICEL,产糖速率达6.25mg g~(-1)Avicel h~(-1),糖的组成为纤维二糖(50%)和葡萄糖(30%)。G3是中温条件下降解纤维素产糖效率最高的菌株。这也是关于志贺氏菌株能够降解纤维素产糖的首次报道。
     通过对青霉菌Penicillium expansum YT02降解木质纤维素产糖能力的研究,证实了YT02能够高效地解聚木质纤维素原料产糖。以里氏木霉Trichdermareesei ATCC24449为对照菌株,YT02降解典型的木质纤维素原料的半纤维素酶活性及β-葡萄糖苷酶活性为对照菌株T.reesei的酶活的3倍。YT02的粗酶液对木质纤维素的平均糖化能力达到0.665g g~(-1)底物,除了较商业的纯化的混合酶产品的糖化能力0.7g g~(-1)底物略低外,YT02粗酶液的糖化能力较目前所报道的各类真菌及酶液的糖化能力高。YT02不能降解木质素,因此不能有效地降解木质纤维素高的木材原料。
     采用“低木质素生物质诱导”方法极大地促进了高木质含量木质纤维素原料的糖化。这一方法简要概括为在对高木质素原料采用白腐真菌生物预处理时,在木材原料中添加不同比例的苜蓿,利用其丰富的氮源来维持白腐真菌的生长与代谢并诱导氧物酶(LDPs)的产生,达到快速启动白腐真菌对木质素原料的降解的目的。最终确定橡木原料与苜蓿混合比为5:1,以及松木与苜蓿的混合比为3:1的方式为最佳的生物预处理方式。通过改进以后,木材原料的糖化率较采用酸化汽爆的预处理方法的木材原料的糖化提高了40%。
     通过菌种复配策略探讨了生物糖化液的产能潜力,细菌—细菌复配策略中,高效纤维素糖化菌Shigella flexneri str. G3与纤维素产氢菌Clostridiumacetobutylicum X9,降解AVICEL产氢量达到1.3mol H2(mol glucose)1,纤维素的降解率较C. acetobutylicum X9单独培养培养提高了50%。菌种复配体系还提高木质纤维素生物制氢的底物利用范围,以天然木质纤维素为原料也能够达到较高的产氢量。真菌—真菌复配策略中,酵母菌Candida shehatae CBS5813直接利用木质纤维素经P. expanusm YT02二步升温糖化后得到的水解液产乙醇能力为0.11~0.21g g~(-1)干物质,达到乙醇理论产值的88.2%。通过比较模拟水解性的乙醇产量,发现木质纤维素水解液中的抑制物对产乙醇产量的影响可忽略,发酵液中没有显著的木糖醇积累现象。
     选取降解木质纤维素产糖能力较高的真菌YT02为研究对象,以基因组、转录组及蛋白质组技术为研究手段全面解析了YT02降解木质纤维素产糖机制。基因组研究发现YT02中碳水化合物活性酶(CAZymes)的高丰度与广谱性是YT02较T. reesei更能有效地降解木质纤维素最主要的原因。通过对YT02的糖代谢途径进行解析,发现YT02中葡萄糖代谢途径中己糖激酶HK、磷酸果糖激酶PFK~(-1)和丙酮酸激酶PK基因的低丰度及木糖代谢途径中编码木酮糖激酶(XK)基因的缺失导致的YT02对葡萄糖、木糖代谢利用率低是其对降解纤维素后发生糖“累积”的主要原因。转录组分析揭示了YT02中编码纤维素酶、半纤维素酶及果胶质酶的基因底物诱导下的动态表达差异调空了YT02降解不同木质纤维素原料时酶活性差异。YT02中编码木质纤维素降解酶的基因在复杂底物条件下的高表达水平以及YT02中糖转运蛋白及cellobiose/cellodextrin转运蛋白的高丰度是YT02能够高效地降解木质纤维素为低聚糖及单糖的主要原因。
Bioenergy from lignocellulose offers a great clean sustainable alternative toconventional petroleum-based energy sources which can dramatically impactnational economic growth, national energy security and environmental quality.However, the development of lignocellulose-derived bioenergy is still in its infancy.One of the great challenges is to depolymerize plant materials and release highquality, high quantity sugars for biofuel production. New microbial catalysts foreffectively disrupting plant polymers and efficiently releasing sugars are urgentlyneeded. Therefore, the objective of this study is to obtain and characterize novelfungal strains capable of effectively degrading plant polymers and efficientlyproducing sugars for biofuel production.
     A novel Shigella strain (Shigella flexneri str. G3) showing high cellulolyticactivity under mesophilic, anaerobic conditions was characterized. The bacteriumdisplays effective production of glucose, cellobiose and other oligosaccharides fromcellulose (Avicel PH~(-1)01) at the optimal conditions of40oC and pH6.5.Approximately75%of cellulose was hydrolyzed in the modified ATCC1191medium containing0.3%cellulose, and the oligosaccharide production yield andspecific production rate reached375mg g~(-1)Avicel and6.25mg g~(-1)Avicel h~(-1)after a60-hour incubation, respectively. To our knowledge, this represents the highestoligosaccharide yield and specific rate from cellulose for mesophilic bacterialmonocultures reported so far. The results demonstrate that S. flexneri G3iscapable of rapid conversion of cellulose to oligosaccharides, with potential biofuelapplications under mesophilic conditions.
     We have obtained a novel fungal strain, Penicillium sp. YT02, which is capableof effectively depolymerizing plant materials such as alfalfa,switchgrass, cornstover and wheat straw. The isolated strain can efficiently produce sugars from plantmaterials with the highest realized theoretical sugar yields reported, and is able toproduce30%more sugars than the control fungus, Trichoderma reesei. The averageefficient of saccharificaiton from varied lignocellulosic substrates was amount to0.665g g~(-1)substrates, the highest oligosaccharides producity from raw fungalenzyme.
     An novel bio-delignin approach was proposed that in the presence of low C: Nbiomass, such as alfalfa, an essential nutrient source for high-lignin biomass (high C:N), may improve the decomposition of the high-lignin materials for furtherbioenergy process. In this study, microbial pretreatment with alfalfa woodybiomass mixture system by white-rot P. chrysosprium was able to degrade lignin inhard and soft wood materials and has the potential to be an energy-saving, low cost,simple, two lignocellulosic biomass process simultaneously, and environmentfriendly approach which can reduce the severity of chemical pretreatments. Abalance between lignin degradation and availability of carbohydrates indicates that50g L~(-1)of raw oak biomass and10g L~(-1)of alfalfa and50g L~(-1)of raw pine and15gL~(-1)of alfalfa were the most promising pretreatment, which improve thesaccharification ratio to30%compared with traditional pretreatment methods.
     Bioaugmented fermentation of cellulosic substrates to produce biohydrogenvia co-culture of isolated strains Shigella flexneri str. G3&Clostridiumacetobutylicum X9was investigated. The ability of the selected strains to effectivelyconvert different cellulosic substrates to hydrogen was tested on carboxymethylcellulose (AVICEL), as well as pretreated lignocellulosic material such as Bermudagrass, corn stover, rice straw, and corn cob. Results showed that co-culture ofShigella flexneri str G3and Clostridium acetobutylicum X9efficiently improvedcellulose hydrolysis and subsequent hydrogen production from carboxymethylcellulose. Hydrogen production yield approximately reached1.3mol H2(mol glucose)1, compared to0.32mol H2(mol glucose)1of the X9single culture,while the cellulose degradation efficiency increased by50%. Co-culture alsoefficiently improved hydrogen production from natural lignocellulosic materials(which was even70%-80%higher than mono-culture with X9), and the highestperformance of24.8mmol L~(-1)was obtained on Bermuda grass. The resultsdemonstrate that co-culture of S. flexneri&G3&C. acetobutylicum X9was capableto efficiently enhance cellulose conversion to hydrogen, thus fostering potentialbiofuel applications under mesophilic conditions.
     In addition, the produced sugars were further examined for producing ethanolcoupled with a yeast strain. In this study, with alfalfa and other lignocellulosicsubstrates (except oak tree), the ethanol yields ranged from0.11to0.21g ethanol gbiomass~(-1)after24hrs of fermentation, which corresponds to88.2%of the maximal theoretical value. To the best of our knowledge, this could be the highest efficiencyof ethanol production reported for monocultures of yeast with lignocellulosichydrolysate. These results suggested that the novel fungal isolate, YT02, can serveas an effective microbial catalyst for cellulosic ethanol production, and could be agood source of new enzymes for various industrial applications.
     In order to understand the mechanism that why YT02could produce highactivity enzymes, we sequenced its whole genome sequence and researched itsgenes expression profile of YT02. Consistent with the high saccharificationefficiency, the genome of YT02encodes more carbohydrate-active enzymes(CAZymes) than T. reesei. Less gene numbers encoding HK, PFK-1and PK in EMPpathway and The absence of endocing genes XK in predicted xylose utilizationpathway of YT02was the main reaon why oligosaccharides were “accumulated”during lignocellulosic saccharificaiton. RNA-seq data revealed the abundance ofxylanase and their active expression might attribute to the significantly higherxylanase activity of YT02than T. reesei. The expression of CAZymes genes wassignificantly induced by lingocellulose. Our analysis, coupled with the genomesequence data and RNA-seq data, provides a roadmap for further developingenhanced P. expansum strains for industrial applications such as biofuel production.
引文
[1]郝晓地,王吉敏,曹兴坤.剩余污泥中木质纤维素能源转化潜力分析.环境工程学报[J],2013.32(7):1106-114.
    [2]袁振宏,罗文,吕鹏梅.生物质能产业现状及发展前景.化工进展[J],2009.28(10):1687-1692.
    [3]崔美,黄仁亮,苏荣欣.木质纤维素新型预处理与顽抗特性.化工学报[J],2012.63(3):677-687.
