用户名: 密码: 验证码:
南黄海、东海表层沉积物中脂肪烃与多环芳烃的分布特征及来源初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆架海作为陆地与大洋的过渡带,在陆源有机质的转运及埋藏中具有重要作用。黄、东海是西太平洋最大的边缘海,因其高的生产力和碳埋藏速率,加之大量的入海污染物对生态系统形成巨大的压力,这一海域已成为海洋地球化学研究的热点区域。海洋沉积环境中脂肪烃(AHs)和多环芳烃(PAHs)的研究对于揭示有机质来源、环境污染以及评价其潜在生态风险有着重要的科学意义和应用价值。本论文对南黄海、东海表层沉积物中的正构烷烃、类异戊二烯、复杂混合物(UCM)及多环芳烃等多种烃类标志物进行了系统的研究,旨在了解研究区域内沉积有机质来源、石油污染状况、PAHs的污染源及潜在生态风险。主要结论如下:
     (1)南黄海表层沉积物中有机碳(TOC)含量整体呈现泥质区高于沿岸的分布趋势,最高值出现在东北地区,含量最低的是苏北沿岸。东海沉积物TOC整体含量低于南黄海,济州岛西南泥质区高于沿岸地区,陆架中部含量最低;沿岸地区TOC分布呈现南部高于北部的特征。有机碳的分布受到沉积物的来源、粒径以及水文条件等因素控制。从C/N分析,南黄海沉积有机质呈现陆源和海源共同影响的特征。由于受到现代黄河与老黄河物质的影响,苏北沿岸以及山东半岛南部地区具有较高的C/N值。东海的C/N值整体低于南黄海,沿岸地区偏低的C/N值主要与人为活动、细菌以及土壤有机质有关。
     (2)南黄海表层沉积物中正构烷烃(C14~C35)的含量在0.42~2.00μg·g~(-1)之间,平均值为1.01±0.34μg·g~(-1);东海地区的正构烷烃含量在0.36~1.79μg·g~(-1)之间,平均值为0.94±0.39μg·g~(-1)。研究区域正构烷烃以双峰型分布为主,前峰群主峰碳C16/C17/C18,后峰群主峰碳C29/C31。短链正构烷烃(C14~C21)无明显奇偶优势,表明正构烷烃主要来源于微生物合成或化石燃料输入。长链正构烷烃(C>25)具有奇偶优势,表明研究区域存在明显的陆源输入。总的烷烃参数分析表明,南黄海表层沉积物中有机质的海源与陆源贡献相当,而东海以陆源输入为主。正构烷烃含量与TOC%无明显相关性,主要与正构烷烃的来源多样性有关。
     (3)高的UCM含量和低的姥鲛烷/植烷(Pr/Ph)比值,表明研究区域受到了不同程度的石油污染,其中以苏北沿岸和浙江北部附近海域污染最为严重。除了细菌的贡献外,UCM主要的是由河流输入与船只排放的石油烃造成。此外,大气沉降也可能是UCM的另一个重要来源。
     (4)南黄海表层沉积物中多环芳烃(TPAHs)的含量在61~3601ng·g~(-1)之间,平均值为825±716ng·g~(-1)。平面分布呈现北部高于南部,最高值出现在靠近韩国一侧,可能与海上倾废有关;苏北沿岸地区含量最低。东海表层沉积物中TPAHs含量在128~1643ng·g~(-1)之间,平均值为771±411ng·g~(-1)。近岸泥质区高于济州岛西南泥质区,陆架中部含量最低。与世界其他地区相比,研究区域整体上处于中低等污染水平。
     (5)TOC是控制南黄海沉积物中TPAHs分布的重要因素;东海沉积物中TPAHs的分布除受TOC的影响外,还与复杂的水动力条件、滨岸各类污染源的输入以及黑炭(BC)、颗粒有机碳(POC)分布有关。南黄海TOC标准化的TPAHs分布整体呈现沿岸高于远岸,中部泥质区最低的分布特征。
     (6)沉积物中的PAHs主要以3环母本多环芳烃为主,占总量的64.1%±9.1%,4环次之。其中济州岛西南泥质区和陆架中部以5、6环的PAHs为主,可能与大气输入有关;研究区域沉积物中的优势组分是菲、荧蒽、芴、甲基菲及芘,表明PAHs与煤燃烧有关。
     (7)因子分析和分子比值法分析显示,家庭燃煤和煤制焦是研究区域最主要的PAHs输入源。木材燃烧对东海PAHs的贡献率要大于南黄海,这与南北能源及工业结构不同有关。此外,天然气燃烧已成为研究区域沉积物中PAHs的重要来源。与燃烧源相比,石油源对沉积物中的PAHs贡献率很小,主要与石油源PAHs不稳定易分解有关。PAHs污染源的组成与我国当前的能源结构吻合。
     (8)沉积物中的PAHs在远距离传输过程中发生了降解。南黄海、东海近岸沉积物中的PAHs主要以河流输入为主,同时存在大气沉降的添加,而济州岛与陆架中部地区则以大气沉降为主。
     (9)采用效应区间中-低值法评价了研究区域沉积物中PAHs潜在生态风险,结果表明PAHs远低于效应区间中值(ERM),整体属于低风险。但有多个站位的芴(F)、菲(Phe)超过了效应区间低值(ERL),可能会对底栖生物造成危害。
Continental shelf regions are the transition zones between continent and openocean and play a key role in the transport and storage of terrestrial organic materialsin the ocean. As two of the largest marginal seas in the Western Pacific Ocean, theYellow Sea (YS) and East China Sea (ECS) have attracted many concerns not onlybecause of their high primary productivity and high carbon burial rates, but also as aresult of the rapidly increasing environmental pressure of huge pollutant loadings onthe marine ecosystem. The studies on aliphatic hydrocarbons (AHs) and polycyclicaromatic hydrocarbons (PAHs) in the sediments are of important scientific andpractical significance in revealing the origins of sedimentary organic material andenvironmental pollution as well as their potential threat on marine organisms. In thisdissertation, we present systematic results on the composition characteristics, spatialdistribution patterns, and controlling mechanisms of multiple hydrocarbon biomarkers(n-alkanes, isoprenoid pristane and phytane, unresolved complex mixtures (UCM),alkyl and parent PAHs) in surface sediments from the South Yellow Sea (SYS) andECS. The study aims to understand the origins of sedimentary organic material(SOM), sediment contamination status by petroleum and PAHs, the sources andpotential ecological risk of PAHs in the study areas. The main conclusions aresummarized as follows:
     1. The content of total organic carbon (TOC) in the surface sediments from the SYSshowed an overall pattern of lower values near the coast and higher values in the mud area. The highest values occurred in the northeast part of the study area, and thelowest values were found off the Jiangsu coast. The average TOC content in thesamples from the ECS was relatively lower than that from the SYS. The highest levelappeared in the mud area to the southwest of Cheju Island while the lowest TOCcontent was found in the middle shelf, and higher level occurred in the inner shelfregion. The distribution pattern of TOC in the inner shelf was characterized byincreasing southward along the shoreline. In the study areas, the distribution of TOCis affected by many factors, such as sediment sources, grain-sizes, hydrodynamicconditions, and so on. The C/N ratio suggests that SOM in the SYS is derived fromboth terrestrial plants and marine organism. The terrestrial input dominates the sourceof organic material in the northern part of the study areas and Jiangsu coastal area,caused by inputs of materials from the modern Huanghe River and the old Huanghedelta, respectively. In comparison, the values of C/N in the ECS are lower than that inthe SYS. In coastal area, lower C/N ratios could be primarily attributed toanthropogenic influences, microorganism and soil-derived organic matter.
