用户名: 密码: 验证码:
不同形貌铅锑硫族化合物纳米材料的可控制备及电学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一种可以实现热能和电能直接相互转换的特殊功能材料。由该类材料制备的热电器件可有效回收利用化石能源燃烧过程中产生的废热,因而可有效缓解当前全球能源危机和环境污染。但由于现有热电材料的能量转换效率较低,离实际应用尚有较大的差距。因此,提高材料的热电转换效率是当前热电材料研究的重点。研究表明,低维化可显著提高材料的热电优值,而低维化的铅、锑硫族化物热电材料正是由于具有较高的热电性能成为该领域的研究热点。故此,本论文选择铅、锑硫族化物作为研究对象,旨在通过简单溶剂热法制备具有不同纳米结构的铅、锑硫族化物热电材料,通过X射线衍射、扫描电子显微镜、透射电子显微镜以及电学性能测试系统对其形成机制及电学性能进行系统研究。
     在无模板剂和表面活性剂条件下制备了PbS纳米棒,考察了其生长机制。研究发现,纳米棒是由小纳米立方通过取向连接而成。并以此为基础,采用二次水热法制备了具有核壳结构的PbS/PbTe纳米棒。采用热电综合测试系统对所制备的样品进行了电学性能测试。结果表明:核壳结构PbS/PbTe纳米棒的功率因子高于纯相PbS;且发现PbS/PbTe纳米棒的热电性能可通过改变PbS/Te比进行可控调节。
     以硫代乙醇酸为表面活性剂和硫源制备了具有两相纳米结构的PbS/PbSe空心球,研究了不同反应因素对形貌的影响。结果发现,在硫代乙醇酸的辅助下,PbS和PbSe纳米粒子会相互聚集形成PbS/PbSe空心球,表现出典型的自组装机制伴随奥斯特瓦尔德熟化机制。电学性能测试发现,PbS/PbSe空心球的电导率和Seebeck系数在整个测试温度范围内(300-600K)均高于PbSe纳米粒子,并在500K时其功率因子达到最大值205.4μW/(K~2·m),相当于纯相PbSe纳米粒子的两倍。
     以葡萄糖为表面活性剂制备了花状形貌PbTe晶体,研究了不同反应因素对产物形貌的影响。发现花状PbTe晶体的形成机制为奥斯特瓦尔德熟化伴随异向生长机制。并在此基础上,以亚硒酸钠替代部分亚碲酸钠,采用相同方法制备了花状PbSe/PbTe纳米晶。研究发现组成花状形貌的纳米片是由尺寸小于30nm的PbSe和PbTe纳米晶组成,同时Se和Te之间能够发生取代反应。对样品进行电学性能测试发现,PbSe/PbTe纳米晶的电导率在常温时高达40S/m,与100nm PbTe纳米粒子和6nm PbTe薄膜相比,其电导率提高了1个和3个数量级。
     以葡萄糖(柠檬酸)为表面活性剂制备了分级结构Sb_2Se_3和Sb_2Te_3晶体。研究发现,葡萄糖和柠檬酸在Sb_2Se_3和Sb_2Te_3的形成过程中起到了至关重要的作用。在反应体系中,葡萄糖和柠檬酸作为表面活性剂吸附在Sb_2Se_3和Sb_2Te_3的晶核上,且在葡萄糖和柠檬酸中氢键以及静电的相互作用下纳米粒子发生相互聚集;同时表面活性剂分子能够吸附在某些晶面上限制了晶面的生长,从而形成具有分级结构的Sb_2Se_3和Sb_2Te_3晶体。电学性能测试发现,Sb_2Se_3样品的Seebeck系数和形貌有关,蠕虫状形貌的Sb_2Se_3样品Seebeck系数最高,在350K时可达1400μV/K。而Sb_2Te_3样品的Seebeck系数和电导率则与样品尺寸有较大关系。表现为尺寸较大的样品具有较大电导率,但却具有较小的Seebeck系数。
Thermoelectric materials is a kind of special functional material which canconvert the heat source into electricity directly. By means of thermoelectric devices,the waste heat coming from the combustion of fossil fuel can be recycled, and thenthe utilization can be enhanced. However, due to the low thermoelectric figure ofmerit, the thermoelectric materials are still far way from practical application. Thus,the enhancement of the thermoelectric figure of merit is the key point in the field ofthermoelectric materials. Theoretical simulations and experimental results indicatethat the thermoelectric performance will be remarkbly enhanced in low dimensionalsystem. Lead and antimony chalcogenides have been attracted much attentionbecause of their high thermoelectric performances. In this paper, the lead andantimony chalcogenides were selected as the research objects, and the lead andantimony chalcogenides nanomaterials with different morphologies were fabricatedand the formation mechanisms and electrical properties were studied by X-raydiffraction, scaning electron microscope, Transmission electron microscope andelectrical property testing system.
     Without using any template and surfactant, lead sulfide nanorod was preparedthe formation mechanism was investigated in detail. And we discovered that thenanorods were composed of nanocubes through an oriented attachment process. Byusing tellurium and sodium hydroxide as precursors, the core-shell structuralPbS/PbTe nanorods were fabricated via a hydrothermal route. The electricalproperties of the obtained samples were investigated by a self-desinedthermoelectric test system, and the results indicated that the core-shell structuralPbS/PbTe nanorods have the higher power factors compared with that of pure phasePbS. Meanwhile, the thermoelectric properties of PbS/PbTe nanorods can be tunedby changing the molar ratio of PbS and Te.
     By using thioglycollic acid as a surfactant and sulfur source, binary phasedPbS/PbSe hollow spheres were fabricated and the reaction parameters influencingthe morphology were discussed systematically. The experimental results presentedthat these PbS and PbSe nanoparticles can aggregate together to form PbS/PbSehollow spheres with the assistance of thioglycollic acid, which can be named asclassical self assembly process accompanied by Ostwald ripening process. Moreover,electrical properties measurements demonstrated that the obtained PbS/PbSe hollowspheres had the higher electrical conductivity and Seebeck coefficient than that ofPbSe nanoparticles in the temperature range of300-600K. The maximum powerfactor of205.4μW/(K~2·m) can be achieved at500K for PbS/PbSe hollow spheres, which is two times higher than that of PbSe nanoparticles.