    [4]黄晓璐.治理秸秆焚烧环境污染面临的困局与出路.环境科技[J],2009.22(2):123-128.
    [5]张明明,蔡同锋.试论秸秆污染及其综合利用技术进展.北方环境[J],2010.22(4):79-81.
    [6]李慧媛.玉米秸秆颗粒状燃料的初步研究.南京林业大学.硕士学位论文.2011.
    [7]张鹤丰.中国农作物秸秆燃烧排放气态、颗粒态污染物排放特征的实验室模拟.复旦大学.博士学位论文.2009.
    [8]贺京,李涵茂,方丽.秸秆还田对中国农田土壤温室气体排放的影响.中国农学通报[J],2011.27(20):246-250.
    [9]范彩玲,高向阳,朱保安.温室效应及其防治对策.安徽农业科学[J],2006.34(20):5351-5352.
    [10] IPCC First Assessment Report Overview and Policy Maker Summaries and1992IPCC Supplement.Climate Change:The IPCC scientific Assessment, IPCC,1992
    [11]国家海洋局.《2012年中国海平面公报》.
    [12]环境保护部华南环境科学研究所.人类活动对近岸海域环境影响及经济损益分析课题研究报告[R].2008.
    [13]刘杜娟,叶银灿.长江三角洲地区的相对海平面上升与地面沉降.地质灾害与环境保护[J],2005.16(4):400-404.
    [14]张磊.农作物秸秆与煤流化床混烧的NOX生成和排放研究.华中科技大学.硕士学位论文.2006.
    [15]张莉.浅析光化学烟雾的污染问题.四川环境[J],2005.24(4):74-76.
    [16]薛秀慧.浅谈光化学烟雾的危害及防治对策.四川环境[J],2000.19(4):60-75
    [17]袁煦,黄飚,周青.城镇环境污染对人类健康的影响.中国农学通报[J],2005.21(02):356-360.
    [18]戴华茂.光化学烟雾研究综述.广东化工[J],2009.36(7):107-108.
    [19]王子亮.光化学烟雾及其化学特征.宁波大学学报(理工版)[J],2005.18(2):224-226.
    [20]杨菁.光化学烟雾的形成机理及防治措施.安阳师范学院学报[J],2007.5(1):101-103
    [21]许秦坤,陈海焱,可吸入颗粒物研究现状及发展趋势.有色金属科学与工程[J],2010.1(1):45-48.
    [22]李红,曾凡刚,邵龙义.可吸入颗粒物对人体健康危害的研究进展.环境与健康杂志[J],2002.19(1):85-87.
    [23]易帆.城市大气中可吸入颗粒物的来源分析.华中科技大学.硕士学位论文.2004.
    [24]连进军.生物质燃烧烟雾和大气降尘中多环芳烃及其烷基取代物的研究.复旦大学.博士学位论文.2008.
    [25]刘岩磊,孙岚,张英鸽.粒径小于2.5微米可吸入颗粒物的危害.际药学研究杂志[J],2011.38(6):428-431.
    [26]朱先磊,张元勋,祝斌.秸秆燃烧产生的颗粒物中有机示踪物的分析方法.环境化学[J],2006.25(1):96-100.
    [27] Ballester F, Tenias JM, Perez S. Air pollution and emergency hospital admissionsfor cardiovascular diseases in Valencia, Spain[J]. J Epidemiol Comm Health,2001,55:55-67.
    [28] Pope CA, Verrier RL, Lovett EG. Heart rate variability association with particulateair pollution. Am Heart J[J],1999,38:890-899.
    [29] Costa DL. Particulate matter and cardiopulmonary health:a perspectiveInhalationtoxicol[J],2000,12:35-44.
    [30] Zanobetti A, Schwartz J, Gold D. Are there sensitive subgroups for the effects ofairborne particles? Environ Health Perspect[J],2000,108(9):841-845.
    [31] Carmen S. Linocellulosic residues: Biodegradation and bioconversion by fungi.Biotechnology Advances[J],2009.27:185-194.
    [32] Smith JE, Anderson JG, Senior EK Aiido K. Bioprocessing of lignocellulose.Philos Trans RSoc Lond A1987.321:507-521
    [33] Sun Y, Cheng JJ. Dilute acid pretreatment of rye straw and Bermuda grass forethanol production. Bioresour Technol[J],2005.96:1599-1606.
    [34] Miettinen-Orinonen A, Suominen P. Enhanced production of Trichoderma reeseiendoglucanases and use of the new cellulase preparations in producing thestonewashed effect on Denim fabric. Appl Environ Microbiol[J],2002.68:3956-3964.
    [35]孙万里,陶文沂.木质素与半纤维素对稻草秸秆酶解的影响.食品与生物技术学报[J],2010.29(1):21-28.
    [36]刘振,代辉,王键吉.离子液体预处理的纤维素酶解糖化.应用化学[J],2009.26(9):21-27.
    [37] Eriksson KE, Blanchette RA, and Ander P. Microbial and enzymatic degradation ofwood and wood components, Springer-Verlag, New York, N.Y.1990.
    [38]曲音波(编).纤维素降解的超分子机器:纤维小体[M].化学工业出版社. pp56
    [39] Watanabe H and Tokuda G. Animal cellulases. Cell. Mol. Life Sci[J],2001,58:1167–1178.
    [40] Nordon, RE, Craig S, and Foong F. Molecular engineering of the cellulosomecomplex for affinity and bioenergy applications. Biotechnol Lett[J],2008,31(4):465-476.
    [41] Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria.Appl. Microbiol. Biotechnol[J],2001,56:634-649.
    [42] Cakir FY and Stenstrom MK. Greenhouse gas production: A comparison betweenaerobic and anaerobic wastewater treatment technology. Water Research[J],2005,39(17):4197-4203.
    [43] Movak T, Sadler M, and Murthy SN. Mechanisms of floc destruction duringanaerobic and aerobic digestion and the effect on conditioning and dewatering ofbiosolids. Water Research[J],2003,37(13):3136-3144.
    [44] Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria.Appl. Microbiol. Biotechnol[J],2001,56:634–649.
    [45] Bayer EA, Morag E, and Lamed R. The cellulosome—a treasure-trove forbiotechnology. Trends Biotechnol[J],1994,12:379–386.
    [46] Be′guin P, and Lemaire M. The cellulosome: an exocellular, multiprotein complexspecialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol[J],1996,31:201–236.
    [47] Kirby J, Martin JC, Daniel AS, et al. Dockerin-like sequences in cellulases andxylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens.FEMS Microbiol. Lett[J],1997,149:213–219.
    [48] Ohara H, Karita S, Kimura T, et al. Characterization of the cellulolytic complex(cellulosome) from Ruminococcus albus. Biosci. Biotechnol. Biochem[J],2000,64:254–260.
    [49] Bergquist PL, Gibbs MD, Morris DD, Te’o VS, Saul DJ, and Morgan HW.Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria.FEMS Microbiol. Ecol[J],1999,28:99–110.
    [50] Gordon RE, Haynes WC, and Pang HN. The genus Bacillus.1973. Agriculturehandbook427. Agricultural Research Service, US. Department of Agriculture,Washington, D.C.
    [51] Bagnara C, Gaudin C, and Be la ch JP. Physiological properties of Cellulomomafermentans, a mesophilic cellulolytic bacterium. Appl. Microbiol. Biotechnol[J],1987,26:170–176.
    [52] Shafer ML, and King KW. Utilization of cellulose oligosaccharides by Cellvibriogilvus. J. Bacteriol[J],1965,89:113–116.
    [53] Kauri T., and Kushner DJ. Role of contact in bacterial degradation of cellulose.FEMS Microbiol. Ecol[J],1985.31:301–306.
    [54] Kim BH. Carbohydrate catabolism in cellulolytic strains of Cellulomonas,Pseudomonas, and Nocardia. Korean J. Microbiol[J],1987,25:28–33.
    [55] Vance I, Topham CM, Blayden SL, and Tampion J. Extracellular cellulaseproduction by Sporocytophaga myxococcoides NCIB8639. J. Gen. Microbiol[J],1980,117:235–242.
    [56] Alfredsson GA, Kristja′nsson JK, Hjorleifsdo′ttir S, and Stetter KO. Rhodothermusmarinus, new genus new species, a thermophilic, halophilic bacterium fromsubmarine hot springs in Iceland. Microbiology[J],1988.134:299–306.
    [57] Wachinger G, Bronnenmeier K, Staudenbauer WL, and Schrempf H. Identificationof mycelium-associated cellulase from Streptomyces reticuli. Appl. Environ.Microbiol[J]1989,55:2653–2657.
    [58] Zhang Z, Wang Y, and Ruan J. Reclassification of Thermomonospora andMicrotetraspora. Int. J. Syst. Bacteriol[J],1998,48:411–422
    [59] Khan AW, Meek E, Sowden LC, and Colvin JR. Emendation of genus Acetivibrioand description of Acetivibrio cellulosolvens, new species, of nonmotile cellulolyticmesophile. Int. J. Syst. Bacteriol[J],1994,34:410–422.
    [60] Hungate RE.1966. The rumen and its microbes. Academic Press, Inc., New York,N.Y.
    [61] Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, et al.Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligatelyanaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol. Lett[J],1994,120:263–266.
    [62] Ljungdahl LG, Bryant F, Carriera L, et al. Some aspects of thermophilic andextreme thermophilic microorganisms, p.397–419. In A. Holleander (ed.), Trendsin the biology of fermentations for fuels and chemicals. Plenum Press, New York,N.Y.1981.
    [63] Gylswyk NO, and Toon JJ. Description and designation of a neotype strain ofEubacterium cellulosolvens (Cillobacterium cellulosolvens). Int. J. Syst. Bacteriol[J],1986,36:275–277.