     2. Concentrations of n-alkanes (C14~C35) were from0.42to2.00μg·g~(-1)in the SYSsurface sediments and varied from0.36to1.79μg·g~(-1)in the ECS surface sediments,with mean values of1.01±0.34μg·g~(-1)and0.94±0.39μg·g~(-1), respectively. In mostsamples, the n-alkanes had a bimodal distribution which is maximized at C16, C17orC18in the first mode and at C29or C31in the second mode. The short-chain (C14~C21)n-alkanes showed no noticeable even/odd preference, suggesting that microbialactivity or fossil inputs is the primary source. The profile of long-chain(C>25)n-alkanes with an elevated odd to even carbon preference revealed the occurrence ofprominent terrestrial inputs in the study area. Overall, bulk hydrocarbon parameterssuggest that SOM in surface sediment in the SYS is derived from both terrestrial andmarine sources, while that in the ECS is predominantly come from terrestrial sources.There is no significant correlation between the contents of n-alkanes and TOC%in thestudy areas, primarily because of the diversity of sources of n-alkanes.
     3. The presence of elevated levels of UCM and relatively low Pr/Ph ratios in mostsites revealed a petroleum contamination in the study areas, especially in the coastal areas of Jiangsu and south Zhejiang. With the exception of bacterial contribution, themajority of UCM is related to anthropogenic input of petroleum residues likely due tothe local river discharge and shipping activities. In addition, atmospheric deposition isprobably another important source for UCM.
     4. Concentrations of PAHs (TPAHs) varied from61to3601ng.g~(-1)in the SYSsurface sediments, with mean values of825±716ng.g~(-1). TPAHs showed an overallpattern of lower values in the north part and higher values in the south part of the SYS.The highest values occurred in the northeast close to South Korea, could be likelyrelated to the ocean dumping, while the lowest values were found off the Jiangsucoast. The contents of TPAHs ranged from128to1643ng.g~(-1)in the ECS surfacesediments, with mean valus of771±411ng.g~(-1). Among different sampling areas, thehighest level appeared in the inner shelf region while the lowest value was found inthe central shelf, and higher level occurred in the mud area to the southwest of ChejuIsland. PAHs concentrations in the study areas are at the low to moderate levels of theglobal range.
     5. TOC was identified as an important controlling factor in the TPAHs distributionin the SYS. However, the TPAHs distribution in the ECS was complicated byhydrodynamic condition, coastal pollutants discharge, black carbon (BC) andparticulate organic carbon (POC) in addition to TOC content. The distribution of theorganic carbon-normalized TPAHs in the SYS surface sediments revealed a clearspatial pattern, with high values near the coast and decreased values seaward, and thelowest values occurred in mud area in the central SYS.
     6.3ringed parent PAHs are the major components of TPAHs in most stations,accounting for64.1%±9.1%of them, followed by4ringed PAHs. Whereas thefraction of high (5to6) ringed PAHs presents as predominance in the mud area to thesouthwest of Cheju Island and central shelf, primarily caused by inputs of atmosphericdeposition. The main compounds of PAHs in the sediments are phenanthrene,fluoranthene, fluorene, methyl phenanthrene and pyrene, which are consistent withsources related to coal combustion.
     7. The results from diagnostic ratios and factor analysis indicate that domestic coal combustion and coking industry are the predominant sources of PAHs in the studyareas. The impact of wood combustion on the ECS is greater than that on the SYS,mainly related to the difference of energy usage and industrial structure betweenSouth and North China. In addition, natural gas combustion has been become animportant input for PAHs to the sediment of our study areas. Petrogenic source,compared with pyrogenic source, is a small contributor to the PAHs in surfacesediments of the study areas, primarily related to petroleum-derived PAHs are morevulnerable to degradation. The composition of PAHs sources in surface sediments isconsistent with the profiles of current Chinese energy consumption.
     8. To some extent, sedimentary PAHs have undergone weathering during long-rangtransport to the study areas. In addition to atmospheric deposition, the PAHs arepredominantly introduced into the SYS and the ECS coastal area via fluvial transport,while PAHs in surface sediments from the mud area to the southwest of Cheju Islandand central shelf are dominated by atmospheric deposition.
     9. The potential ecological risks of PAHs were evaluated on the basis of effectrang-low (ERL) and effect rang-median (ERM). The results showed thatconcentrations of PAHs were much lower than ERM and the sediment had a lowprobability of ecological risk. However, contents of fluorene and phenanthreneexceeded the ERL value in many stations. They probably pose risks on the marinebenthos.
引文
[1] Wu Y, Zhang J, Mi T, Li B. Occurrence of n-alkanes and polycyclic aromatichydrocarbons in the core sediments of the Yellow Sea. Marine Chemistry2001;76:1–15.
    [2] Yang SY, Jung HS, Lim D Il, Li CX. A review on the provenance discrimination ofsediments in the Yellow Sea. Earth-Science Reviews.2003;63:93–120.
    [3] Hedges JI. Global biogeochemical cycles: progress and problems. Marine Chemistry.1992;39:67–93.
    [4] Hu L.M., Guo Z.G., Feng J.L., Yang Z.S., Fang M. Distributions and sources of bulkorganic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China.Marine Chemistry,2009;113:197–211.
    [5] Müller PJ. CN ratios in Pacific deep-sea sediments: Effect of inorganic ammonium andorganic nitrogen compounds sorbed by clays. Geochimica et Cosmochimica Acta.1977;41(6):765–776.
    [6] Datta DK, Gupta LP, Subramanian V. Distribution of C, N and P in the sediments of theGanges–Brahmaputra–Meghna river system in the Bengal basin. Organic Geochemistry.1999;30(1):75–82.
    [7] Schubert CJ, Calvert SE. Nitrogen and carbon isotopic composition of marine andterrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilizationand organic matter composition. Deep Sea Research Part I: Oceanographic ResearchPapers.2001;48(3):789–810.
    [8]吴莹.渤黄东海及其若干河口的烃类有机地球化学.[博士后研究工作报告].上海:华东师范大学;2001..
    [9] Suzuki N, Yessalina S, Kikuchi T. Probable fungal origin of perylene in Late Cretaceousto Paleogene terrestrial sedimentary rocks of northeastern Japan as indicated from stablecarbon isotopes. Organic Geochemistry.2010;41:234–241.