     By using glucose as a surfactant, the flower-like PbTe crystals were synsthsizedand the different reaction factors influencing the morphology were systematicallyinvestigated. Based on the experimental results, a possible formation mechanism ofOstwald ripening accompanied by anisotropic growth mechanism was proposed.When sodium selenite was added into reaction system instead of part of sodimtellurite, the flower-like PbSe/PbTe nanocrystals were fabricated by a solvothermalmethod. The experimental results displayed that the nanopaltes were composed ofPbSe and PbTe nanocrystals with the size less than30nm, simultaneously, thesubstitution of Se and Te elements could be observed. The electrical properties testsdemonstrated that the electrical conductivity of40S/m can be achieved, which isone and three times higher than than that of100nm PbTe nanoparticles and6nmPbTe film, respectively.
     The hierachical Sb_2Se_3and Sb_2Te_3crystlas were fabricated with the help ofglucose or citric acid. Experimental results described that the glucose and citric acidmolecules played a crucial role in the formation of hierachical Sb_2Se_3and Sb_2Te_3crystlas. Glucose and citric acid molecules used as surfactants can be absorbed ontothe surface of Sb_2Se_3and Sb_2Te_3nuclei, which promoted the aggregation the thenanoparticles due to their hydrogen bonds and electrostatic effects. Meanwhile, themolecules can also be adsorbed onto some crystal surfaces of materials, whichprohibited the growth rate of these surfaces, thus, hierachical Sb_2Se_3and Sb_2Te_3crystlas can be obtained. The electrical properties measurements indicated that thethe morphology of Sb_2Se_3samples had much impact on the Seecek coefficients. Theworm-like Sb_2Se_3has the maximum Seecek coefficient, which can reach to1400μV/K at350K. The Seecek coefficients and the electrical conductivites are relatedto the size of Sb_2Te_3crystals, the sample with bigger size has the higher electricalconductivity and lower Seecek coefficient.
引文
[1] Hochbaum A I, Chen R K, Delgado R D, et al. Enhanced ThermoelectricPerformance of Rough Silicon Nanowires[J]. Nature.2008,451(7175):163-165
    [2] Snyder G J,Toberer E S. Complex Thermoelectric Materials[J]. Nat. Mater.2008,7(2):105-114.
    [3] Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk ThermoelectricMaterials with High Figure of Merit[J]. Science.2004,303(5659):818-821.
    [4] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film ThermoelectricDevices with High Room-temperature Figures of Merit[J]. Nature.2001,413(6856):597-602.
    [5] Sootsman J R, Kong H, Uher C, et al. Large Enhancements in theThermoelectric Power Factor of Bulk PbTe at High Temperature by SynergisticNanostructuring[J]. Angew. Chem. Int. Ed.2008,47(45):8618-8622.
    [6] Johnsen S, He J Q, Androulakis J, et al. Nanostructures Boost theThermoelectric Performance of PbS[J]. J. Am. Chem. Soc.2011,133(10):3460-3470.
    [7] Szczech J R, Higgins J M,Jin S. Enhancement of the Thermoelectric Propertiesin Nanoscale and Nanostructured Materials[J]. J. Mater. Chem.2011,21(12):4037-4055.
    [8] Zheng X J, Zhu L L, Zhou Y H, et al. Impact of Grain Sizes on Phonon ThermalConductivity of Bulk Thermoelectric Materials[J]. Appl. Phys. Lett.2005,87(24):242101.
    [9] Toprak M S, Stiewe C, Platzek D, et al. The Impact of Nanostructuring on theThermal Conductivity of Thermoelectric CoSb3[J]. Adv. Funct. Mater.2004,14(12):1189-1196.
    [10] Terasaki I, Sasago Y, Uchinokura K. Large Thermoelectric Power in NaCo2O4Single Crystals[J]. Phys. Rev. B.1997,56(20):12685-12687.
    [11] Ando Y, Miyamoto N, Segawa K, et al. Specific-heat Evidence for StrongElectron Correlations in the Thermoelectric Material (Na,Ca)Co2O4[J]. Phys.Rev. B.1999,60(15):10580-10583.
    [12] Sootsman J R, Chung D Y,Kanatzidis M G. New and Old Concepts inThermoelectric Materials[J]. Angew. Chem. Int. Ed.2009,48(46):8616-8639.
    [13] Ushiki M, Motohashi T, Yamauchi H, et al. High-pressure Synthesis of the"Zero-charge-reservoir"0223Superconductor in the Sr-Ca-Cu-O System[J].Phys. C-Sup. Cond. Appl.2002,378:167-172.
    [14] Masset A C, Michel C, Maignan A, et al. Misfit-layered Cobaltite with anAnisotropic Giant Magnetoresistance: Ca3Co4O9[J]. Phys. Rev. B.2000,62(1):166-175.
    [15] Miyazaki Y. Crystal Structure and Thermoelectric Properties of theMisfit-layered Cobalt Oxides[J]. Solid State Ionics.2004,172(1-4):463-467.
    [16] Miyazaki Y, Kudo K, Akoshima M, et al. Low-temperature ThermoelectricProperties of the Composite Crystal [Ca2CoO3.34](0.614)[CoO2][J]. Japan. J. Appl.Phys. Part2-Lett.2000,39(6A):L531-L533.
    [17] Li S W, Funahashi R, Matsubara I, et al. Synthesis and ThermoelectricProperties of the New Oxide Materials Ca3-xBixCo4O9+δ(0.0    [18] Nan J, Wu J, Deng Y, et al. Synthesis and Thermoelectric Properties of(NaxCa1-x)Co4O9Ceramics[J]. J. Eur. Ceram. Soc.2003,23(6):859-863.
    [19] Xu G J, Funahashi R, Shikano M, et al. Thermoelectric Properties of the Bi-and Na Substituted Ca3Co4O9system[J]. Appl. Phys. Lett.2002,80(20):3760-3762.
    [20] Jian P, Gang C, Dongqing L, et al. Synthesis and High TemperatureThermoelectric Properties of Ca2.7-xEr0.3NaxCo4O9+δ[J]. J. Rare Earths.2007,25:395-399.
    [21] Pei J, Chen G, Lu D Q, et al. Synthesis and High Temperature ThermoelectricProperties of Ca3.0-x-yNdxNayCo4O9+δ[J]. Solid State Commun.2008,146(7-8):283-286.
    [22] Liu C J, Huang L C,Wang J S. Improvement of the ThermoelectricCharacteristics of Fe-doped Misfit-layered Ca3Co4-xFexO9+δ(x=0,0.05,0.1,and0.2)[J]. Appl. Phys. Lett.2006,89(20):204102.
    [23] Miyazaki Y, Suzuki Y, Miura T, et al. Effect of3d-transition Metal Substitutionon the Thermoelectric Properties of the Misfit-layered Cobalt Oxide
    [Ca2CoO3]pCoO2[J].22ndInter. Confer. Therm., Proc. Ict '03.2003:203-206.