    [64] Bryant MP. Bacterial species of the rumen. Bacteriol[J],1959, Rev.23:125–153.
    [65] Simankova MV, Chernych NA, Osipov GA, et al. Halocella cellulolytica, gen.nov. sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Syst.Appl. Microbiol[J],1993,16:385–389.
    [66] Aksenova HY, Rainey FA, Janssen PH, et al. Spirochaeta thermophila, new species,an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium. Int. J.Syst. Bacteriol[J],1992,42:175–177.
    [67] Carlile MJ., and Watkinson SC. The fungi, p.269–275. Academic Press, New York,N.Y.1997.
    [68] Montegut D, Indictor N, and Koestler RJ. Fungal deterioration of cellulosic textiles:a review. Int. Biodeterior[J],1991,28:209–226.
    [69] Homma H, Shinoyama H, Nobuta Y, et al. Lignin-degrading activity of ediblemushroom strobilurus oshimae that forms fruiting bodies on buried soil(Cryptomeria japonica) twigs. J Wood Sci[J],2007,53:80-94.
    [70] Rodriguez J, Ferraz, Nogueira FPR, et al. Lignin biodegradation by the ascomyceteChrysonilia sitophila. Appl Biochem Biotechnol[J],1997,63:232-242.
    [71] Moredo N, Lorenzo M, Dominguez A, et al. Enhanced ligninolytic enzymeproduction and degrading capability of Phanerophaete chrysosporium andTrametes versicolor. World J Microb Biotechnol[J],2003,19:665-669.
    [72] Marquez A, Mendoza MG, Gonzalez MS. Actividad fibrolitica de enzimasproducidas por Trametes sp. EUM1, Pleurotus ostreatus IE8y Aspergillus nigerAD96.4en fermentacion solida. Interciencia[J],2007,32:780-785.
    [73] Dumonceaux T, Bartholomew K, Valeanu L, et al. Cellobiose dehydrogenase isessential for wood invasion by nonessential for Kraft pup delignification andTrametes versicolor. Enzyme Microb Technol[J],2001,29:478-489.
    [74] Villagran F, Renan J. Simulacion y modelo matematico de la deslignificationselective de la Madera por hongos blancos en ambiente natural. TemucoUniversidad de la Frontera:1991.
    [75] Tong P, Hong Y, Xiao Y, et al. High production of laccase by a new basidiomycete,Trametes sp. Biotechnol Lett[J],2007,29:295-301.
    [76] Cabuk A, Unal AT, Kolankaya N. Biodegradation of cyanide by a white rot fungus,Trametes versicolor. Bitechnol Lett[J],2006.28:1313-1317.
    [77] Okamoto K, Narayama S, Katsuo A, Shigematsui I, Yanase H. Biosynthesis ofp-anisaldehyde by the white-rot basidiomycete Pleurotus ostreatus. J BiosciBioeng[J],2002,93:207-210.
    [78] Marnyye A, Velasquez C, Mata G, Michel SJ. Waste-reducing cultivation ofPleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in theproduction of some lignocellulolytic enzymes. World J Microb Biotechnol[J],2002,18:201-207.
    [79] Delfin AI, Duran de Bazua C. Biodegradation de residues urbanoslignocelulosicsos por Pleurotus. Rev Int Contam Ambient[J],2003,19:37-45.
    [80] Park YS, Kang SW, Lee JS, et al. Xylanase production in solid state fermentationby Aspergillus niger mutant using statistical experimental design. Appl MicrobiolBiotechnol[J],2002,58:762-766.
    [81] Quintero DJC, Gumersindo FEJOOC, Lemar RJM. Production of ligninolyticenzymes from basidiomycete fungi on lignocellulosic materials. Rev Facult QuimFarmaceut[J],2006,13:61-67
    [82] Romero E, Esperanza M, Garcia-Guinea J. et al.An anamorph of the white-rotfungus Bjekandera adusta capable of colonizing and degrading compact disccomponents. FEMS Microbiol Lett[J],2007,275:122-129.
    [83] Mikan VJ, Castellanos SD. Screening for isolation and characterization ofmicroorganisms and enzymes with useful potential for degradation of celluloseand hemicellulose. Rev Colomb Biotechnol[J],2004,6:58-67.
    [84] Fernandez R, Domenech C, Cerda E, et al. Kaurene and squalene synthesis inFusarium fujikuroi cell-free extracts. Phytochemistry[J],2007,54:723-738.
    [85] Geng X, Li K. Degradation of non phenolic lignin by the white-rot fungusPycnoporus cinnabarius. Appl Microbiol Biotechnol[J],2002,60:342-346.
    [86] Eggert C, Temp U, Eriksson KE. The ligninolytic system of the white rot fungusPycnoporus cinnabarinus: purification and characterization of the laccase. ApplEnviron Microbiol[J],1996, l62:1151-1158.
    [87] Eggert C, Temp U, Eriksson KE. Laccase-producing white-rot fungus lackinglignin peroxidase and manganese peroxidase. In: Jeffries TW, Viikari L, editors.Enzymes for pulp and paper processing. ACS Symposium SeriesWashington, D.C.:American Chemical Societ.1996b, p.130~50.
    [88] Liers C, Ullrich R, Steffen KT, et al. Mineralization of14C-labelled syntheticlignin and extracellular enzyme activities of the wood-colonizing ascomycetesXylaria hypoxylon and Xylaria polymorpha. Appl Microbiol Biotechnol[J],2006,69:573-579.
    [89] Xing NW, Ren XT, J KL. Xylactam, a new nitrogen-containing compound from thefruiting bodies of ascomycete Xylaria euglossa. J Antibiot[J],2005,58:268-270.
    [90] Yoon JJ, Cha CJ, Kim YS, et al. The brown-rot basidiomycete Fomitopsis palustrishas the endo-glucanases capable of degrading microcrystalline cellulose. JMicrobiol Biotechnol[J],2007,5:800-805.
    [91] Tomme, P, Warren RA, and Gilkes NR. Cellulose hydrolysis by bacteria and fungi.Adv. Microb. Physiol[J],1995,37:1–81.
    [92] Gusakov AV, Sinitsyn AP, Manenkov JA, et al. Enzymatic saccharification ofindustrial and agricultural lignocellulosic wastes—main features of the process.Appl. Biochem. Biotechnol[J],1992,34–35:625–637.
    [93] Nieves RA, Ehrman CI, Adney WS et al. Technical communication: survey andanalysis of commercial cellulose preparations suitable for biomass conversion toethanol. World J. Microbiol. Biotechnol[J],1998,14:301–304.
    [94] Sheehan J, and Himmel M. Enzymes, energy, and the environment: a strategicperspective on the U.S. Department of Energy’s research and developmentactivities for bioethanol. Biotechnol. Prog[J],1999,15:817–827.
    [95] Mandels M, and Reese ET. Induction of cellulase in Trichoderma viride asinfluenced by carbon sources and metals. J. Bacteriol[J],1957,73:269–278.
    [96] Reese ET. A microbiological process report: enymatic hydrolysis of cellulose. Appl.Microbiol[J],1956,4:39–45.
    [97] Reese ET, and Mandels M. Enzymatic degradation. p.1079–1094. In N. M. Bikalesand L. Segal (ed.), Cellulose and cellulose derivatives. Wiley Interscience, NewYork, N.Y.1971.
    [98] Reese ET, Sui RG, and Levinson HS. The biological degradation of solublecellulose derivatives and its relationship to the mechanism of cellulose hydrolysis.J. Bacteriol[J],1950,59:485–497.
    [99] Kubicek, CP, and Penttila¨ ME. Regulation of production of plant polysaccharidedegrading enzymes by Trichoderma, p.49–72. In G. E. Harman and C. P. Kubicek(ed.), Trichoderma and Gliocladium, vol.2ed. Taylor&Francis Ltd., London,United Kingdom.1998.
    [100] Nogawa M, Goto M, Okada H, et al. L-Sorbose induces cellulase genetrancription in the cellulolytic fungus Trichoderma reesei. Curr. Genet[J],2001,38:329–334.
    [101] Takashima S, Nakamura A, Hidaka M, et al. Molecular cloning and expression ofthe novel fungal beta-glucosidase genes from Humicola grisea and Trichodermareesei. J. Biochem[J],1999.125:728–736.
    [102] Esterbauer H, Steiner W, Labudova I, et al. Production of Trichoderma cellulasein laboratory and pilot scale. Biores. Technol[J],1991,36:51–65.
    [103] Henrissat B, Driguez, Viet C, et al.1985. Synergism of cellulases fromTrichoderma reesei in the degadation of cellulose. Biotechnology[J],3:722–726.
    [104] Medve J, Stahlberg J, and Tjerneld F. Adsorption and synergism ofcellobiohydrolase I and cellobiohydrolase II of Trichoderma reesei duringhydrolysis of microcrystalline cellulose. Biotechnol. Bioeng[J],1994,44:1064–1073.
    [105] Nidetzky B, Steiner W, Hayn M, et al. Cellulose hydrolysis by the cellulases fromTrichoderma reesei: a new model for synergistic interactions. Biochem[J],1994,298:705–710.
    [106] Divne C, Stahlberg J, Reinikainen T, et al. The three-dimensional crystal structureof the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science[J],1994,265:524–528.
    [107]Rouvinen J, Bergfors T, Teeri T, et al. Three-dimensional structure ofcellobiohydrolase II from Trichoderma reesei. Science[J],1990,249:380–386
    [108] Sandgren M, Shaw A, Ropp TH, et al. The X-ray crystal structureof theTrichoderma reesei family12endoglucanase3, Cel12A, at1.9Aresolution. J. Mol.Biol[J],2000,308:295–310.
    [109] Wood TM. Fungal cellulases. Biochem. Soc. Trans[J],1992,20:46–53.