    [10] Jiang C, Alexander R, Kagi RI, Murray AP. Origin of perylene in ancient sediments and itsgeological significance. Organic Geochemistry.2000;31.1545-1559
    [11] Yunker MB, Macdonald RW, Snowdon LR, Fowler BR. Alkane and PAH biomarkers astracers of terrigenous organic carbon in Arctic Ocean sediments. Organic Geochemistry2011.42:.1109-1146.
    [12] Yunker MB, Macdonald RW. Petroleum biomarker sources in suspended particulatematter and sediments from the Fraser River Basin and Strait of. Organic Geochemistry.2003;34:1525–1541.
    [13]吴莹,张经.类脂分子标志物在海洋有机地球化学中的研究应用.海洋环境科学.2001;20:71–77.
    [14] Medeiros PM, Bícego MC. Investigation of natural and anthropogenic hydrocarbon inputsin sediments using geochemical markers. I. Santos, SP--Brazil. Marine pollution bulletin.2004;49:761–769.
    [15] Yunker MB, Macdonald RW, Goyette D, Paton DW, Fowler BR, Sullivan D, et al. Naturaland anthropogenic inputs of hydrocarbons to the Strait of Georgia. The Science of theEnvironment.1999;225:181–209.
    [16] Commendatore MG, Esteves JL. Natural and anthropogenic hydrocarbons in sedimentsfrom the Chubut River (Patagonia, Argentina). Marine Pollution Bulletin.2004;48:910–918.
    [17]江锦花,董官真.海洋环境中多环芳烃的污染状况及源解析.水资源保护.2008;24:48–54.
    [18]刘伟峰.海洋溢油污染生态损害评估研究.[博士学位论文].青岛.中国海洋大学环境科学与工程学院;2010.
    [19] Tarozo R, Frena M, Madureira LAS. Geochemical Markers as a Tool to AssessSedimentary Organic Matter Sources of the Laguna Estuarine System, South Brazil:Aliphatic and Polycyclic Aromatic Hydrocarbons. Braz. Chem. Soc.2010;21(12):2308–2318.
    [20] Volkman JK, Holdsworth DG, Neill GP, Bavor Jr. HJ. Identification of natural,anthropogenic and petroleum hydrocarbons in aquatic sediments. Science of The TotalEnvironment.1992;112(2–3):203–219.
    [21] Wakeham SG. Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments.Marine Chemistry.1996;53:187–205.
    [22] Jacquot F, Doumenq P, Guiliano M, Munoz D, Guichard JR, Mille G. Biodegradation ofthe (aliphatic+aromatic) fraction of Oural crude oil. Biomarker identification usingGC/MS SIM and GC/MS/MS. Talanta.1996;43(3):319–30.
    [23] Readman JW, Fillmann G, Tolosa I, Bartocci J, Villeneuve J, Catinni C, et al. Petroleumand PAH contamination of the Black Sea. Marine Pollution Bulletin.2002;44:48–62.
    [24]国家统计局,中国统计年鉴.北京:中国统计出版社,2011.
    [25] Zhang XL, Tao S, Liu WX, Yang Y, Zuo Q, Liu SZ. Source Diagnostics of PolycyclicAromatic Hydrocarbons Based on Species Ratios: A Multimedia Approach.Environmental Science&Technology.2005;39(23):9109–14.
    [26]李先国,虢新运,周晓.海洋环境中多环芳烃的测定与来源解析.中国海洋大学学报.2008;38:473–8.
    [27] Feng J, Shen Z, Niu J, Yang Z. The role of sediment resuspension duration in release ofPAHs. Chinese Science Bulletin;2008;53(18):2777–82.
    [28] Harris KA, Yunker MB, Dangerfield N, Ross PS. Sediment-associated aliphatic andaromatic hydrocarbons in coastal British Columbia, Canada: Concentrations, composition,and associated risks to protected sea otters. Environmental Pollution.2011;159:2665–74.
    [29] Deng B, Zhang J, Wu Y. Recent sediment accumulation and carbon burial in the EastChina Sea. Global Biogeochemical Cycles.2006;20:1–12.
    [30]金翔龙,东海地质.北京:海洋出版社,1992.
    [31] Kavouras IG, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou EG, Baer DV, et al.Source Apportionment of Urban Particulate Aliphatic and Polynuclear AromaticHydrocarbons (PAHs) Using Multivariate Methods. Environmental Science&Technology.2001;35(11):2288–94.
    [32] Bouloubassi I, Fillaux J, Saliot A. Hydrocarbons in surface sediments from the Changjiang(Yangtze River) Estuary, East China Sea. Marine Pollution Bulletin.2001;42(12):1335–46.
    [33] Yunker MB, Macdonald RW, Vingarzan R, Mitchell H, Goyette D, Sylvestre S. PAHs inthe Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source andcomposition. Organic Geochemistry.2002;33:489–515.
    [34]谢重阁.环境中的苯并[a]芘及其分析技术.北京:中国环境科学出版社.1991
    [35] Simcik MF, Eisenreich SJ, Lioy PJ. Source apportionment and source/sink relationships ofPAHs in the coastal atmosphere of Chicago and Lake Michigan. AtmosphericEnvironment.1999;33:5071–9.
    [36] Musa BA, Sobocka J, Wilcke W. Oxygen-containing polycyclic aromatic hydrocarbons(OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and verticaldistribution. Environmental Pollution.2011;159:539–49.
    [37] Christensen ER, Bzdusek PA. PAHs in sediments of the Black River and the AshtabulaRiver, Ohio: source apportionment by factor analysis. Water Research.2005;39:511–24.
    [38]杨发忠,颜阳,张泽志,苏永庆.多环芳烃研究进展.云南化工.2005;32:44–9.
    [39]王连生,汪小江,许鸥泳,田笠卿.多环芳烃的分配系数与双区理论.环境科学学报.1987;7:240–4
    [40] Agency for Toxic Substances and Disease Registry. Toxicological Profile for PolycyclicAromatic Hydrocarbons. US Department of Health and Human Services;1995.
    [41]马英歌.多环芳烃物理化学性质的确定及其在逸度模型和上海典型环境研究中的应用.[博士学位论文].上海:上海交通大学环境科学与工程学院;2009.
    [42] Guo Z.g, Lin T, Zhang G, Zheng M, Zhang Z.Y., Hao Y.C., et al. The sedimentary fluxesof polycyclic aromatic hydrocarbons in the Yangtze River Estuary coastal sea for the pastcentury. Science of the Total Environment.2007;386:33–41.
    [43] Qin Y, Zheng B, Lei K, Lin T, Hu L, Guo Z. Distribution and mass inventory of polycyclicaromatic hydrocarbons in the sediments of the south Bohai Sea, China. Marine PollutionBulletin.2011;62:371–6.
    [44] Wang J, Tian Z, Gao Y. Atmospheric Polycyclic Aromatic Hydrocarbons in North China:A Winter-Time Study. Environmental Science&Technology.2007;41(24):8256–61.
    [45] Xu SS, Liu WX, Tao S. Emission of Polycyclic Aromatic Hydrocarbons in China.Environmental Science&Technology.2006;40:702–8.