    [24] Li D, Qin X Y, Gu Y J, et al. The Effect of Mn Substitution on ThermoelectricProperties of Ca3MnxCo4-xO9at Low Temperatures[J]. Solid State Commun.2005,134(4):235-238.
    [25] Pei J, Chen G,Zhou N. Hydrothermal Synthesis, Characterization, ElectronicStructure, and Thermoelectric Properties of (Ca0.85OH)(1.16)CoO2[J]. J. Chem.Phys.2009,130(4):36377551.
    [26] Takenouchi H, Imai T, Mae H, et al. Synthesis and Thermoelectric Properties ofY Doped SrTiO3by Modified Pechini's Method[J]. Thermoelectric PowerGeneration.2008,1044:235-240.
    [27] Ito M,Ohira N. Transport Properties of Thermoelectric SrTiO3Synthesized byPolymerized Complex Method and Spark Plasma Sintering[J]. FourthInternational Symposium on Atomic Technology.2010,232:012005.
    [28] Yasukawa M,Kono T. Bi Doping Effect on the Thermoelectric Properties ofPerovskite-type Sr0.7Ba0.3PbO3[J]. Solid State Commun.2008,146(11-12):458-461.
    [29] Zhao S J, Li G J, Zhang Y, et al. Synthesis and Thermoelectric Properties ofCa2Co2O5Ceramics[J]. High Perfor. Ceramics Vi.2010,434-435:400-403.
    [30] Ibrahim A M,Thompson D A. Thermoelectric Properties of Bisb Alloys[J].Mater. Chem. Phys.1985,12(1):29-36.
    [31] Goldsmid H J,Sharp J W. Effect of Anisotropy of the Seebeck Coefficient onthe Thermal Conductivity of Polycrystalline BiSb Alloys[J]. Proceedings Ict'96-Fifteenth International Conference on Thermoelectrics.1996:14-17.
    [32] Hamachiyo T, Ashida M, Hasezaki K, et al. Thermoelectric Properties ofBi2Te3-Related Materials Finely Grained by Mechanical Alloying and HighPressure Torsion[J]. Mater. Trans.2009,50(7):1592-1595.
    [33] Iwasaki H, Ohishi A, Kajihara T, et al. Control of the Figure of Merit by theAnti-site Defect in Thermoelectric Materials (Bi,Sb)2Te3[J]. Japan. J. Appl.Phys.2003,42(9A):5477-5479.
    [34] Zhang Q A, Sun T, Cao F, et al. Tuning the Shape and Thermoelectric Propertyof PbTe Nanocrystals by Bismuth Doping[J]. Nanoscale.2010,2(7):1256-1259.
    [35] Cook B A, Kramer M J, Wei X, et al. Nature of the Cubic to RhombohedralStructural Transformation in (AgSbTe2)15(GeTe)85Thermoelectric Material[J].J. Appl. Phys.2007,101(5):053715.
    [36] Biswas K, He J Q, Wang G Y, et al. High Thermoelectric Figure of Merit inNanostructured p-type PbTe-MTe (M=Ca, Ba)[J]. Energy Environ. Sci.2011,4(11):4675-4684.
    [37] Tong F, Miao X S, Wu Y, et al. Effective Method to Identify the Vacancies inCrystalline GeTe[J]. Appl. Phys. Lett.2010,97(26):261904.
    [38] Jung M C, Lee Y M, Kim K, et al. Chemical States of Bi-doped GeTe (Bi:6at.%) Thin Film in Structural Phase Transition Investigated by SynchrotronX-ray Photoelectron Spectroscopy[J]. Curr. Appl Phys.2010,10(5):1336-1339.
    [39] Ovsyannikov S V,Shchennikov V V. Phase Transitions Investigation in ZnTeby Thermoelectric Power Measurements at High Pressure[J]. Solid StateCommun.2004,132(5):333-336.
    [40] Hossain M S, Islam R, Shahjahan M, et al. Studies on the ThermoelectricEffect in Semiconducting ZnTe Thin Films[J]. J. Mater. Sci.-Mater. Electron.2008,19(11):1114-1121.
    [41] Kishimoto K, Nagamoto Y, Koyanagi T. Thermoelectric Properties of SiGeSintered Alloys with Modified Grain Boundaries[J]. Xvii InternationalConference on Thermoelectrics, Proceedings Ict98.1998:257-259.
    [42] Minnich A J, Lee H, Wang X W, et al. Modeling Study of Thermoelectric SiGeNanocomposites[J]. Phys. Rev. B.2009,80(15):
    [43] Devaux X, Brochin F, Martin-Lopez R, et al. Study of the MicrostructureInfluence on the Transport Properties of Bi86.5Sb13.5Polycrystalline alloy[J]. J.Phys. Chem. Solids.2002,63(1):119-125.
    [44] Cao Y Q, Zhao X B, Zhu T J, et al. Syntheses and Thermoelectric Properties ofBi2Te3/Sb2Te3Bulk Nanocomposites with Laminated Nanostructure[J]. Appl.Phys. Lett.2008,92(14):
    [45] Jiang J, Chen L D, Bai S Q, et al. Thermoelectric Properties of Textured p-type(Bi,Sb)2Te3Fabricated by Spark Plasma Sintering[J]. Scr. Mater.2005,52(5):347-351.
    [46]王寅岗,赵晴.低维Bi2Te3热电材料的制备与性能研究[J].电子元件与材料.2010,29(6):48-51.
    [47]潘国峰,周欢欢,檀柏梅,张建新,牛新环,王如. Bi2Te3热电材料研究现状[J].半导体技术.2011,36(10):765-777.
    [48] Xie W J, Tang X F, Yan Y G, et al. Unique Nanostructures and EnhancedThermoelectric Performance of Melt-spun BiSbTe Alloys[J]. Appl. Phys. Lett.2009,94(10):102111.
    [49] Chung D Y, Hogan T, Brazis P, et al. CsBi4Te6: A High-performanceThermoelectric Material for Low-temperature Applications[J]. Science.2000,287(5455):1024-1027.
    [50] Yelgel O C,Srivastava G P. Thermoelectric Properties of n-typeBi2(Te0.85Se0.15)3Single Crystals Doped with CuBr and SbI3[J]. Phys. Rev. B.2012,85(12):125207.
    [51] Cui J L, Fu H, Liu X L, et al. Thermoelectric Properties in p-typeNanostructured Ge-doped Sb100GeTe150Alloy[J]. Curr. Appl Phys.2009,9(5):1170-1174.