    [110] Palonen H, Tenkanen M, and Linder M. Dynamic interaction of Trichodermareesei cellobiohydrolases Ce16A and Ce17A and cellulose at equilibrium andduring hydrolysis. Appl. Environ. Microbiol[J],1999,65:5229–5233.
    [111] Teeri TT, Koivula A, Linder M, et al. Trichoderma reesei cellobiohydrolases: whyso efficient on crystalline cellulose? Biochem. Soc. Trans[J],1998,26:173–178.
    [112] Valjamae P, Sild V, Pettersson G, et al. The initial kinetics of hydrolysis bycellobiohydrolases I and II is consistent with a cellulose surface—erosion model.Eur. J. Biochem[J],1998,253:469–475.
    [113] Medve J, Karlsson J, Lee D, et al. Hydrolysis of microcrystalline cellulose bycellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption,sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng[J],1998,59:621–634.
    [114] Nidetzky B, Steiner W, Hayn M, et al. Cellulose hydrolysis by the cellulases fromTrichoderma reesei: a new model for synergistic interactions. Biochem[J],1994,298:705–710.
    [115] Sandgren M, Shaw A, Ropp TH, et al. The X-ray crystal structure of theTrichoderma reesei family12endoglucanase3, Cel12A, at1.9A resolution. J.Mol. Biol[J],2000,308:295–310.
    [116] Holtzapple M, Cognata M, Shu Y, et al. Inhibition of Trichoderma reesei cellulaseby sugars and solvents. Biotechnol. Bioeng[J],1990,36:275–287.
    [117] Medve J, Karlsson J, Lee D, et al. Hydrolysis of microcrystalline cellulose bycellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption,sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng[J],1998,59:621–634.
    [118] Mosier NS, Hall P, Ladisch CM, et al. Reaction kinetics, molecular action, andmechanisms of cellulolytic proteins. Adv. Biochem. Eng. Biotechnol[J],1999,65:23–40.
    [119] Messner R, Hagspiel K, and Kubicek CP. Isolation of a β-glucosidase-binding andactivating polysaccharide from cell walls of Trichoderma reesei. Arch.Microbiol[J],1990,154:150–155.
    [120] Usami S, Kirimura K, Imura M, et al. Cellular localization of the constitutive-glucosidase in Trichoderma viride. J. Ferment. Bioeng[J],1990,70:185–187.
    [121] Reczey K, Brumbauer A, Bollok M, et al. Use of hemicellulose hydrolysate for-glucosidase fermentation. Appl. Biochem. Biotechnol[J],1998,70–72:225–235.
    [122] Chen HZ, Hayn M, and Esterbauer H. Purification and characterization of twoextracellular-glucosidases from Trichoderma reesei. Biochim. Biophys. Acta[J],1992,1121:54–60.
    [123] Gong CS, Ladisch MR, and Tsao GT. Cellobiase from Trichoderma viride:purification, properties, kinetics, and mechanism. Biotechnol. Bioeng[J],1977,19:959–981.
    [124]Maguire RJ. Kinetics of the hydrolysis of cellobiose andp-nitrophenyl-D-glucoside by cellobiase of Trichoderma viride. Can. J.Biochem[J],1977,55:19–26.
    [125] Decker CH, Visser J, and Schreier P. β-Glucosidases from five black Aspergillusspecies: study of their physico-chemical and biocatalytic properties. J. Agric. FoodChem[J],2000,48:4929–4936.
    [126] Gunata Z, and Vallier MJ. Production of a highly glucose-tolerant extracellularβ-glucosidase by three Aspergillus strains. Biotechnol. Lett[J],1999,21:219–223
    [127] Watanabe T, Sato T, Yoshioka S, et al. Purification and properties of Aspergillusniger-glucosidase. Eur. J. Biochem.[J],1992.209:651–659.
    [128] Yan TR, and Lin CL. Purification and characterization of a glucose-tolerantβ-glucosidase from Aspergillus niger CCRC31494. Biosci. Biotechnol.Biochem[J],1997,61:965–970.
    [129] Reczey K, Brumbauer A, Bollok M, et al. Use of hemicellulose hydrolysate for-glucosidase fermentation. Appl. Biochem. Biotechnol[J],1998,70–72:225–235.
    [130] Sternberg D, Vijayakumar P, and Reese ET. β-Glucosidase: microbial productionand effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol[J],1977,23:139–147.
    [131] Schu M. Enzymatic properties of cellulases from Humicola insolens. J.Biotechnol[J],1997,57:71–81.
    [132] Boisset C, Petrequin C, Chanzy H, et al. Optimized mixtures of recombinantHumicola insolens cellulases for the biodegradation of crystalline cellulose.Biotechnol. Bioeng[J],2001.72:339–345.
    [133] Broda P, Birch P, Brooks P, et al. Phanerochaete chrysosporium and its naturalsubstrate. FEMS Microbiol. Rev[J],1994,13:189–196.
    [134] Broda P, Birch PR, Brooks PR, et al. PCRmediated analysis of lignocellulolyticgene transcription by Phanerochaete chrysosporium: substrate-dependentdifferential expression within gene families. Appl. Environ. Microbiol[J],1995,61:2358–2364.
    [135] Broda P, Birch PR, Brooks PR, et al. Lignocellulose degradation byPhanerochaete chrysosporium: gene families and gene expression for a complexprocess. Mol. Microbiol[J],1996,19:923–932.
    [136] Copa JL, Young GK, and Broda P. Production and initial characterisation of thexylan-degrading system of Phanerochaete chrysosporium. Appl. Microbiol.Biotechnol[J],1993,40:69–76.
    [137] Covert SF, Bolduc J, and Cullen D. Genomic organization of a cellulase genefamily in Phanerochaete chrysosporium. Curr. Genet[J],1992,22:407–413.
    [138] Wymelenberg VA, Covert S, and Cullen D. Identification of the gene encoding themajor cellobiohydrolase of the white rot fungus Phanerochaete chrysosporium.Appl. Environ. Microbiol[J],1993,59:3492–3494.
    [139] Broda P, Birch PR, Brooks PR, et al. Lignocellulose degradation byPhanerochaete chrysosporium: gene families and gene expression for a complexprocess. Mol. Microbiol.19:923–932.
    [140] Covert SF, Wymelenberg AV, and Cullen D. Structure, organization, andtranscription of a cellobiohydrolase gene cluster from Phanerochaetechrysosporium. Appl. Environ. Microbiol[J],1996,58:2168–2175.
    [141] Henriksson G, Nutt A, Henriksson H, et al. Endoglucanase28(Cel12A), a newPhanerochaete chrysosporium cellulase. Eur. J. Biochem[J],1999,259:88–95.
    [142] Henriksson G, Johansson G, and Pettersson G. A critical review of cellobiosedehydrogenases. J. Biotechnol[J],2000,78:93–113.
    [143] Birch PR, Sims JP., and Broda P. Substrate-dependent differential splicing ofintrons in the regions encoding the cellulose binding domains of twoexocellobiohydrolase I-like genes in Phanerochaete chrysosporium. Appl.Environ. Microbiol[J],1995,61:3741–3744.
    [144] Sternberg D, and Mandels GR. Regulation of the cellulolytic system inTrichoderma reesei by sophorose: induction of cellulase and repression ofβ-glucosidase. J. Bacteriol[J],1980,144:1197–1199.
    [145] Seiboth B, Hakola S, Mach RL, et al. Role of four major cellulases in triggeringcellulase gene expression in Trichoderma reesei. J. Bacteriol[J],1997,179:5318–5320.
    [146] Fowler T, and Brown RD. The bgl1gene encoding extracellular β-glucosidasefrom Trichoderma reesei is required for rapid induction of the cellulase complex.Mol. Microbiol[J],1992,6:3225–3235.
    [147] Kubicek CP, and Penttila¨ ME.1998. Regulation of production of plantpolysaccharide degrading enzymes by Trichoderma, p.49–72. In G. E. Harmanand C. P. Kubicek (ed.), Trichoderma and Gliocladium, vol.2ed. Taylor&Francis Ltd., London, United Kingdom.
    [148] Margolles E, Ilme′n M and Penttila M. Expression patterns of ten hemicellulasegenes of the filamentous fungus Trichoderma reesei on various carbon sources. J.Biotechnol[J],1997,57:167–179.
    [149] Ilme′n M, Saloheimo A, Onnela ML, et al. Regulation of cellulase geneexpression in the filamentous fungus Trichoderma reesei. Appl. Environ.Microbiol[J],1997,63:1298–1306.
    [150] Saloheimo A, Aro N, Ilme′n M, and Penttila M. Isolation of the ace1geneencoding a Cys2-His2transcription factor involved in regulation of activity of thecellulase promoter cbh1of Trichoderma reesei. J. Biol. Chem[J],2000,275:5817–5825.
    [151] Saloheimo A, Henrissat B, Hoffre′n AM, O, et al. A novel, small endoglucanasegene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol.Microbiol[J],1994,13:219–228.
    [152] Ilme′n M, Onnela ML, Klemsdal S, et al. Functional analysis of thecellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Mol.Gen. Genet[J],1996,253:303–314.
    [153] Strauss J, Mach RL, Zeilinger S, et al. Cre1, the carbon catabolite repressorprotein from Trichoderma reesei. FEBS. Lett[J],1995,376:103–107
    [154] Takashima S, Iikura H, Nakamura A, et al. Analysis of Cre1binding sites in theTrichoderma reesei cbh1upstream region. FEMS Microbiol. Lett[J],1996,145:361–366.
    [155] Carle JC, Escobar J, Gogary SE, et al. Cellu-564LYND ET AL. MICROBIOL.MOL. BIOL. REV.1997.
    [156] Wang DZ, Zu Y, and Gao P. Studies of the regulation of cellulose systems by ATPand cAMP in mycelial fungi. Weishengwu Xuebao[J],1996,36:12–18.