    [46] Mastral AM, Callén M. A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emissionsfrom Energy Generation. Environmental Science&Technology.2000;34(15):3051–7.
    [47] Xing L, Tao S, Zhang H, Liu Y, Yu Z, Zhao M. Distributions and origins of lipidbiomarkers in surface sediments from the southern Yellow Sea. Applied Geochemistry.2011;26(8):1584–93.
    [48] Ohkouchi N, Kawamura K, Kawahata H. Distributions of Three-to Seven-RingPolynuclear Aromatic Hydrocarbons on the Deep Sea Floor in the Central Pacific.Environmental Science&Technology.1999;33:3086–90.
    [49] Kim M, Kennicutt MC, Qian Y. Source characterization using compound composition andstable carbon isotope ratio of PAHs in sediments from lakes, harbor, and shippingwaterway. Science of the Total Environment.2008;389:367–77.
    [50] US Environmental Protection Angency. Office of Solid Waste and Emergency Response.Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Method3545: Pressurized Fluid Extraction[S].1996.
    [51]张路,范成新.底泥中多环芳烃提取方法评述.环境监测管理与技术.2001;13:8–12.
    [52] Carr RS, Biedenbach JM, Hooten RL. Sediment quality assessment survey and toxicityidentification evaluation studies in Lavaca Bay, Texas, a marine superfund site.Environmental Toxicology.2001;16(1):20–30.
    [53] Booij K, Hoedemaker JR, Bakker JF. Dissolved PCBs, PAHs, and HCB in Pore Watersand Overlying Waters of Contaminated Harbor Sediments. Environmental Science&Technology.2003;37(18):4213–20.
    [54] Soclo HH, Garriguesà PH, Ewaldà M. Origin of Polycyclic Aromatic Hydrocarbons(PAHs) in Coastal Marine Sediments: Case Studies in Cotonou (Benin) and Aquitaine(France) Areas. Marine Pollution Bulletin.2000;40(5):387–96.
    [55] Tolosa I, Mora S De, Reza M, Villeneuve J, Bartocci J, Cattini C. Aliphatic and aromatichydrocarbons in coastal Caspian Sea sediments.2004;48:44–60.
    [56] Charlesworth M, Service M, Gibson CE. PAH contamination of western Irish Seasediments. Marine Pollution Bulletin.2002;44(12):1421–6.
    [57] Papadopoulou D, Samara C. Polycyclic aromatic hydrocarbon contamination andLUMIStox solvent extract toxicity of marine sediments in the North Aegean Sea, Greece.Environmental Toxicology.2002;17(6):556–66.
    [58] Hartmann PC, Quinn JG, Cairns RW, King JW. The distribution and sources of polycyclicaromatic hydrocarbons in Narragansett Bay surface sediments. Marine Pollution Bulletin.2004;48(3–4):351–8.
    [59] Telli-Karako F, Tolun L, Henkelmann B, Klimm C, Okay O, Schramm K-W. Polycyclicaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in theBay of Marmara sea: zmit Bay. Environmental Pollution.2002;119(3):383–97.
    [60]欧冬妮,刘敏,许世远,等.长江口滨岸水和沉积物中多环芳烃分布特征与生态风险评价.环境科学.2009;30:3041–9.
    [61]刘敏,侯立军,邹惠仙,等.长江口潮滩表层沉积物中多环芳烃分布特征.中国环境科学.2001;21(4):343–6.
    [62]张宗雁,郭志刚,张干,等.东海泥质区表层沉积物中多环芳烃的分布特征及物源.地球化学.2005;34:379–86.
    [63]薛荔栋,郎印海,刘爱霞,刘洁.黄海近岸日照段表层沉积物中多环芳烃的来源解析研究.海洋学报.2008;30:164–70.
    [64] Guo Z.G, Lin T, Zhang G, Yang Z.S, Fang M. High-Resolution Depositional Records ofPolycyclic Aromatic Hydrocarbons in the Central Continental Shelf Mud of the East ChinaSea. Environmental Science&Technology.2006;40(17):5304–11.
    [65] Liu L, Wang J, Wei G, Guan Y, Wong CS, Zeng EY. Sediment Records of PolycyclicAromatic Hydrocarbons (PAHs) in the Continental Shelf of China: Implications forEvolving Anthropogenic Impacts. Environmental Science&Technology.2012;46:6497–504.
    [66] Atkinson R. Gas-phase tropospheric chemistry of organic compounds: A review.Atmospheric Environment. Part A. General Topics.1990;24(1):1–41.
    [67] Baumard P, Budzinski H, Michon Q, Garrigues P, Burgeot T, Bellocq J. Origin andBioavailability of PAHs in the Mediterranean Sea from Mussel and Sediment Records.Estuarine, Coastal and Shelf Science.1998;47(1):77–90.
    [68] Yan BZ, Abrajano TA, Bopp RF, Chaky DA, Benedict LA, Chillrud SN. MolecularTracers of Saturated and Polycyclic Aromatic Hydrocarbon Inputs into Central Park Lake,New York City. Environmental Science&Technology.2005;39:7012–9.
    [69] Cass GR. Organic Moleculae Tracers for Particulate Air Pollution Sources. Trends inAanlytical Chemistry.1998;17(6):356–66.
    [70] Sofowote UM, Mccarry BE, Marvin CH. Source Apportionment of PAH in HamiltonHarbour Suspended Sediments: Comparison of Two Factor Analysis Methods.Environmental Science&Technology.2008;42:6007–14.
    [71] Venkatesan MI. Occurrence and possible sources of perylene in marine sediments-areview. Marine Chemistry.1988;25(1):1–27.
    [72] Mai B, Qi S, Zeng E, Fu J, Sheng G, Peng P, et al. Distribution of Polycyclic AromaticHydrocarbons in the Coastal Region off Macao, China: Assessment of Input Sources andTransport Pathways Using Compositional Analysis. Environmental Science&Technology.2003;37:4855–63.
    [73]吴莹,张经,唐运千.中国海洋有机地球化学研究的若干进展.地球科学进展.1999;14:257–161.
    [74]郭炜锋,戴树桂.水环境多环芳烃源解析研究进展.环境污染治理技术与设备.2005;6(10):8–12.
    [75] Wang W, Simonich Massey SL, Xue M, Zhao J, Zhang N, Wang R. Concentrations,sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing,Tianjin and surrounding areas, North China. Environmental Pollution.2010;158(5):1245–51.
    [76] Gogou A, Stratigakis N, Kanakidou M, Stephanou EG. Organic aerosols in EasternMediterranean: components source reconciliation by using molecular markers andatmospheric back trajectories. Organic Geochemistry.1996;25(1–2):79–96.
    [77] Kamens RM, Guo Z, Fulcher JN, Bell DA. The influence of humidity, sunlight, andtemperature on the daytime decay of polyaromatic hydrocarbons on atmospheric sootparticles. Environmental Science&Technology.1988;22(1):103–8.
    [78] Li AN, Jang J, Scheff PA. Application of EPA CMB8.2Model for Source Apportionmentof Sediment PAHs in Lake Calumet, Chicago. Environmental Science&Technology.2003;37(13):2958–65.