    [52] Mehta R J, Karthik C, Jiang W, et al. High Electrical Conductivity AntimonySelenide Nanocrystals and Assemblies[J]. Nano Lett.2010,10(11):4417-4422.
    [53] Gurieva E A, Konstantinov P P, Prokof'eva L V, et al. Thermal Conductivity ofDoped PbTe-based Solid Solutions with Off-center Impurities[J].Semiconductors.2006,40(7):763-767.
    [54] Choi J S, Kim H J, Kim H C, et al. Thermoelectric Properties of n-typePb1-xGexTe Fabricated by Hot Pressing Method[J]. Proceedings Ict'97-XviInter. Confer. Thermo.1997:228-231.
    [55] Heremans J P, Thrush C M,Morelli D T. Thermopower Enhancement in PbTewith pb Precipitates[J]. J. Appl. Phys.2005,98(6):063703.
    [56] Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of ThermoelectricEfficiency in PbTe by Distortion of the Electronic Density of States[J]. Science.2008,321(5888):554-557.
    [57] Ahn K, Li C P, Uher C, et al. Improvement in the Thermoelectric Figure ofMerit by La/Ag Cosubstitution in PbTe[J]. Chem. Mater.2009,21(7):1361-1367.
    [58] Yoneda S, Ohta E, Kaibe H T, et al. Crystal Growth of PbTe Doped with PbI2by the Physical Transport Method[J]. J. Cryst. Growth.1999,204(1-2):229-232.
    [59] Gelbstein Y, Dashevsky Z,Dariel M P. Transport Properties of PbI2-dopedPbTe[J]. Xxi Inter. Confer. Thermo., Proceedings Ict '02.2002:5-8.
    [60] Gelbstein Y, Dashevsky Z,Dariel M P. Highly Efficient Bismuth TellurideDoped p-type Pb0.13Ge0.87Te for Thermoelectric Applications[J]. Phys. Stat.Sol.Rap. Res. Lett.2007,1(6):232-234.
    [61] Zhu P W, Imai Y, Isoda Y, et al. Enhanced Thermoelectric Properties of PbTeAlloyed with Sb2Te3[J]. J. Phys. Condens. Matter.2005,17(46):7319-7326.
    [62] Pei Y Z, Heinz N A, LaLonde A, et al. Combination of Large Nanostructuresand Complex Band Structure for High Performance Thermoelectric LeadTelluride[J]. Energy Environ. Sci.2011,4(9):3640-3645.
    [63] Androulakis J, Lin C H, Kong H J, et al. Spinodal Decomposition andNucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics:Enhanced Performance in Pb1-xSnxTe-PbS[J]. J. Am. Chem. Soc.2007,129(31):9780-9788.
    [64] Leschkies K S, Kang M S, Aydil E S, et al. Influence of Atmospheric Gases onthe Electrical Properties of PbSe Quantum-Dot Films[J]. J. Phys. Chem. C.2010,114(21):9988-9996.
    [65]金葆康,韦正友,张胜义,田玉鹏. PbSe纳米棒的模板合成及其性质[J].化学通报.2009,(2):153-157.
    [66] He J Q, Girard S N, Kanatzidis M G, et al. Microstructure-Lattice ThermalConductivity Correlation in Nanostructured PbTe0.7S0.3ThermoelectricMaterials[J]. Adv. Funct. Mater.2010,20(5):764-772
    [67] Yu B, Zebarjadi M, Wang H, et al. Enhancement of Thermoelectric Propertiesby Modulation-Doping in Silicon Germanium Alloy Nanocomposites[J]. NanoLett.2012,12(4):2077-2082.
    [68] Wang Z Y, Fiorini P, Leonov V, et al. Characterization and Optimization ofPolycrystalline Si70Ge30for Surface Micromachined Thermopiles in HumanBody Applications[J]. J. Micromech. Microeng.2009,19(9):094011.
    [69] Takiguchi H, Matoba A, Sasaki K, et al. Structural Properties of HeavilyB-Doped SiGe Thin Films for High Thermoelectric Power[J]. MaterialsTransactions.2010,51(5):878-881.
    [70] Fu L W, Rowe D M,Min G. The Effect of Heat-Treatment on theElectrical-Power Factor of High-Temperature Annealed N-Sige GapThermoelectric Alloys[J]. J. Phys. D-Appl. Phys..1993,26(10):1796-1798.
    [71] Sales B C, Mandrus D,Williams R K. Filled Skutterudite Antimonides: A newclass of Thermoelectric Materials[J]. Science.1996,272(5266):1325-1328.
    [72] Kawaharada Y, Kuroaski K, Uno M, et al. Thermoelectric Properties ofCoSb3[J]. J. Alloys Compd.2001,315(1-2):193-197.
    [73] Dyck J S, Chen W D, Uher C, et al. Thermoelectric Properties of the n-typeFilled Skutterudite Ba0.3Co4Sb12Doped with Ni[J]. J. Appl. Phys.2002,91(6):3698-3705.
    [74] Shi X, Yang J, Salvador J R, et al. Multiple-Filled Skutterudites: HighThermoelectric Figure of Merit through Separately Optimizing Electrical andThermal Transports [J]. J. Am. Chem. Soc.2012,134(5):2842-2842.
    [75] Alboni P N, Ji X, He J, et al. Thermoelectric Properties ofLa0.9CoFe3Sb12-CoSb3Skutterudite Nanocomposites[J]. J. Appl. Phys.2008,103(11):113707.
    [76] Chakoumakos B C, Sales B C, Mandrus D, et al. Disparate AtomicDisplacements in Skutterudite-type LaFe3CoSb12, a Model for Thermoelectricbehavior[J]. Acta Cryst. Section B-Struct. Sci.1999,55:341-347.
    [77] Zhang L, Grytsiv A, Kerber M, et al. Thermoelectric Performance ofMischmetal Skutterudites MmyFe4-xCoxSb12at Elevated Temperatures[J]. J.Alloys Compd.2010,490(1-2):19-25.
    [78] Makongo J P A, Misra D K, Zhou X Y, et al. Simultaneous LargeEnhancements in Thermopower and Electrical Conductivity of BulkNanostructured Half-Heusler Alloys[J]. J. Am. Chem. Soc.2011,133(46):18843-18852.
    [79] Poon S J, Wu D, Zhu S, et al. Half-Heusler Phases and Nanocomposites asEmerging high-ZT Thermoelectric Materials[J]. J. Mater. Res.2011,26(22):2795-2802.