    [157] Wilson DB. Biochemistry and genetics of actinomycete cellulases. Crit. Rev.Biotechnol[J],1992,12:45–63.
    [158] Spiridonov NA, and Wilson DB. Characterization and cloning of celR, atranscriptional regulator of cellulase genes from Thermomonospora fusca. J. Biol.Chem[J],1999,274:13127–13132.
    [159] Wilson DB, and Irwin DC. Genetics and properties of cellulases. Adv. Biochem.Eng. Biotechnol[J],1999,65:1–21
    [160] Wood, W. E., D. G. Neubauer, and F. J. Stutzenberger. Cyclic AMP levels duringinduction and repression of cellulase biosynthesis in Thermomonospora curvata.J. Bacteriol.[J],1984,160:1047–1054.
    [161] Poulsen OM, and Petersen LW. Growth of Cellulomonas sp. ATCC21399ondifferent polysaccharides as sole carbon source induction of extracellularenzymes. Appl. Microbiol. Biotechnol[J],1988,29:480–484.
    [162] Be′guin P, and Lemaire M. The cellulosome: an exocellular, multiprotein complexspecialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol[J],1996,31:201–236.
    [163] Mitchell WJ. Physiology of carbohydrate to solvent conversion by clostridia. Adv.Microbiol. Physiol[J],1998,39:31–130.
    [164] Shoham Y, Lamed R, and Bayer EA. The cellulosome concept as an efficientmicrobial strategy for the degradation of insoluble polysaccharides. TrendsMicrobiol[J],1999,7:275–281.
    [165] Mishra S, Be′guin P, and Aubert JP. Transcription of Clostridium thermocellumendoglucanase genes celF and celD. J. Bacteriol[J],1991,173:80–85.
    [166] Blair BG, and Anderson KL. Regulation of cellulose-inducible structures ofClostridium cellulovorans. Can. J. Microbiol[J],1999,45:242–249.
    [167] Doi RH, Park JS, Liu CC, et al. Cellulosome and noncellulosomal cellulases ofClostridium cellulovorans. Extremophiles[J],1998,2:53–60.
    [168] Tamaru Y, Karita S, Ibrahim A, et al. A large gene cluster for the Clostridiumcellulovorans cellulosome. J. Bacteriol[J],2000,182:5906–5910.
    [169] Chen J, and Weimer PJ. Competition among three predominant ruminalcellulolytic bacteria in the absence or presence of non-cellulolytic bacteria.Microbiology[J],2001,147:21–30
    [170] Wang WY, Reid SJ, and Thomson JA. Transcriptional regulation of anendoglucanase and a cellodextrinase gene in Ruminococcus flavefaciens FD-1. J.Gen. Microbiol[J],1993,139:1219–1226.
    [171] Tomme P, Warren RA, and Gilkes NR. Cellulose hydrolysis by bacteria and fungi.Adv. Microb. Physiol[J],1995,37:1–81.
    [172] Covert SF, Bolduc J, and Cullen D. Genomic organization of a cellulase genefamily in Phanerochaete chrysosporium. Curr. Genet[J],1992,22:407–413.
    [173] Kubicek CP, and Penttila¨ ME. Regulation of production of plant polysaccharidedegrading enzymes by Trichoderma, p.49–72. In G. E. Harman and C. P.Kubicek (ed.), Trichoderma and Gliocladium, vol.2ed. Taylor&Francis Ltd.,London, United Kingdom.1998.
    [174] Guglielmi G, and Be′guin P. Cellulase and hemicellulase genes of Clostridiumthermocellum from five independent collections contain few overlaps and arewidely scattered across the chromosome. FEMS Microbiol. Lett[J],1998,161:209–215.
    [175] Be la ch JP, Be la ch A, Fierobe HP, et al. The cellulolytic system of Clostridiumcellulolyticum, p.479–487. In K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi,S.Karita, and T. Kimura (ed.), Genetics, biochemistry and ecology ofcellulosedegradation. Uni Publishers, Tokyo, Japan.1999.
    [176] Be la ch, JP, Tardif C, Be la ch A, et al. The cellulolytic system of Clostridiumcellulolyticum. J. Biotechnol[J],1997,57:3–14
    [177] Tamaru Y, Karita S, Ibrahim A, et al. A large gene cluster for the Clostridiumcellulovorans cellulosome. J. Bacteriol[J],2000,182:5906–5910.
    [178] Henriksson G, Nutt A, Henriksson H, et al. Endoglucanase28(Cel12A), a newPhanerochaete chrysosporium cellulase. Eur. J. Biochem[J],1999,259:88–95.
    [179] Sandgren M, Shaw A, Ropp TH, et al. The X-ray crystal structure of theTrichoderma reesei family12endoglucanase3, Cel12A, at1.9A resolution. J.Mol. Biol[J],2000.308:295–310.
    [180] Gaudin C, Be la ch A, Champ S, et al. CelE, a multidomain cellulase fromClostridium cellulolyticum: a key enzyme in the cellulosome? J. Bacteriol[J],2000,182:1910–1915.
    [181] Zverlov VV, Velikodvorskaya GA, Schwarz WH, et al. Multidomain structure andcellulosomal localization of the Clostridium thermocellum cellobiohydrolaseCbhA. J. Bacteriol[J],1998,180:3091–3099.
    [182] Bergquist PL, Gibbs MD, Morris DD, et al. Molecular diversity of thermophiliccellulolytic and hemicellulolytic bacteria. FEMS Microbiol. Ecol[J],1999,28:99–110.
    [183] Gibbs MD, Reeves RA, Farrington GK, et al. Multidomain and multifunctionalglycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolateTok7B.1. Curr. Microbiol[J],2000.40:333–340.
    [184] Covert SF, Bolduc J, and Cullen D. Genomic organization of a cellulase genefamily in Phanerochaete chrysosporium. Curr. Genet[J],1992,22:407–413.
    [185] Zverlov VV, Velikodvorskaya GA, Schwarz WH, et al. Duplicated Clostridiumthermocellum cellobiohydrolase gene encoding cellulosomal subunits S3and S5.Appl. Microbiol. Biotechnol.[J],1999.51:852–859.
    [186] Shoham Y, Lamed R, and Bayer EA. The cellulosome concept as an efficientmicrobial strategy for the degradation of insoluble polysaccharides. TrendsMicrobiol[J],1999,7:275–281.
    [187] Saloheimo M, Lehtovaara P, Penttila M, et al. EGIII, a new endoglucanase fromTrichoderma reesei the characterization of both gene and enzyme. Gene[J],1988.63:11–21.
    [188] Stalbrand H, Saloheimo A, Vehmaanpera J, et al. Cloning and expression inSaccharomyces cerevisiae of a Trichoderma reesei β-mannanase gene containinga cellulose binding domain. Appl. Environ. Microbiol[J],1995.61:1090–1097.
    [189] Tamaru Y, Karita S, Ibrahim A, et al. A large gene cluster for the Clostridiumcellulovorans cellulosome. J. Bacteriol[J],2000,182:5906–5910.
    [190] Garcia S, Romeu A, and Palau J. Horizontal gene transfer of glycosyl hydrolasesof the rumen fungi. Mol. Biol. Evol[J],2000,17:352–361.
    [191] Morrison M. Do ruminal bacteria exchange genetic material? J. Dairy Sci[J],1996,79:1476–1486.
    [192] Netherwood T, Bowden R, Harrison P, et al. Gene transfer in the gastrointestinaltract. Appl. Environ. Microbiol[J],1999,65:5139–5141.
    [193] Martin W. Mosaic bacterial chromosomes: a challenge on route to a tree ofgenomes. Bioessays[J],1999,21:99–104.
    [194] Baumann P, and Schubert R. In: Krieg N. R. and Holt, J.G.(eds.), Bergey'sManual of Systematic Bacteriology. Williams and Wilkins,1:440-445.1984.
    [195] Altschul et al. Gapped BLAST and PSI-BLAST: a new generation of proteindatabase search programs. Nucleic Acids Research[J],1997,25(17):3389-3402.
    [196] Wang, A., N. Ren, Y. Shi, and D. Lee.2007. Bioaugmented hydrogen productionfrom microcrystalline cellulose using co-cultured Clostridium acetobutylicum X9and Ethanoigenens harbineses B49. Int J Hydrogen Energy.33:2912–917
    [197] Zhou JZ, Bruns MA, and Tiedje JM. DNA recovery from soils of diversecomposition. Applied and Environmental Microbiology[J],1996,62(2):316-322.
    [198] Cantarel BL, Korf I, Robb SMC, et al. MAKER: An easy-to-use annotationpipeline designed for emerging model organism genomes. Genome Res[J],2008,Volme:188.
    [199] Salamov AA, Solovyev VV. Ab initio Gene Finding in Drosophila Genomic DNA.Genome Res[J],2000, Volme:516.
    [200] Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Geneidentification in novel eukaryotic genomes by self-training algorithm. NucleicAcids Res[J],2005. Volme:6494.
    [201] Stanke M, Schoffmann O, Morgenstern B, et al. Gene prediction in eukaryoteswith a generalized hidden Markov model that uses hints from external sources.BMC Bioinformatics[J],2006. Volme:62.
    [202] Korf I. Gene finding in novel genomes. Bmc Bioinformatics[J],2004. Volme:59.
    [203] Muller J, Szklarczyk D, Julien P, et al. eggNOG v2.0: extending the evolutionarygenealogy of genes with enhanced non-supervised orthologous groups, speciesand functional annotations. Nucleic Acids Res[J],2010. Volme: D190.
    [204] Conesa A, G tz S, García JM, et al. Blast2GO: a universal tool for annotation,visualization and analysis in functional genomics research. Bioinformatics[J].2005. Volme:3674.
    [205] Petersen TN, Brunak S, Heijne G, et al. SignalP4.0: discriminating signal peptidesfrom transmembrane regions. Nature Methods[J],2011. Volme:785.