    [79]薛荔栋,郎印海,刘爱霞,刘洁.黄海近岸表层沉积物中多环芳烃来源解析.生态环境.2008;17(4):1369–75.
    [80] Ravindra K, Wauters E, Grieken R Van. Variation in particulate PAHs levels and theirrelation with the transboundary movement of the air masses. Science of the TotalEnvironment.2008;396:100–10.
    [81] Zuo Q, Duan YH, Yang Y, Wang XJ, Tao S. Source apportionment of polycyclic aromatichydrocarbons in surface soil in Tianjin, China. Environmental Pollution.2007;147:303–10.
    [82] O’Malley VP, Abrajano TA, Hellou J. Stable Carbon Isotopic Apportionment ofIndividual Polycyclic Aromatic Hydrocarbons in St. John’s Harbour, Newfoundland.Environmental Science&Technology.1996;30(2):634–9.
    [83] Yan B, Abrajano TA, Bopp RF, Benedict LA, Chaky DA, Perry E, et al. Combinedapplication of δ13C and molecular ratios in sediment cores for PAH source apportionmentin the New York/New Jersey harbor complex. Organic Geochemistry.2006;37(6):674–87.
    [84] Abrajano TAJ, Yan B, O’Malley V. High molecular weight petrogenic and pyrogenichydrocarbons in aquatic environments. Environmental Geochemistry.2003;475–510.
    [85] Fabbri D, Vassura I, Sun C, Snape CE, Mcrae C, Fallick AE. Source apportionment ofpolycyclic aromatic hydrocarbons in a coastal lagoon by molecular and isotopiccharacterisation. Marine Chemistry.2003;84:123–135.
    [86] Kim M, Ii MCK, Qian Y. Molecular and stable carbon isotopic characterization of PAHcontaminants at McMurdo Station, Antarctica. Marine Pollution Bulletin.2006;52:1585–90.
    [87] Boitsov S, Jensen HKB, Klungs yr J. Natural background and anthropogenic inputs ofpolycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea.Marine Environmental Research.2009;68(5):236–45.
    [88]中华人民共和国国家质量监督检验检疫总局. GB18668-2002.海洋沉积物质量.北京:中国标准出版社2002.
    [89] Nisbet ICT, LaGoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatichydrocarbons (PAHs). Regulatory Toxicology and Pharmacology.1992;16(3):290–300.
    [90] Long ER, C B, Smith SL, Calder FD. Incidence of Adverse Biological Effects WithinRanges of Chemical Concentrations in Marine and Estuarine Sediments. EnvironmentalManagement.1995;19(1):81–97.
    [91]张蓬.渤黄海沉积物中的多环芳烃和多氯联苯及其与生态环境的耦合解析.[博士毕业论文].中国科学院研究生院;2009.
    [92]林叶彬.金川泥炭地正烷烃和姥鲛烷分布特征与环境演变关系研究.[硕士毕业论文]长春.东北师范大学;2006.
    [93]卢冰,周怀阳,陈荣华,等.北极现代沉积物中正构烷烃的分子组合特征及其与不同纬度的海域对比.极地研究.2004;16:34–48.
    [94] Blumer M, Guillard RRL, Chase T. Hydrocarbons of marine phytoplankton. MarineBiology.1971;8(3):183–9.
    [95]段毅,罗斌杰,徐雁前,马兰花.南沙海洋沉积物中生物标志化合物的组成及地化意义.海洋与湖沼.1996;27:258–63.
    [96] Broman D, Colmsj A, Ganning B, N f C, Zebühr Y, stman C.“Fingerprinting”petroleum hydrocarbons in bottom sediment, plankton, and sediment trap collected seston.Marine Pollution Bulletin.1987;18(7):380–8.
    [97] Colombo JC, Pelletier E, Brochu C, Khalil M, Catoggio JA. Determination of hydrocarbonsources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study:Rio de la Plata Estuary, Argentina. Environmental Science&Technology.1989;23(7):888–94.
    [98] Abrams MA. Significance of hydrocarbon seepage relative to petroleum generation andentrapment. Marine and Petroleum Geology.2005;22(4):457–77.
    [99]贾晓平,林钦.南海北部近岸海域鱼类体中石油烃与生源烃的气相色谱特征指纹分析.中国水产科学.2004;3:260–5.
    [100] Mansuy-huault L, Regier A, Faure P. Chemosphere Analyzing hydrocarbons in sewer tohelp in PAH source apportionment in sewage sludges. Chemosphere.2009;75(8):995–1002.
    [101] Venkatesan MI, Kaplan IR. Distribution and transport of hydrocarbons in surfacesediments of the alaskan outer continental shelf. Geochimica et Cosmochimica Acta.1982;46(11):2135–49.
    [102] UNEP. Determination of petroleum hydrocarbons in sediment. Reference Methods ForMarine Pollution Studies No20.1992.
    [103] Tolosa I, Bayona JM, Albaigés J. Aliphatic and Polycyclic Aromatic Hydrocarbons andSulfur/Oxygen Derivatives in Northwestern Mediterranean Sediments: Spatial andTemporal Variability, Fluxes, and Budgets. Environmental Science&Technology.1996;30(8):2495–503.
    [104] Tolosa I, De Mora S, Sheikholeslami MR, Villeneuve J-P, Bartocci J, Cattini C. Aliphaticand aromatic hydrocarbons in coastal caspian Sea sediments. Marine Pollution Bulletin.2004;48(1–2):44–60.
    [105] Kaplan IR, Lu S-T, Alimi HM, MacMurphey J. Fingerprinting of High BoilingHydrocarbon Fuels, Asphalts and Lubricants. Environmental Forensics.2001;2(3):231–48.
    [106] Wang Y, Huang Y, Huckins JN, Petty JD. Compound-Specific Carbon and HydrogenIsotope Analysis of Sub-Parts per Billion Level Waterborne Petroleum Hydrocarbons.Environmental Science&Technology.2004May22;38(13):3689–97.
    [107]于国光,王铁冠,王娟,吴大鹏.烃类污染物在大气气溶胶源解析方面的应用.生态环境.2007;16(1):210–5.
    [108] Medeiros PM, Bicego MC. Investigation of natural and anthropogenic hydrocarbon inputsin sediments using geochemical markers.I.Santos, SP-Brazil. Marine Pollution Bulletin.2004;49:761–9.
    [109]赵美训,张玉琢,邢磊,等.南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义.中国海洋大学学报.2011;41(4):90–6.
    [110]鲁晓红,陈颖军,黄国培,等.黄渤海表层沉积物中正构烷烃和甾醇的分布及来源研究.生态环境学报.2011;20:1117–22.
    [111]郭志刚,杨作升,林田,李钜源.东海泥质区单体正构烷烃的碳同位素组成及物源分析.第四纪研究.2006;26:384–90.
    [112] Hu L.M., Shi X.F., Yu Z.G., Lin T, Wang H.J., Ma D, et al. Distribution of sedimentaryorganic matter in estuarine-inner shelf regions of the East China Sea: Implications forhydrodynamic forces and anthropogenic impact. Marine Chemistry.2012;(142-144):29–40.