    [80] Hazama H, Matsubara M, Asahi R, et al. Improvement of ThermoelectricProperties for Half-Heusler TiNiSn by Interstitial Ni Defects[J]. J. Appl. Phys.2011,110(6):063710.
    [81] Novikov V V, Matovnikov A V, Avdashchenko D V, et al. Low-temperatureStructure and Lattice Dynamics of the Thermoelectric Clathrate Sn24P19.3I8[J]. J.Alloys Compd.2012,520:174-179.
    [82] Du B L, Saiga Y, Kajisa K, et al. Thermoelectric Performance of Zn-substitutedType-VIII Clathrate Ba8Ga16Sn30Single Crystals[J]. J. Appl. Phys.2012,111(1):013707.
    [83] Chandra L S S, Lakhani A, Gangrade M, et al. Modified Scaling ofThermopower to Heat Capacity Observed with low-temperature Measurementsin FeSi1-xAlx[J]. Phys. Rev. B.2008,78(7):075123.
    [84] Sales B C, Delaire O, McGuire M A, et al. Thermoelectric Properties of Co-, Ir-,and Os-doped FeSi Alloys: Evidence for Strong Electron-phonon Coupling[J].Phys. Rev. B.2011,83(12):125209.
    [85] Luo W H, Li H, Fu F, et al. Improved Thermoelectric Properties of Al-DopedHigher Manganese Silicide Prepared by a Rapid Solidification Method[J]. J.Electron. Mater.2011,40(5):1233-1237.
    [86] Dasgupta T, Etourneau J, Chevalier B, et al. Structural, Thermal, and ElectricalProperties of CrSi2[J]. J. Appl. Phys.2008,103(11):113516.
    [87] Hicks L D, Harman T C,Dresselhaus M S. Use of Quantum-Well Superlatticesto Obtain a High Figure of Merit from NonconventionalThermoelectric-Materials[J]. Appl. Phys. Lett.1993,63(23):3230-3232.
    [88] Hicks L D,Dresselhaus M S. Thermoelectric Figure of Merit of aOne-Dimensional Conductor[J]. Phys. Rev. B.1993,47(24):16631-16634.
    [89] Hicks L D,Dresselhaus M S. Effect of Quantum-Well Structures on theThermoelectric Figure of Merit[J]. Phys. Rev. B.1993,47(19):12727-12731.
    [90]柏胜强,陈立东,熊震.纳米复合热电材料研究进展[J].无机材料学报2010,25(6):561-568.
    [91] Harman T C, Taylor P J, Walsh M P, et al. Quantum Dot SuperlatticeThermoelectric Materials and Devices[J]. Science.2002,297(5590):2229-2232.
    [92] Dresselhaus M S, Chen G, Tang M Y, et al. New Directions forLow-dimensional Thermoelectric Materials[J]. Adv. Mater.2007,19(8):1043-1053.
    [93] Zhou W W, Zhu J X, Li D, et al. Binary-Phased Nanoparticles for EnhancedThermoelectric Properties[J]. Adv. Mater.2009,21(31):3196-3200.
    [94] Ebner C, Bodner T, Stelzer F, et al. One Decade of Microwave-AssistedPolymerizations: Quo vadis?[J]. Macromol. Rapid Commun.2011,32(3):254-288.
    [95] Damm M, Holzer M, Radspieler G, et al. Microwave-assisted High-throughputacid Hydrolysis in Silicon Carbide Microtiter Platforms-A Rapid and LowVolume Sample Preparation Technique for Total Amino Acid Analysis inProteins and Peptides[J]. J. Chromatogr. A.2010,1217(50):7826-7832.
    [96] Soderholm S L, Damm M,Kappe C O. Microwave-assisted DerivatizationProcedures for Gas Chromatography/mass Spectrometry Analysis[J]. Mol.Diversity.2010,14(4):869-888.
    [97] Moseley J D, Kappe C O. A Critical Assessment of the Greenness and EnergyEfficiency of Microwave-assisted Organic Synthesis[J]. Green Chem.2011,13(4):794-806.
    [98] Jiang Y, Zhu Y J,Cheng G F. Synthesis of Bi2Se3Nanosheets by MicrowaveHeating Using an Ionic Liquid[J]. Cryst. Growth Des.2006,6(9):2174-2176.
    [99] Dong G H, Zhu Y J,Chen L D. Microwave-assisted Rapid Synthesis of Sb2Te3Nanosheets and Thermoelectric Properties of Bulk Samples Prepared by SparkPlasma Sintering[J]. J. Mater. Chem.2010,20(10):1976-1981.
    [100] Chen G C, Fan J B, Zhao T, et al. Microwave-Controlled Facile Synthesis ofWell-Defined PbS Hexapods[J]. J. Nanosci. Nanotechno.2011,11(9):7807-7812.
    [101] Zhao X B, Ji X H, Zhang Y H, et al. Bismuth Telluride Nanotubes and theEffects on the Thermoelectric Properties of Nanotube-containingNanocomposites[J]. Appl. Phys. Lett.2005,86(6):062111.
    [102] Morales A M,Lieber C M. A Laser Ablation Method for the Synthesis ofCrystalline Semiconductor Nanowires[J]. Science.1998,279(5348):208-211.
    [103] Wu Y Y, Fan R,Yang P D. Block-by-block Growth of Single-crystallineSi/SiGe Superlattice Nanowires[J]. Nano Lett.2002,2(2):83-86.
    [104] Lee H W, Schmidt M A, Russell R F, et al. Pressure-assisted Melt-filling andOptical Characterization of Au Nano-wires in Microstructured Fibers[J]. Opt.Express.2011,19(13):12180-12189.
    [105] Jia Y Y, Yang D C, Luo B, et al. One-pot Synthesis of Bi-Ni Nanowire andNanocable Arrays by Coelectrodeposition Approach[J]. Nanoscale Res. Lett.2012,7:1-6.
    [106] Muller S, Schotz C, Picht O, et al. Electrochemical Synthesis of Bi1-xSbxNanowires with Simultaneous Control on Size, Composition, and SurfaceRoughness[J]. Cryst. Growth Des.2012,12(2):615-621.
    [107] Sapp S A, Lakshmi B B,Martin C R. Template Synthesis of Bismuth telluridenanowires[J]. Adv. Mater.1999,11(5):402-404.
    [108] Prieto A L, Sander M S, Martin-Gonzalez M, et al. Electrodeposition ofOrdered Bi2Te3Nanowire Arrays[J]. J. Am. Chem. Soc.2001,123(29):7160-7161.