    [206] Chi S, Nam D. WegoLoc: accurate prediction of protein subcellular localizationusing weighted Gene Ontology terms. Bioinformatics[J],2012.
    [207] Pel HJ, Winde JH, Archer DB, et al. Genome sequencing and analysis of theversatile cell factory Aspergillus niger CBS513.88. Nat Biotechnol[J],2007,Volme:221.
    [208] Goecks J, Nekrutenko A, Taylor J, The Galaxy Team. Galaxy: a comprehensiveapproach for supporting accessible, reproducible, and transparent computationalresearch in the life sciences. Genome Biology[J],2010, Volme: R86.
    [209] Blankenberg D, Kuster GV, Coraor N, et al. Galaxy: A Web-Based GenomeAnalysis Tool for Experimentalists. Current Protocols in Molecular Biology[M],2010.
    [210] Giardine B, Riemer C, Hardison RC, et al. Galaxy: A platform for interactivelarge-scale genome analysis. Genome Res[J],2005. Volme:1451.
    [211] Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignmentof short DNA sequences to the human genome. Genome Biology[J],2009.Volme: R25.
    [212] Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions withRNA-Seq. Bioinformatics[J],2009, Volme:1105.
    [213] Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantificationby RNA-Seq reveals unannotated transcripts and isoform switching during celldifferentiation. Nat Biotechnol[J],2010, Volme:511.
    [214] Chourey K, Jansson J, VerBerkmoes NC, et al. Direct cellular lysis/proteinextraction protocol for soil metaproteomics. J Proteome Research[J],2010,9(12):6615-22.
    [215] Agrawal GK, Rakwal R, Yonekura M, et al. Proteome analysis of differentiallydisplayed proteins as a tool for investing ozone stresss in rice (Oryza sativa L.)seedlings. Proteomics[J],200,2:947-959.
    [216] Anderson NL, Anderson NG. Proteome and proteomeics: new technologies, newconcepts and new words. Electrophoresis[J],1998,19:1853-1861.
    [217] Barreneche T, Bahrman N and Kremer A. Two dimensional gel electrophoresisconfirms the low level of genetic differentiaton between Quercus robur andQuercus petraea. Forest Genetics[J],1996,3:89-92.
    [218] Sharma R, Dill BD, Chourey K, et al. Coupling detergent lysis/clean-upmethodology with intact protein fractionation for enhanced proteomecharacterization.. J Proteome Res[J],2012,11(12):6008-6018
    [219] Eng, J. K.; McCormack, A. L.; Yates, J. R., An approach to correlate tandem massspectral data of peptides with amino acid sequences in a protein database J. Am.Soc. Mass Spectrom1994,5976-989.
    [220] Tabb, DL, McDonald WH, Yates. JR. DTASelect and Contrast: Tools forassembling and comparing protein identifications from shotgun proteomics.Journal of Proteome Research2002,1,21-26.
    [221] Xiao Z, Storms R, and Tsang A. Microplate-based filter paper assay tomeasure total cellulase activity. Biotechnol and Bioeng[J],2004.88(7):832-837.
    [222] Claeyssens M, and Aerts G. Characterization of cellulolytic activities incommercial Trichoderma reesei preparations: an approach using small,chromogenic substrates. Bioresour. Technol[J],1992,39:143-146.
    [223] Ghose T. Measurement of cellulase activities. Pure Appl. Chem[J],1986,59:257-268
    [224] Ghose TK. Measurement of cellulase activities. Pure&Appl. Chem[J],1987,59(2):257-268.
    [225] Gessesse A, and Gashe BA. Production of alkaline protease by an alkaliphilicbacterium isolated from an alkaline soda lake. Biotechnol. Lett[J],1997,19:479–481.
    [226] Tien M, and Kirk TK. Lignin-degrading enzyme from Phanerochaetechrysosporium: purifyication, characterizeation and catalytic propertyes of aunique H2O2-requiring oxygenases. Proceedings of the National Ccademy ofSciences of the United States of America[J].1984,81:2280-2284.
    [227] Grgic S, Grgic M, and Zovko B. Performance analysis of image compressionusing wavelets. IEEE trans. On Industrial Electronics[J].2001,28(3):682-695.
    [228] Bradford MM. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. AnalBiochem[J],1976,72:248-254.
    [229] Ehrman T. Method for determinateon of total solids in biomass. In: LaboratoryAnalytical Procedures No.001, National Renewable Energy Laboratory, Golden,CO.1994
    [230] Ehrman T. Method for determinateon of acid-soluble lignin in biomass. In:Laboratory Analytical Procedures No.004, National Renewable EnergyLaboratory, Golden, CO.1996
    [231] Templeton D., and Ehrman T. Determination of acid-insoluble lignin in biomass.In: Laboratory Analytical Procedures No.003, National Renewable EnergyLaboratory, Golden, CO.1994
    [232] Han J, Rowell J. Chemical compositeon of agro-based fibers. In: Rowell, R.M.,Young. A. R., Rowell, J.(Eds.), Paper and Composites from Agrobased Resource.CRC Lewis Publishers. New York.1997, pp.81-134
    [233] Mihranyan A, Andersson SB. Sorption of nicotine to cellulose powders. Eur. J.Pharm. Sci[J],2004,22:279-286.
    [234] Nordon RE, Craig S, and Foong F. Molecular engineering of the cellulosomecomplex for affinity and bioenergy applications. Biotechnol Lett[J],2008,31:4465-476.
    [235] Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria.Appl. Microbiol. Biotechnol[J],2001,56:634-649.
    [236] Cakir FY and Stenstrom MK. Greenhouse gas production: A comparison betweenaerobic and anaerobic wastewater treatment technology. Water Research[J],2005,39(17):4197-4203.
    [237] Movak JT, Sadler M, and Murthy SN. Mechanisms of floc destruction duringanaerobic and aerobic digestion and the effect on conditioning and dewatering ofbiosolids. Water Research[J],2003,37(13):3136-3144.
    [238] Montgomery R.2004. Development of biobased products. Bioresour. Technol[J],91(1):1-29.
    [239] Umikalsom MS, Ariff AB, Shamsuddin ZH. Production of cellulose by a wildstrain of Chaetomium globosum using delignified oil palm empty-fruit-bunchfibre as substrate. Applied Microbiology and Biotechnology[J],1997,47(5):590-595.
    [240] Kang WS, Park YS, Lee JS, et al. Production of celluloses and hemicelluloases byAspergillus niger KK2from lingocellulosic biomass. Bioresour. Technol[J],2004,91:153-156.
    [241] Chandra M, Kalra A, Sangw NS. Development of a mutant of Trichodermacitrinoviride for enhanced production of celluloses. Bioresour. Technol[J],2009.100(4):1659-1662.
    [242] Jones AM, and Ingledew WM. Fuel ethanol production: Appraisal of nitrogeneousyeast foods for very high gravity wheat mash fermentation. Process Biochem[J],1994,29:483-88.
    [243] Sleat R, Mah R, and Robinson R. Isolation and characterization of an anaerobic,cellulolytic bacterium, Clostridium cellulovorans sp. Nov. Appl. Environ.Microbiol[J],1984,48:88-93.
    [244] Hu Z, Yu H, and Zhu R. Influence of particle size and pH on anaerobicdegradation of cellulose by ruminal microbes. International Biodeteriotion andBiodegradation[J],2005,66(6):2461-2470.
    [245] Sugaya K, Tuse D, and Jones J. Production of acetic acid by Clostridiumthermoacetium in batch and continuous fermentations. Biotechnol. Bioeng[J],1986,28:678-683.
    [246] Senthilkumar, V., and P. Gunasekaran. Bioethanol production from cellulosicsubstrates: Engineered bacteria and process integration challenges. J. Sci.&Ind.Res.[J],2005.64:845-853.
    [247] Micka l D, Emmanuel G, and Henri P. Kinetics and metabolism of cellulosedegradation at high substrates concentrations in steady-state continuous culturesof Clostridium cellulolyticum on a chemically defined medium. Appl. Environ.Microbiol[J],2001,67(9):3837-3845.
    [248] Levin DB, Islam R, Cicek N, et al. Hydrogen production by Clostridiumthermocellum27405from cellulosic biomass substrates. Int J HydrogenEnergy[J],2006,31:1496-1503.
    [249] Lo YC, Huang C, and Chang J. Fermentative hydrogen production fromhydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterialisolate. Int J Hydrogen Energy[J],2009,34(15):6189-6200.
    [250] Guedon E, Payot S, Desvaux M, et al. Relationships between cellobiosecatabolism, enzyme levels, and metabolic intermediates in Clostridiumcellulolyticum grown in a synthetic medium. Biotechnol. Bioeng.[J],2000,67:327-335.
    [251] Guedon E, Desvaus M, Payot S, et al. Growth inhibition of Clostridiumcellulolyticum by an inefficiently regulated carbon flow. Microbiology[J],1999a,145(8):1831-1838.
    [252] Micka l D, Emmanuel G, and Henri P. Kinetics and metabolism of cellulosedegradation at high substrates concentrations in steady-state continuous culturesof Clostridium cellulolyticum on a chemically defined medium. Appl. Environ.Microbiol[J],2001,67(9):3837-3845.
    [253] Ingram L, Gomez P, and York S. Metabolic engineering of bacteria for ethanolproduction. Biotechnol.&Bioeng[J],1997,58(2&3):204-214.
    [254] Liu Y, Yu P, Song X, et al. Hydrogen production from cellulose by co-culture ofClostridium thermocellum JN4and Thermoanaerobacteriumthermosaccharolyticum GD17. Int J Hydrogen Energy[J],2008,33:2927–2933.
    [255] He G, and Zhou Z. Effect of key factors on hydrogen production from cellulose ina co-culture of Clostridium thermocellum and Clostridium thermopalmarium.Bioresour Technol[J],2010,101(11):4029-4033.