    [113] Boulouassi,I., Saliot,A.,. Investigation of anthropogenic and natural organic inputs inestuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanologica acta.1993;16:145–61.
    [114]秦蕴珊,赵一阳,陈丽蓉.黄海地质.北京:海洋出版社;1989.
    [115]刘锡清,丛鸿文.黄海地形特征.北京:地质出版社;1997..
    [116]董礼先,苏纪兰,兰康墡.黄渤海潮流场及其与沉积物搬运的关系.海洋学报.1989;11:103–14.
    [117]冯士笮,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社;2003.
    [118]李凤岐,苏育嵩.海洋水团分析.青岛:青岛海洋出版社;2000.
    [119]许东禹.中国近海地质.北京:地质出版社;1997.
    [120]李广雪,杨子赓,刘勇.中国东部海域海底沉积环境成因研究.北京:科学出版社;2004.
    [121]胡邦琦.中国东部陆架海泥质沉积区的物源识别及其环境记录.[博士毕业论文].青岛.中国海洋大学海洋地球科学学院2010.
    [122]石学法,申顺喜, Hi-il Y,陈志华,孟毅.南黄海现代沉积环境及动力沉积体系.科学通报.2001;46:1–6.
    [123]蓝先洪,张训华,张志珣.南黄海沉积物的物质来源及运移研究.海洋湖沼通报.2005;4:53–60.
    [124] Saari E, Per m ki P, Jalonen J. A comparative study of solvent extraction of totalpetroleum hydrocarbons in soil. Microchimica Acta.2007;158(3-4):261–8.
    [125]杨佰娟,郑立,陈军辉,等.南黄海中部表层沉积物中多环芳烃含量分布及来源分析.环境科学学报.2009;29:662–7.
    [126]朱纯,潘建明,卢冰,等.长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示.海洋学报.2005;27:59–67.
    [127]郭志刚,杨作升,范德江,潘燕俊.长江口泥质区的季节性沉积效应.地理学报.2003;58:591–7.
    [128]杨作升,郭志刚,王兆祥,等.黄东海陆架悬浮体向其东部深海区输送的宏观格局.海洋学报.1992;14:81–90.
    [129]郭志刚,杨作升,陈致林,毛登.东海陆架泥质区沉积有机质的物源分析.地球化学.2001;30:416–24.
    [130]朱纯,潘建明,卢冰,等.长江、老黄河口及东海陆架沉积有机质物源指标及有机碳的沉积环境.海洋学研究.2005;23:36–46.
    [131] Meyers PA. Organic geochemical proxies of paleoceanographic, paleolimnologic, andpaleoclimatic processes. Organic Geochemistry.1997;27(5–6):213–50.
    [132] Ujiié H, Hatakeyama Y, Gu XX, Yamamoto S, Ishiwatari R, Maeda L. Upward decreaseof organic C/N ratios in the Okinawa Trough cores: proxy for tracing the post-glacialretreat of the continental shore line. Palaeogeography, Palaeoclimatology, Palaeoecology.2001;165(1–2):129–40.
    [133]尹秀珍,刘万洙,蓝先洪,万晓樵.南黄海表层沉积物的碎屑矿物、地球化学特征及物源分析.吉林大学学报.2007;37:491–9.
    [134] Bianchi TS, Mitra S, McKee BA. Sources of terrestrially-derived organic carbon in lowerMississippi River and Louisiana shelf sediments: implications for differentialsedimentation and transport at the coastal margin. Marine Chemistry.2002;77:211–23.
    [135] Ruttenberg KC, Go i MA. Phosphorus distribution, C:N:P ratios, and δ13Coc in arctic,temperate, and tropical coastal sediments: tools for characterizing bulk sedimentaryorganic matter. Marine Geology.1997;139(1–4):123–45.
    [136] Blumer M, Sass J. Indigenous and petroleum-derived hydrocarbons in a polluted sediment.Marine Pollution Bulletin.1972;3(6):92–4.
    [137]李双林,张生银,赵青芳,董贺平.南黄海海底沉积物饱和烃类地球化学特征及其指示意义.海洋地质动态.2009;12:1–7.
    [138]吕晓霞,翟世奎.长江口沉积物中正构烷烃的分布特征及其环境指示意义.环境科学学报.2008;28:1221–6.
    [139] Johnson RW, Calder JA. Early diagenesis of fatty acids and hydrocarbons in a salt marshenvironment. Geochimica et Cosmochimica Acta.1973;37(8):1943–55.
    [140] Silliman JE, Schelske CL. Saturated hydrocarbons in the sediments of LakeApopka,Florida. Organic Geochemistry.2003;34:253–60.
    [141] Gao X, Chen S. Petroleum pollution in surface sediments of Daya Bay, South China,revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons. Estuarine,Coastal and Shelf Science.2008;80(1):95–102.
    [142] Lin T, Hu L, Shi X, Li Y, Guo Z, Zhang G. Distribution and sources of organochlorinepesticides in sediments of the coastal East China Sea. Marine Pollution Bulletin.2012;64(8):1549–55.
    [143] Feng J, Guo Z, Chan CK, Fang M. Properties of organic matter in PM2.5at ChangdaoIsland, China—A rural site in the transport path of the Asian continental outflow.Atmospheric Environment.2007;41(9):1924–35.
    [144] Ficken KJ, Li B, Swain DL, Eglinton G. An n-alkane proxy for the sedimentary input ofsubmerged/floating freshwater aquatic macrophytes. Organic Geochemistry.2000;31(7–8):745–9.
    [145] Rogge WF, Hlldemann LM, Marurek MA, Cass GR. Sources of Fine Organic Aerosol.3.Road Dust, Tire Debris, and Organometallic Brake Lining Dust: Roads as Sources andSinks. Environmental Science&Technology.1993;27(9):1892–904.
    [146]王新红.厦门附近海区多相介质中石油烃的组成特征及其生物地球化学指示.[博士毕业论文]厦门大学环境科学专业;2001.
    [147]李泽利,徐绍箐,马启敏,程海鸥.锦州湾表层沉积物正构烷烃特征参数研究.环境科学.2011;32:3301–3.
    [148]潘忠孝.化学因子分析.合肥:中国科学技术大学出版社;1993.
    [149] Liu Y, Chen L, Huang Q, Li W, Tang Y, Zhao J. Source apportionment of polycyclicaromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River,Shanghai,China. Science of the Total Environment.2009;407(8):2931–8.
    [150] Christensen ER. Source Apportionment of Sediment PAHs in Lake Calumet, Chicago:Application of Factor Analysis with Nonnegative Constraints. Environmental Science&Technology.2004;38(1):97–103.
    [151] Weissenfels WD, Klewer H, Langhoff J. Applied Microbiology Biotechnology Adsorptionof polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence onbiodegradability and biotoxicity. Applied Microbiology and Biotechnology.1992;36:689–96.