    [109] Sander M S, Prieto A L, Gronsky R, et al. Fabrication of High-density, HighAspect Ratio, Large-area Bismuth Telluride Nanowire Arrays byElectrodeposition into Porous Anodic Alumina Templates[J]. Adv. Mater.2002,14(9):665-667.
    [110] Sander M S, Gronsky R, Sands T, et al. Structure of Bismuth TellurideNanowire Arrays Fabricated by Electrodeposition into Porous Anodic AluminaTemplates[J]. Chem. Mater.2003,15(1):335-339.
    [111] Jin C G, Jiang G W, Liu W F, et al. Fabrication of Large-area Single CrystalBismuth Nanowire Arrays[J]. J. Mater. Chem.2003,13(7):1743-1746.
    [112] Jin C G, Xiang X Q, Jia C, et al. Electrochemical Fabrication of Large-area,Ordered Bi2Te3Nanowire Arrays[J]. J. Phys. Chem. B.2004,108(6):1844-1847.
    [113] Jia C, Jin C G, Liu W F, et al. Fabrication of Sb Single-crystal NanowireArrays[J]. Acta Phys. Chim. Sin.2004,20(3):240-243.
    [114] Jin C G, Zhang G Q, Qian T, et al. Large-area Sb2Te3Nanowire Arrays[J]. J.Phys. Chem. B.2005,109(4):1430-1432.
    [115] Peranio N, Leister E, Tollner W, et al. Stoichiometry Controlled,Single-Crystalline Bi2Te3Nanowires for Transport in the Basal Plane[J]. Adv.Funct. Mater.2012,22(1):151-156.
    [116] Li L, Xiao Y H, Yang Y W, et al. Fabrication of Antimony Junction Nanowiresin Anodic Alumina Membranes[J]. Chem. Lett.2005,34(9):1274-1275.
    [117] Li L, Yang Y W, Huang X H, et al. Fabrication and Electronic TransportProperties of Bi Nanotube Arrays[J]. Appl. Phys. Lett.2006,88(10):103119.
    [118] Li L, Xiao Y H, Yang Y W, et al. A Facile Route to FabricateSingle-crystalline Antimony Nanotube Arrays[J]. Chem. Lett.2005,34(7):930-931.
    [119] Yang D C, Meng G W, Xu Q L, et al. Electronic Transport Behavior ofBismuth Nanotubes with a Predesigned Wall Thickness[J]. J. Phys. Chem. C.2008,112(23):8614-8616.
    [120] Li X H, Zhou B, Pu L, et al. Electrodeposition of Bi2Te3and Bi2Te3DerivedAlloy Nanotube Arrays[J]. Cryst. Growth Des.2008,8(3):771-775.
    [121] Xue F H, Fei G T, Wu B, et al. Direct Electrodeposition of Highly DenseBi/Sb Superlattice Nanowire Arrays[J]. J. Am. Chem. Soc.2005,127(44):15348-15349.
    [122] Wang W, Zhang G Q,Li X G. Manipulating Growth of ThermoelectricBi2Te3/Sb Multilayered Nanowire Arrays[J]. J. Phys. Chem. C.2008,112(39):15190-15194.
    [123] Yoo B, Xiao F, Bozhilov K N, et al. Electrodeposition of ThermoelectricSuperlattice Nanowires[J]. Adv. Mater.2007,19(2):296-299.
    [124] Tai G A, Guo W L,Zhang Z H. Hydrothermal Synthesis and ThermoelectricTransport Properties of Uniform Single-crystalline Pearl-necklace-shaped PbTeNanowires[J]. Cryst. Growth Des.2008,8(10):3878-3878.
    [125] Shi W D, Yu J B, Wang H S, et al. Hydrothermal Synthesis ofSingle-crystalline Antimony Telluride Nanobelts[J]. J. Am. Chem. Soc.2006,128(51):16490-16491.
    [126] Wang X Q, Xi G C, Liu Y K, et al. Controllable Synthesis of PbSeNanostructures and Growth Mechanisms[J]. Cryst. Growth Des.2008,8(4):1406-1411.
    [127] Zhang G, Lu X, Wang W, et al. Facile Synthesis of a Hierarchical PbTeFlower-like Nanostructure and its Shape Evolution Process Guided by aKinetically Controlled Regime[J]. Chem. Mater.2007,19(22):5207-5209.
    [128] Zhu T J, Chen X, Cao Y Q, et al. Controllable Synthesis and Shape Evolutionof PbTe Three-Dimensional Hierarchical Superstructures via an AlkalineHydrothermal Method[J]. J. Phys. Chem. C.2009,113(19):8085-8091.
    [129] Hou W C, Chen L Y, Tang W C, et al. Control of Seed Detachment inAu-Assisted GaN Nanowire Growths[J]. Cryst. Growth Des.2011,11(4):990-994.
    [130] Ghosh S, Hujdic J E, Villicana-Bedolla A, et al. Gold Core-SemiconductorShell Nanowires Prepared by Lithographically Patterned NanowireElectrodeposition[J]. J. Phys. Chem. C.2011,115(36):17670-17675.
    [131] Zou X, Liu B B, Li Q J, et al. One-step Synthesis, Growth Mechanism andPhotoluminescence Properties of Hollow GeO2Walnuts[J]. CrystEngComm.2011,13(3):979-984.
    [132] Sun Y G, Zou R J, Li W Y, et al. A Controllable Hydrothermal Synthesis ofUniform Three-dimensional Hierarchical Microstructured ZnO Films[J].CrystEngComm.2011,13(20):6107-6113.
    [133] Sun X J, Wang J W, Xing Y, et al. Surfactant-assisted Hydrothermal Synthesisand Electrochemical Properties of Nanoplate-assembled3D flower-likeCu3V2O7(OH)2.H2O Microstructures[J]. CrystEngComm.2011,13(1):367-370.
    [134] Wang X L, Feng Z C, Fan D Y, et al. Shape-Controlled Synthesis of CdSNanostructures via a Solvothermal Method[J]. Cryst. Growth Des.2010,10(12):5312-5318.
    [135] Xiao W, Chen J S, Li C M, et al. Synthesis, Characterization, and LithiumStorage Capabitity of AMoO4(A=Ni, Co) Nanorods[J]. Chem. Mater.2010,22(3):746-754.
    [136] Huo Y N, Zhang J, Miao M, et al. Solvothermal Synthesis of Flower-likeBiOBr Microspheres with Highly Visible-light Photocatalytic Performances[J].Appl. Catal. B-Envir.2012,111:334-341.