    [256] Forbes C, Hughes D, and Fox J. High-rate anaerobic degradation of5and6carbon sugars under thermophilic and mesophilic conditions. Bioresour.Technol[J],2010,101(11):3925-3930.
    [257] Cao G, Re N, and Wang A. Acid hydrolysis of corn stover for biohydrogenproducing using Thermoanaerobacterium thermosaccharolyticum W16. Int JHydrogen Energy[J],2009,34(17):7182-7188.
    [258] Kovács K, Szakacs G, and Zacchi G. Comparative enzymatic hydrolysis ofpretreated spruce by supernatants, whole fermentation broths and washed myceliaof Trichoderma reese and Trichoderma atroviride. Bioresou. Technol[J],2009,10:1350-1357.
    [259] Gomes I, Gomes J, Gomes DJ, et al. Simultaneous production of high activities ofthermostable endoglucanase and β-glucosidase by the wild thermophilic fungusThermoascus aurantiacus. Appl Microbiol Biotechnol[J],2000,53:461-468.
    [260] Ahamed A and Vermette P. Enhanced enzyme production from mixedcultures of Trichoderma reesei RUT-C30and Aspergillus niger LMA grown asfed batch in a stirred tank bioreactor. J Biochel. Eng[J],2008,42:41-46.
    [261] Harnpicharnchai P and Sornlake W. A thermotolerant β-glucosidase isolated froman endophytic fungi, Periconia sp. with a possible use for biomass conversion tosugars. Bioresou. Technol[J],2008,67(2):61-69.
    [262] Desvaux M, Guedon E, and Petitdemange H. Cellulose catabolism by Clostridiumcellulolyticum growing in batch culture on defined medium. Appl. Environ.Microbia[J],2000,66:2461-2470.
    [263] William D. Symbiotic Relationship of Bacteroides cellulosolvens and Clostridiumsaccharolyticum in Cellulose Fermentation. Appl Environ Microbiol[J],1986,51(4):710–714
    [264] Wang A, Ren N, Shi Y, et al. Bioaugmented hydrogen production frommicrocrystalline cellulose using co-culture—Clostridium acetobutylicum X9andEthanoigenens harbinense B49. Int J Hydrogen Energy[J],2008,33(2):912-917
    [265] Lo YC, Bai M, and Chang J. Cellulosic hydrogen production with a sequencingbacterial hydrolysis and dark fermentation strategy. Bioresou. Technol[J],2008,99:178299-8303.
    [266] Wang A, Gao L, Ren N, and Xu J. Bio-hydrogen production from cellulose bysequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarumG1and Ethanoigenens harbinense B49. Biotechnol Lett[J],2009,31(9):1321-1326.
    [267] Lo YC, Saratale D, and Chang J. Isolation of cellulose-hydrolytic bacteria andapplications of the cellulolytic enzymes for cellulosic biohydrogen production.Enzyme and Microbial Technol[J],2009,44:417-425.
    [268] Khan A and Murray W. Comparative degradation of cellulose and sugar formationby three newly isolated mesophilic anaerobes and Clostridium thermocellumBiotech. Lett[J],1982a,4:177-180.
    [269] Senthilkumar V, and Gunasekaran P. Bioethanol production from cellulosicsubstrates: Engineered bacteria and process integration challenges. J. Sci.&Ind.Res[J],2005,64:845-853.
    [270] Freier D, Cheryle P, and Juergen W. Characterization of Clostridiumthermocellum JW20. Appl Environ Microbiol[J],1988,54(1):204–211.
    [271] Liu Y, Yu P, Song X, et al. Hydrogen production from cellulose by co-culture ofClostridium thermocellum JN4and Thermoanaerobacteriumthermosaccharolyticum GD17. Int J Hydrogen Energy[J],2008,33:2927–2933.
    [272] MacKenzie C., and Girishchandra B. Studies on Cellulose Hydrolysis byAcetivibrio cellulolyticus. Appl. Environ. Microbiol[J],1985,50(2):243-248.
    [273] Mountfort D. and Asher R. Production and regulation of cellulase by two strainsof the rumen anaerobic fungus Neocallimastix frontalis. Appl. Environ.Microbiol[J],1985,49(5):1314–1322.
    [274] Guedon E, Payot S, Desvaux M, et al. Carbon and electron flow in Clostridiumcellulolyticum grown in chemostat culture on synthetic medium. J.Biotechnol[J],1999,181(10):3262-3269.
    [275] Schell DJ, Sáez JC, Hamilton J, et al. Use of measurement uncertainty analysis toassess accuracy of carbon mass balance closure for a cellulose production process.Appl. Biochem. Biotechnol[J],2002,98-100:509-523.
    [276] Sudgen C and Bhat MK. Cereal straw and pure cellulose as carbon sources forgrowth and production of plant cell wall degradation enzymes by Sporotrichumthermophile. World J. Microbiol. Biotechnol[J],1994,10:444-451.
    [277] Biswas SR, Jana SC and Mishra AK, et al. Production, purification andcharacterization of xylanase form a hyperxylanolytic mutant of Aspergillusorchraceus. Biotechnol, Bioeng[J],1990,35:244-251.
    [278] Erkurt EA, Unyayar A, Kumbur H. Decolorization of synthetic dyes by white rotfungus, involving laccase enzyme in the process, Process Biochem[J],2007,42.
    [279] Boyle D. Effects of pH and cyclodextrins on pentachlorophenol degradation(mineralization) by white-rot fungus, J. Environ. Manag[J],2006,80:380–386.
    [280] Zacchi L, Burla G, Ding ZL, et al. Metabolism of cellulose by Phanerochaetechrysosporium in continuously agitated culture is associated with enhancedproduction of lignin peroxidase, J. Biotechnol[J],2000,78:185–192.
    [281] Hai FI, Yamamoto K, Fukushi K. Development of a submerged membrane fungusreactor for textilewastewater treatment, Desalination2006.192:315-322,1429-1435.
    [282] Papagianni M. Advances in citric acid fermentation by Aspergillus niger:Biochemical aspects, membrane transport and modeling. BiotechnologyAdvances[J],2007,25:244-263.
    [283] Chen M, Qin Y, and Qu Y. Isolation and characterization of a β-glucosidase fromPenicillium decumbens and improving hydrolysis of corncob residue by using itas cellulase supplementation. Enzyme and Microbial Technology[J],2010,46(6):444-449.
    [284] Marimuthu J, Reum J, and Kul L. Characterization of β-glucosidase from a strainof Penicillium purpurogenum KJS506. Appl. Microbial.&Biotechnol[J],2010,86(5):1473-1484.
    [285] Lee J, Gwak K, Park J, et al. Biological pretreatment of softwood Pinus densifloraby three white fungi. J. Microbiol[J],2007.45:485-491.
    [286]Zhang Y, and Lynd L. Determination of the number-average degree ofpolymerization of cellodextrins and cellulose with application to enzymatichydrolysis. Biomacromolecules[J],2005,.6:1510-1515.
    [287] Whistler RL. Xylan.Adv. Carbohydr. Chem[J],1950.5:269-90.
    [288] Doner WL and Hicks KB. Isolation of hemicellulose from corn fibre by alkalinehydrogen peroxide extraction, Cereal Chem[J],1997,74:176–181.
    [289] Stelzer RS, Heffernan J and Likens GE. The influence of dissolved nutrients andparticulare organic matter quality on microbial respiration and biomass in a foreststream. Freshwater Biology[J],2003,48:1925-1937.
    [290] Aumen NG, Bottomley PJ, and Ward GM. Decomposition of wood in streams:distributeon of microflora and factors affecting [14C] lingocellulosemineralizeation. Applied and Environmental Microbiology[J],1983,46:1409-1416.
    [291] Harmon ME, Franklin JF, Swanson FJ, et al. Ecology of coarse woody debris intemperate ecosystems. Advances in Ecological Research[J],1986,15:133-302.
    [292] Kirk TK and Farrel RL. Enzymatic ‘combustion’: the microbial degradeation oflignin. Annual Review of Microbiology[J],1987,41:465-505.
    [293] Golladay SW and Webster JR. Effects of dearcut loging on wood breakdown inAppalachian Mountain streams. American Midland Naturalist[J],1988,119:143-154.
    [294] Johnson RL, Liaw SS, Garcia M, et al. Pyrolysis gas chromatogramphy massspectrum studies to evaluate high-temperature aqueous pretreatment as a way tomodify the compositeon of bio-oil from fast pyrolysis of wheat straw. Energy andFuels[J],2009,1727-1737.
    [295] Yang X, Zeng Y, Ma F, et al. Effect of biopretreatment on thermogravimetric andchem.ical characteristic of corn stover by different white-rot fungi. Bioresour.Technol[J],2010,101:5475-5479.
    [296] Kristensen JB, Thygesen LG, Felby C, et al. Cell-wall structural changes in wheatstraw pretreated for bioethanol production. Biotechnology for Biofuels[J],2008(1):5.
    [297] Maluta T, Nicu R, Popa VI. Contribution to the study of hydroxylmetylationreaction of alkali lignin. Bioresources[J],2008,3:13-20.
    [298] Yang H, Yan R, Chen H, et al. Characeristic of hemicelluloses, cellulose andlignin pyrolysis. Fuel[J],2007.86:1781-1788.
    [299] Taniguchi M, Suzuki H, Watanabe D, et al. Evaluation of Pretreatment withPleurotus ostreatus for Enzymatic Hydrolysis of Rice Straw. Journal ofBioscience and Bioengineering[J],2005,100(6):637-643.