    [152]欧冬妮,刘敏,许世远,等.多环芳烃在长江口滨岸颗粒物-水相间的分配.环境科学.2009;30(4):1126–32
    [153]罗孝俊,陈社军,余梅,等.多环芳烃在珠江口表层水体中的分布与分配.环境科学.2008;29(9):2387–91.
    [154] Witt G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. MarinePollution Bulletin.1995;31:237–48.
    [155] Wong J.W.C., Lai K.M., Wan C., Fang M. Isolation and Optimization of PAH-degradativeBacteria from Contaminated Soil for PAHs Bioremediation. Water, Air and Soil Pollution.2002;139:1–13.
    [156] Fine PM, Cass GR, Simoneit BRT. Chemical Characterization of Fine Particle Emissionsfrom Fireplace Combustion of Woods Grown in the Northeastern United States.Environmental Science&Technology.2001;35(13):2665–75.
    [157] Esen F, Tasdemir Y, Vardar N. Atmospheric concentrations of PAHs, their possiblesources and gas-to-particle partitioning at a residential site of Bursa, Turkey. AtmosphericResearch.2008;88(3–4):243–55.
    [158] Kang Y, Wang X, Dai M, Feng H, Li A, Song Q. Black carbon and polycyclic aromatichydrocarbons (PAHs) in surface sediments of China’s marginal seas. Chinese Journal OfOceanology and Limnology.2009;27(2):297–308.
    [159] Ruiz Y, Suarez P, Alonso A, Longo E, Villaverde A, Juan FS. Environmental quality ofmussel farms in the Vigo estuary: Pollution by PAHs, origin and effects on reproduction.Environmental Pollution.2011;159(1):250–65.
    [160] Baumard P, Budzinski H, Michon Q, Garrigues P, Burgeot T, Bellocq J. Origin andBioavailability of PAHs in the Mediterranean Sea from Mussel and Sediment Records.Estuarine, Coastal and Shelf Science.1998;47(1):77–90.
    [161] Baumard P, Budzinski H, Garrigues P. Polycyclic Aromatic Hydrocarbons in Sedimentsand Mussels of the Western Mediterranean Sea. Environmental Chemistry.1998;17(5):765–76.
    [162]张新庆,杨佰娟,黎先春,王小如.南黄海中部海水中多环芳烃的分布特征.岩矿测试.2009;28:325–8.
    [163] Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P. Evaluation of sedimentcontamination by polycyclic aromatic hydrocarbons in the Gironde Estuary. MarineChemistry.1997;58:85–97.
    [164] BP. Statistical Review of World Energy.2011. www.bp.com/centres/energy/index.asp
    [165]尹雪峰.燃烧过程中多环芳烃和二恶英的关联机理及在线监测初步研究.[博士毕业论文]浙江大学机械与能源工程学院;2007.
    [166] Lang C, Tao S, Liu W, Zhang Y, Simonich S. Atmospheric transport and outflow ofpolycyclic aromatic hydrocarbons from China. Environmental Science&Technology.2008;42(14):5196–201.
    [167]杨展雄,唐运千.长江口海域气溶胶中多环芳烃.海洋学报.1990;12:48–53.
    [168]麦碧娴,林峥,张干,等.珠江三角洲河流和珠江口表层沉积物中有机污染物研究.环境科学学报.2000;20:192–7.
    [169]晁敏,伦凤霞,沈新强.长江口南支表层沉积物中多环芳烃分布特征及生态风险.生态学杂志.2010;29:79–83.
    [170] Hu J, Liu WENX, Chen JL, Fan YS, Xing BAOS, Kang HO, et al. Distribution andproperty of polycyclic aromatic hydrocarbons in littoral surface sediments from the YellowSea, China. Journal of Environmental Science and Health Part A.2008;4529:382–9.
    [171] Ma M., Feng Z., Guan C., Ma Y., Xu H., Li H. DDT, PAH and PCB in Sediments from theIntertidal Zone of the Bohai Sea and the Yellow Sea. Marine Pollution Bulletin.2001;42(2):132–6.
    [172] Zakaria M.P., Takada H., Tsutsumi S., Ohno K., Yamada J., Kouno E., et al. Distributionof Polycyclic Aromatic Hydrocarbons (PAHs) in Rivers and Estuaries in Malaysia: AWidespread Input of Petrogenic PAHs. Environmental Science&Technology.2002;36:1907–18.
    [173] Liu W.X., Chen J.L., Lin X.M., Tao S. Distribution and characteristics of organicmicropollutants in surface sediments from Bohai Sea. Environmental pollution.2006;140:4–8.
    [174] Yang G.P. Polycyclic aromatic hydrocarbons in the sediments of the South China Sea.Environmental Pollution.2000;108:163–71.
    [175] Pereira WE, Hostettler FD, Rapp JB. Distributions and fate of chlorinated pesticides,biomarkers and polycyclic aromatic hydrocarbons in sediments along a contaminationgradient from a point-source in San Francisco Bay, California. Marine EnvironmentalResearch.1996;41(3):299–314..
    [176]李双林.南黄海中部海底沉积物烃类地球化学特征及其指示意义.[硕士毕业论文]吉林大学地球科学学院;2010.
    [177]李斌,吴莹,张经.北黄海表层沉积物中多环芳烃的分布及其来源.中国环境科学.2002;22:429–32.
    [178] Song JZ, Peng PA, Huang WL. Black carbonand kerogen in soil and sedimentsl:Quantification and characterization. Environmental Science&Technology.2002;36:3690–7.
    [179] Ghosh U, Gillette JS, Luthy RG, Zare RN. Microscale Location, Characterization, andAssociation of Polycyclic Aromatic Hydrocarbons on Harbor Sediment Particles.Environmental Science&Technology.2000;34(9):1729–36.
    [180]刘文新,陈江麟,林秀梅,等.渤海表层沉积物中DDTs、PCBs及酞酸酯的空间分布特征.环境科学学报.2005;25:58–63.
    [181]康跃惠,盛国英,李芳柏,等.珠江口现代沉积物柱芯样多环芳烃高分辨沉积记录研究.环境科学学报.2005;25:45–51.
    [182] Buckley DR, Rockne KJ, Li A, Mills WJ. Soot Deposition in the Great Lakes:Implications for Semi-Volatile Hydrophobic Organic Pollutant Deposition. EnvironmentalScience&Technology.2004;38(6):1732–9.
    [183] Jonker MTO, Smedes F. Preferential Sorption of Planar Contaminants in Sediments fromLake Ketelmeer, The Netherlands. Environmental Science&Technology.2000;34(9):1620–6.
    [184] Jonker MTO, Koelmans AA. Sorption of Polycyclic Aromatic Hydrocarbons andPolychlorinated Biphenyls to Soot and Soot-like Materials in the Aqueous Environment:Mechanistic Considerations. Environmental Science&Technology.2002;36(17):3725–34.
    [185] DeMaster DJ, McKee BA, Nittrouer CA, Jiangchu Q, Guodong C. Rates of sedimentaccumulation and particle reworking based on radiochemical measurements fromcontinental shelf deposits in the East China Sea. Continental Shelf Research.1985;4(1–2):143–58.