    [137] Lu F, Cai W P, Zhang Y G, et al. Fabrication and Field-emission Performanceof Zinc Sulfide Nanobelt Arrays[J]. J. Phys. Chem. C.2007,111(36):13385-13392.
    [138] Xia J X, Yin S, Li H M, et al. Improved Visible Light Photocatalytic Activityof Sphere-like BiOBr Hollow and Porous Structures Synthesized via aReactable Ionic Liquid[J]. Dalton Trans.2011,40(19):5249-5258.
    [139] Zhang Z H, Lee S H, Vittal J J, et al. A Simple Way to Prepare PbSNanocrystals with Morphology Tuning at Room Temperature[J]. J. Phys. Chem.B.2006,110(13):6649-6654.
    [140] Zhang H, Zuo M, Tan S, et al. Carbothermal Reduction/Sulfidation Synthesisand Structural Characterization of PbS Nanobelts and Nanowires[J].Nanotechnology.2006,17(12):2931-2936.
    [141] Zhao N,Qi L M. Low-temperature Synthesis of Star-shaped PbS Nanocrystalsin Aqueous Solutions of Mixed Cationic/Anionic Surfactants[J]. Adv. Mater.2006,18(3):359-364.
    [142] Jin R C, Chen G, Wang Q, et al. Flowerlike PbS Microcrystals: Citric AcidAssisted Synthesis, Shape Evolution, and Electrical Conductivities[J]. Eur. J.Inorg. Chem.2010,(36):5700-5708.
    [143] Lau Y K A, Chernak D J, Bierman M J, et al. Epitaxial Growth of HierarchicalPbS Nanowires[J]. J. Mater. Chem.2009,19(7):934-940.
    [144] Zuo F, Yan S, Zhang B, et al. L-cysteine-assisted Synthesis of PbSNanocube-based Pagoda-like Hierarchical Architectures[J]. J. Phys. Chem. C.2008,112(8):2831-2835.
    [145] Wang N, Cao X, Guo L, et al. Facile Synthesis of PbS Truncated OctahedronCrystals with High Symmetry and Their Large-scale Assembly into RegularPatterns by a Simple Solution Route[J]. Acs Nano.2008,2(2):184-190.
    [146] Schliehe C, Juarez B H, Pelletier M, et al. Ultrathin PbS Sheets byTwo-Dimensional Oriented Attachment[J]. Science.2010,329(5991):550-553.
    [147] Wang Z L. Transmission Electron Microscopy of Shape-controlledNanocrystals and Their Assemblies[J]. J. Phys. Chem. B.2000,104(6):1153-1175.
    [148] Zhang Y G, Lu F, Wang Z Y, et al. Aggregation of ZnO Nanorods into Filmsby Oriented Attachment[J]. J. Phys. Chem. C.2007,111(12):4519-4523.
    [149] Scheele M, Oeschler N, Veremchuk I, et al. Thermoelectric Properties of LeadChalcogenide Core-Shell Nanostructures[J]. Acs Nano.2011,5(11):8541-8551.
    [150] Zhao W, Ge P Y, Xu J J, et al. Catalytic Deposition of pb on Regenerated GoldNanofilm Surface and its Application in Selective Determination of Pb2+[J].Langmuir.2007,23(16):8597-8601.
    [151] Yang Y, Kung S C, Taggart D K, et al. Synthesis of PbTe Nanowire ArraysUsing Lithographically Patterned Nanowire Electrodeposition[J]. Nano Lett.2008,8(8):2447-2451.
    [152] Li Y X, Chen G, Wang Q, et al. Hierarchical ZnS-In2S3-CuS Nanospheres withNanoporous Structure: Facile Synthesis, Growth Mechanism, and ExcellentPhotocatalytic Activity[J]. Adv. Funct. Mater.2010,20(19):3390-3398.
    [153] Garje S S, Eisler D J, Ritch J S, et al. A New Route to Antimony TellurideNanoplates from a Single-source Precursor[J]. J. Am. Chem. Soc.2006,128(10):3120-3121.
    [154] Rowe D M. CRC Handbook of Thermoelectrics, CRC press, London, NewYork, Washington, D.C.1995,
    [155] Cho K S, Talapin D V, Gaschler W, et al. Designing PbSe Nanowires andNanorings through Oriented Attachment of Nanoparticles[J]. J. Am. Chem. Soc.2005,127(19):7140-7147.
    [156] Cao H L, Gong Q, Qian X F, et al. Synthesis of3-D Hierarchical Dendrites ofLead Chalcogenides in Large Scale via Microwave-assistant Method[J]. Cryst.Growth Des.2007,7(2):425-429.
    [157] Zhang S D, Wu C Z, Wu Z C, et al. Construction of PbSe HierarchicalSuperstructures via an Alkaline Etching Method[J]. Cryst. Growth Des.2008,8(8):2933-2937.
    [158] Zhang G Q, Wang W, Yu Q X, et al. Facile One-Pot Synthesis of PbSe andNiSe2Hollow Spheres: Kirkendall-Effect-Induced Growth and RelatedProperties[J]. Chem. Mater.2009,21(5):969-974.
    [159] Chen S T, Zhang X L, Hou X M, et al. One-Pot Synthesis of Hollow PbSeSingle-Crystalline Nanoboxes via Gas Bubble Assisted Ostwald Ripening[J].Cryst. Growth Des.2010,10(3):1257-1262.
    [160] Zhu H L, Yang D R,Zhang H. Hydrothermal Synthesis, Characterization andProperties of SnS Nanoflowers[J]. Mater. Lett.2006,60(21-22):2686-2689.
    [161] Yang L X, Zhu Y J, Li L, et al. A Facile Hydrothermal Route to Flower-likeCobalt Hydroxide and Oxide[J]. Eur. J. Inorg. Chem.2006,(23):4787-4792.
    [162] Zhou Y X, Yao H B, Zhang Q, et al. Hierarchical FeWO4Microcrystals:Solvothermal Synthesis and Their Photocatalytic and Magnetic Properties[J].Inorg. Chem.2009,48(3):1082-1090.
    [163] Ma Y L, Zhang L, Cao X F, et al. Microwave-assisted Solvothermal Synthesisand Growth Mechanism of WO3.(H2O)0.33Hierarchical Microstructures[J].CrystEngComm.2010,12(4):1153-1158.
    [164] Das V D,Bhat K S. Electrical-Conductivity of Air-Exposed and UnexposedLead Selenide Thin-Films-Temperature and Size Effects[J]. Phys. Rev. B.1989,40(11):7696-7703.