    [300] Taguchi F and Yamada K. Continuous Hydrogen Production by Clostridium sp.Strain No.2from Cellulose Hydrolysate in an Aqueous Two-Phase System.Journal of Fermentation and Bioengniering[J],1996,82:80-83
    [301] Vrije T, Haas GG, Tan GB, et al. Pretreatment of Miscanthus for hydrogenproduction by Thermotoga elfii. Int J Hydrogen Energy2002;27(11-12):1381-1390.
    [302] Levin DB, Islam R, Cicek N, et al. Hydrogen production by Clostridiumthermocellum27405from cellulosic biomass substrates. Int J HydrogenEnergy[J],2006,31(11):1496-1503
    [303] Ueno Y. Biological Production of Hydrogen from Cellulose by Natural Anaerobicmicroflora. Journal of Fermentation and Bioengineering[J],1995,79:395-397
    [304] Lay JJ. Biohydrogen generation by mesophilic anaerobic fermentation ofmicrocrystalline cellulose. Biotechnol Bioeng[J],2001,74(4):280-287.
    [305] Zhang T, and Fang HP. Biohydrogen production from starch in wastewater underthermophilic condition. Journal of Environmental Management[J],2003,69:149-156
    [306] Fan YT. Efficient conversion of wheat straw wastes into biohydrogen gas by cowdung compost. Bioresource Technology[J],2006,97:500-505
    [307] Datar R, Huang J. Hydrogen production from the fermentation of corn stoverbiomass pretreated with a stream-explosion process. International Journal ofHydrogen Energy[J],2007,33:932-939
    [308] Lo YC, Bai MD. Cellulosic hydrogen production with a sequencing bacterialhydrolysis and dark fermentation strategy.
    [309] Wang AJ, Ren NQ, Shi YQ, et al. Bioaugmented hydrogen production frommicrocrystalline cellulose using co-culture—Clostridium acetobutylicum X9andEthanoigenens harbineses B49. Int J Hydrogen Energy[J],2007,33(2):912-917
    [310] LevinB R, Islam N, and Sparling R. Hydrogen production by Clostridiumthermocellum27405from cellulosic biomass substrates. Int J HydrogenEnergy[J],2006,31:1496–1503.
    [311] Sparling R, R. Islam, C. Carlo, C. Herman, and B. Levin. Formate synthesis byClostridium thermocellum27405during anaerobic fermentation. Can JMicrobiol[J],2006.52:681–688.
    [312] Ren N., Wang A, Gao L, et al. Bioaugmented hydrogen production fromcarboxymethyl cellulose and partially delignified corn stalks using isolatiedcultures. Int J Hydrogen Energy[J],2008,33:5250-5255.
    [313] Zhao J and Xia L. Simultaneous saccharificaiton and fermentation ofalkaline-pretreated corn stover to ethanol using a recombineant yeast strain. FuelProcessing Technol[J],2009,90:1193-1197.
    [314] Delgenes JP, Moletta R, and Navarro JM. Acid hydrolysis of wheat straw andprocess considerations for ethanol fermentation by Pichia stipitis Y7124. ProcessBiochemistry[J],1990,25(4):132-135
    [315] Nigam JN. Ethanol production from wheat straw hemicellulose hydrolysate byPichia stipitis. Journal of Biotechnology[J],2001,87(1):17-27.
    [316] Roberto IC, Lacis LS, Barbosa MF, et al. Utilization of sugar cane bagassehemicellulosic hydrolysate by pichia stipitis for the production of ethanol.Process Biochemistry[J],1991.26(1):15-21.
    [317] Carina Z, Prior A, and Preez J. Production of ethanol from sugar cane vagassehemicelluloses hydrolyzate by Pichia stipitis. Applied Biochemistry andBiotechnology[J],1988,17(1-3):357-369.
    [318] Cheng KK, Cai BY, Zhang JA, et al. Sugarcane bagasse hemicellulosehydrolysate for ethanol production by acid recovery process. BiochemicalEngineering Journal[J],2008.38(1):108-109.
    [319] Wilson JJ, Deschatelets L, Nishikawa NK. Comparative fermentability ofenzymatic and acid hydrolysates of steam-pretreated aspenwood hemicelluloseby Pichia stipitis CBS5776. Appl Microbiol Biotechnol[J],1989,27:549-552.
    [320] Yu S, Wayman M, Parekh SK. Fermentation to ethanol of pentose‐containingspent sulphite liquor. Biotechnology&Bioengineering[J],1999,28(9):1144-1150.
    [321] Bjorling T and Lindman B. Evaluation of xylose fermenting yeasts for ethanolproduction from spent sulfite liquor. Enzyme Microb. Technol[J],1989,11:240-246.
    [322] Tran AN, Chambers RP. Ethanol fermentation of red oak acid prehydrolyzate bythe yeast Pichia stipitis CBS5773. Enzyme Microb. Technol[J],1986,8:439-444.
    [323] Strickland RJ and Beck MJ. Effective pretreatment alternatives for the productionof ethanol from hemicellulosic hardwood hydrolyzates.9th Symp. on Energyfrom Biomass and Wood Wastes, Jan.1–28Feb.1985, Lake Buena Vista, FL.
    [324] Perego P, Converti A, Palazzi E, et al. Fermentation of hardwood hemicellulosehydrolyzate by Pachysolen tannophilus, Candida shehatae and Pichia stipitis. J.Ind. Microbiol.[J],1990.6:157-164.
    [325] Gans I, Potts D, Matsu A, et al. Process development for plug flow acidhydrolysis and conversion of lignocellulosics to ethanol; in: Bioenergy. Proc.7thCan. Bioenergy R&D Seminar, NRCC, Ottawa, Canada, pp.419–423.
    [326] Amartey S and Jeffries TW. An improvement in Pichia stipitis fermentation ofacid-hydrolyzed hemicellulose achieved by overliming (calcium hydroxidetreatment) and strain adaptation. World J. Microbiol. Biotechnol[J],1996,21:281-283.
    [327] Parekh SR, Parekh RS, Wayman M. Ethanol and butanol production byfermentation of enzymatically saccharified SO2-prehydrolyzed lignocellulosics.Enzyme Microb. Technol[J],1988,10:660-668.
    [328] Stoutenburg RM, Perrotta JA, Amidon TE. Ethanol production from a membranepurified hemicellulosic hydrolysate derived from sugar maple by Pichia stipitisNRRL Y-7124. Bioresources[J],2008,3(4).
    [329] Slininger PJ, Dien BS, Gorsich SW, et al. Nitrogen source and mineraloptimization enhance D-xylose conversion to ethanol by the yeast Pichia stipitisNRRL Y-7124. Applied Microbiology and Biotechnology[J],2009,72(6):1285-1296
    [330] Zhao J and Xia L. Simultaneous saccharification and fermentation ofalkaline-pretreated corn stover to ethanol using a recombinant yeast strain. Fuelprocessing technology[J],2009,90(10):1193-1197.
    [331] Yadav KS, Naseeruddin S, Prashanthi GS, et al. Bioethanol fermentation ofconcentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiaeand Pichia stipitis. Bioresource Technology[J],2011,102(11):6473-6478.
    [332] Kuhad RC, Gupta R, Khasa YP, et al. Bioethanol production from pentose sugars:Current status and future prospects. Renewable and Sustainable EnergyReviews[J],2011,15(9):4950-4962.
    [333]侯进.酿酒酵母辅酶工程.山东大学.博士学位论文.2009
    [334]张晓梅.遗传改造zymomonas+mobiles代谢木糖及其木粮醇产生机制的研究.山东大学.博士学位论文.2012
    [335] Martinez D, Berka RM, Henrissat B, et al. Genome sequencing and analysis ofthe biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). NatBiotechnol[J],2008, Volme:553.
    [336]王镜岩.生物化学[M].第四版.2003. pp114.
    [337]沈煜,郑华军,王颖,鲍晓明,曲音波,白凤武.2004.木酮糖表达水平对酿酒酵母木糖代谢产物流向的影响。生物化学与生物物理进展[J].31(8):746-750.
    [338] Walfridssion M, Hallborn J, Penttli M, et al. Xylose metabolizing Saccharomycescerevisiae overexpressing the TKL1and TAL1genes encoding the pentosephosphate pathwayy enzymes transketolase and transaldolase. Appl EnvironMicrobiol[J],1995.61(2):4184-4190.
    [339] Thakur BR, Singh RK, Handa AK, Rao DMA. Chemistry and uses of pectin—areview. Critical Reviews in Food Science&Nutrition[J],1997. Volme:47.
    [340] Beldman G, Rombouts FM, Voragen AGJ, Pilnik W. Application of cellulase andpectinase from fungal origin for the liquefaction and saccharification of biomass.Enzyme Microb Tech[J],1984. Volme:503.
    [341] Portnoy T, Margeot A, Seidl V, et al. Differential Regulation of the CellulaseTranscription Factors XYR1, ACE2, and ACE1in Trichoderma reesei StrainsProducing High and Low Levels of Cellulase. Eukaryot Cell[J],2011, Volme:262.
    [342] Chulkin AM, Vavilova EA, Benevolenskij SV. Transcriptional regulator of carboncatabolite repression CreA of filamentous fungus Penicillium canescens. MolBiol[J],2010. Volme:596.
    [343] Stricker A, Mach RL, de Graaff LH. Regulation of transcription of cellulases-andhemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina(Trichoderma reesei). Appl Microbiol Biot[J],2008. Volme:211.
    [344] Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL.Transcriptional Regulation of xyr1, Encoding the Main Regulator of theXylanolytic and Cellulolytic Enzyme System in Hypocrea jecorina. Appl EnvironMicrob[J],2008. Volme:6554.
    [345] Arst HN, Tollervey D, Dowzer CEA, et al An inversion truncating the creA geneof Aspergillus niduians results in carbon catabolite derepression. Mol Microbiol1990;Volme:851.
    [346]梁宇,荆玉祥,沈玉华.植物蛋白质组学研究进展.2004.植物生态学报[J],28:114-125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700