    [186] Huh C-A, Su C-C. Sedimentation dynamics in the East China Sea elucidated from210Pb,137Cs and239,240Pu. Marine Geology.1999;160(1–2):183–96.
    [187] Hung C-C, Gong G-C, Ko F-C, Lee H-J, Chen H-Y, Wu J-M, et al. Polycyclic aromatichydrocarbons in surface sediments of the East China Sea and their relationship withcarbonaceous materials. Marine pollution bulletin.2011;63(5-12):464–70.
    [188] Yunker MB, Backus SM, Pannatier EG, Jeffries DS, Macdonald RW. Sources andSignificance of Alkane and PAH Hydrocarbons in Canadian Arctic Rivers. Estuarine,Coastal and Shelf Science.2002;55:1–31.
    [189] Lasren R.E., Baker J.E., Source Apportionment of Polycyclic Aromatic Hydrocarbons inthe Urban Atmosphere: A Comparison of Three Methods. Environmental Science&Technology.2003;37(9):1873–81.
    [190] Motelay-massei A, Ollivon D, Garban B, Tiphagne-Larcher K, MarcIre Chevreuil IZ.PAHs in the bulk atmospheric deposition of the Seine river basin: Source identificationand apportionment by ratios, multivariate statistical techniques and scanning electronmicroscopy. Chemosphere.2007;67:312–21.
    [191] Tamamura S, Sato T, Ota Y, Wang X, Tang N, Hayakawa K. Long-range transport ofpolycyclic aromatic hydrocarbons (PAHs) from the eastern Asian continent to Kanazawa,Japan with Asian dust. Atmospheric Environment.2007;41(12):2580–93.
    [192] Mai, Qi, Zeng EY, Yang, Zhang G, Fu, et al. Distribution of Polycyclic AromaticHydrocarbons in the Coastal Region off Macao, China: Assessment of Input Sources andTransport Pathways Using Compositional Analysis. Environmental Science&Technology.2003;37(21):4855–63.
    [193] Benner BA, Wise SA, Currie LA, Klouda GA, Klinedinst DB, Zweidinger RB, et al.Distinguishing the Contributions of Residential Wood Combustion and Mobile SourceEmissions Using Relative Concentrations of Dimethylphenanthrene Isomers.Environmental Science&Technology.1995;29(9):2382–9.
    [194] Rogge WF, Hlldemann LM, Mazurek MA, Cass GR. Sources of Fine Organic Aerosol.2.Noncatalyst and Catalyst-Equipped Automobiles and Heavy-Duty Diesel Trucks.Environmental Chemistry.1993;27:636–51.
    [195] Khalili NR, Scheff PA, Holsen TM. PAH source fingerprints for coke ovens, diesel and,gasoline engines, highway tunnels, and wood combustion emissions. AtmosphericEnvironment.1995;29(4):533–42.
    [196] Mastral AM, Callén M, Murillo R. Assessment of PAH emissions as a function of coalcombustion variables. Fuel.1996;75(13):1533–6.
    [197]尤孝方.燃烧过程中多环芳烃的生成与数值模拟.[博士毕业论文]浙江大学机械与能源工程学院;2006.
    [198] Mandalakis M, Gustafsson O, Reddy CM, Xu L. Radiocarbon Apportionment of Fossilversus Biofuel Combustion Sources of Polycyclic Aromatic Hydrocarbons in theStockholm Metropolitan Area. Environmental Science&Technology.2004;38(20):5344–9.
    [199] Ding X, Wang X, Xie Z, Xiang C, Mai B, Sun L, et al. Atmospheric polycyclic aromatichydrocarbons observed over the North Pacific Ocean and the Arctic area: Spatialdistribution and source identification. Atmospheric Environment.2007;41:2061–72.
    [200] Yunker MB, Macdonald RW. Alkane and PAH depositional history, sources and fluxes insediments from the Fraser River Basin and Strait of. Organic Geochemistry.2003;34:1429–54.
    [201] Venkataraman C, Lyons JM, Friedlander SK. Size Distributions of Polycyclic AromaticHydrocarbons and Elemental Carbon.1. Sampling, Measurement Methods, and SourceCharacterization. Environmental Science&Technology.1994;28(4):555–62.
    [202] Harrison RM, Smith DJT, Luhana L. Source Apportionment of Atmospheric PolycyclicAromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K.Environmental Science&Technology.1996;30:825–32.
    [203] Yang X-Y, Okada Y, Tang N, Matsunaga S, Tamura K, Lin J-M, et al. Long-rangetransport of polycyclic aromatic hydrocarbons from China to Japan. AtmosphericEnvironment.2007;41(13):2710–8.
    [204] Chen Y, Sheng G, Bi X, Feng Y, Mai B, Fu J. Emission Factors for CarbonaceousParticles and Polycyclic Aromatic Hydrocarbons from Residential Coal Combustion inChina. Environmental Science&Technology.2005;39(6):1861–7.
    [205] Oros DR, Simoneit BRT. Identification and emission rates of molecular tracers in coalsmoke particulate matter. Fuel.2000;79:515–36.
    [206] Riley K. Motor Vehicles in China: The Impact of Demographic and Economic Changes.Population and Environment.2002;23(5):479–94.
    [207] Gong G-C, Wen Y-H, Wang B-W, Liu G-J. Seasonal variation of chlorophyll aconcentration, primary production and environmental conditions in the subtropical EastChina Sea. Deep Sea Research Part II: Topical Studies in Oceanography.2003;50(6–7):1219–36.
    [208] Wong GTF, Gong GC, Liu KK, Pai SC.“Excess Nitrate”in the East China Sea. Estuarine,Coastal and Shelf Science.1998;46:411–8.
    [209] Crompton P, Wu Y. Energy consumption in China: past trends and future directions.Energy Economics.2005;27:195–208.
    [210] Lin B, Wang T. Forecasting natural gas supply in China: Production peak and importtrends. Energy Policy.2012;49:225–33.
    [211]李小地.中国大油田的分布特征与发现前景.石油勘探与开发.2006;33:127–30.
    [212]赵铁虎,张训华,王修田.南黄海盆地北部坳陷海底油气渗漏的声学探测.石油勘探与开发.2009;36:195–9.
    [213] Venkatesan MI, Kaplan IR. The lipid geochemistry of antarctic marine sediments:Bransfield strait. Marine Chemistry.1987;21(4):347–75.
    [214] Lipiatou E, Saliot A. Fluxes and transport of anthropogenic and natural polycyclicaromatic hydrocarbons in the western Mediterranean Sea. Marine Chemistry.1991;32(1):51–71.
    [215] Gustafsson, Haghseta F, Chan C, MacFarlane J, Gschwend PM. Quantification of theDilute Sedimentary Soot Phase: Implications for PAH Speciation and Bioavailability.Environmental Science&Technology.1996;31(1):203–9.
    [216] Peaden PA, Lee ML, Hirata Y, Novotny M. High-performance liquid chromatographicseparation of high-molecular-weight polycyclic aromatic compounds in carbon black.Analytical Chemistry.1980;52(14):2268–71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700