    [165] Sun Z L, Liufu S C, Chen X H, et al. Solution Route to PbSe Films withEnhanced Thermoelectric Transport Properties[J]. Eur. J. Inorg. Chem.2010,(27):4321-4324.
    [166] Smith R A. Physica.1954,20:910-929.
    [167] Hu J Q, Chen Z G, Jiang H, et al. Rectangular or Square, Tapered, andSingle-crystal PbTe Nanotubes[J]. J. Mater. Chem.2009,19(19):3063-3068.
    [168] Wang C, Zhang G, Fan S, et al. Hydrothermal Synthesis of PbSe, PbTeSemiconductor Nanocrystals[J]. J. Phys. Chem. Solids.2001,62(11):1957-1960.
    [169] Qiu X F, Lou Y B, Samia A C S, et al. PbTe Nanorods bySonoelectrochemistry[J]. Angew. Chem. Int. Ed.2005,44(36):5855-5857.
    [170] Mokari T L, Zhang M J,Yang P D. Shape, Size, and Assembly Control of PbTeNanocrystals[J]. J. Am. Chem. Soc.2007,129(32):9864-9865.
    [171] Wang W Z, Poudel B, Wang D Z, et al. Synthesis of PbTe Nanoboxes Using aSolvothermal Technique[J]. Adv. Mater.2005,17(17):2110-2114.
    [172] Zhou L, Wang W Z, Xu H L, et al. Bi2O3Hierarchical Nanostructures:Controllable Synthesis, Growth Mechanism, and their Application inPhotocatalysis[J]. Chem. Eur. J.2009,15(7):1776-1782.
    [173] Poudeu P F P, D'Angelo J, Kong H J, et al. Nanostructures Versus SolidSolutions: Low lattice Thermal Conductivity and Enhanced ThermoelectricFigure of Merit in Pb9.6Sb0.2Te10-xSexBulk Materials[J]. J. Am. Chem. Soc.2006,128(44):14347-14355.
    [174] Arachchige I U, Wu J S, Dravid V P, et al. Nanocrystals of the QuaternaryThermoelectric Materials: AgPbmSbTem+2(m=1-18): Phase-Segregated or SolidSolutions?[J]. Adv. Mater.2008,20(19):3638-3642.
    [175] Han M K, Hoang K, Kong H J, et al. Substitution of Bi for Sb and its Role inthe Thermoelectric Properties and Nanostructuring in Ag1-xPb18MTe20(M=Bi,Sb)(x=0,0.14,0.3)[J]. Chem. Mater.2008,20(10):3512-3520.
    [176] Urban J J, Talapin D V, Shevchenko E V, et al. Synergismin BinaryNanocrystal Superlattices Leads to Enhanced p-type Conductivity inSelf-assembled PbTe/Ag2Te Thin Films[J]. Nat. Mater.2007,6(2):115-121.
    [177] Jin R C, Chen G, Pei J, et al. Facile Solvothermal Synthesis and GrowthMechanism of Flower-like PbTe Dendrites Assisted by Cyclodextrin[J].CrystEngComm.2012,14(6):2327-2332.
    [178] Ma J M, Wang Y P, Wang Y J, et al. Controlled Synthesis of One-DimensionalSb2Se3Nanostructures and Their Electrochemical Properties[J]. J. Phys. Chem.C.2009,113(31):13588-13592.
    [179] Shen G Z, Chen D, Tang K B, et al. Self-sacrificing Template Route to NovelPatterns of Radially Aligned Bi2(Se,S)3Nanorods and Bi2Se3Flakes[J].Nanotechnology.2004,15(11):1530-1534.
    [180] Wei Q, Su Y, Yang C J, et al. The Synthesis of Bi2Te3Nanobelts byVapor-liquid-solid Method and Their Electrical Transport Properties[J]. J.Mater. Sci.2011,46(7):2267-2272.
    [181] Chang H W, Sarkar B,Liu C W. Synthesis of Sb2Se3Nanowires via aSolvothermal Route from the Single Source Precursor Sb[Se(2)P(O(i)Pr)(2)]3[J].Cryst. Growth Des.2007,7(12):2691-2695.
    [182] Guo L, Ji G B, Chang X F, et al. Microwave-assisted Synthesis of Sb2Se3Submicron Tetragonal Tubular and Spherical Crystals[J]. Nanotechnology.2010,21(3):035606.
    [183] Zhao C, Cao X B, Lan X M. Microwave-enhanced Rapid and Green Synthesisof Well Crystalline Sb2Se3Nanorods with a Flat Cross Section[J]. Mater. Lett.2007,61(29):5083-5086.
    [184] Yu Y, Wang R H, Chen Q, et al. High-quality Ultralong Sb2Se3and Sb2S3Nanoribbons on a Large Scale via a Simple Chemical Route[J]. J. Phys. Chem.B.2006,110(27):13415-13419.
    [185] Wang J W, Deng Z X,Li Y D. Synthesis and Characterization of Sb2Se3Nanorods[J]. Mater. Res. Bull.2002,37(3):495-502.
    [186] Zhou B, Ji Y, Yang Y F, et al. Rapid Microwave-Assisted Synthesis ofSingle-Crystalline Sb2Te3Hexagonal Nanoplates[J]. Cryst. Growth Des.2008,8(12):4394-4397.
    [187] Li S Z, Zhang H, Ji Y J, et al. CuO Nanodendrites Synthesized by a NovelHydrothermal Route[J]. Nanotechnology.2004,15(11):1428-1432.
    [188] Xiao H M, Fu S Y, Zhu L P, et al. Controlled Synthesis and Characterizationof CuO Nanostructures Through a Facile Hydrothermal Route in the Presenceof Sodium Citrate[J]. Eur. J. Inorg. Chem.2007,(14):1966-1971.
    [189] Jin R C, Chen G, Pei J, et al. Solvothermal Synthesis and Growth Mechanismof Ultrathin Sb2Te3Hexagonal Nanoplates with Thermoelectric TransportProperties[J]. Rsc Adv.2012,2(4):1450-1456.
    [190] Wang S, Guan W P, Ma D K, et al. Synthesis, Characterization and OpticalProperties of Flower-like Tellurium[J]. CrystEngComm.2010,12(1):166-171.
    [191] Dyck J S, Chen W, Uher C, et al. Heat Transport in Sb2-xVxTe3SingleCrystals[J]. Phys. Rev. B.2002,66(12):125206.
    [192] Kim P, Zuev Y M, Lee J S, et al. Diameter Dependence of the TransportProperties of Antimony Telluride Nanowires[J]. Nano Lett.2010,10(8):3037-3040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700