用户名: 密码: 验证码:
大功率固体激光器冷却研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率固体激光器在工业、农业、国防军事及现代高新技术等众多领域具有广阔应用前景。随着功率水平不断提高及装置尺寸日益小型化,激光器热效应成为制约其输出功率与性能进一步提高的严重障碍,是技术发展的主要瓶颈之一。迫切需要在有限空间内及时消除因功率耗散所转化的废热,有效解决散热冷却与温度控制问题。本文围绕大功率固体激光器热管理,通过实验研究与数值模拟相结合的方法,分别对激光工作物质外部高效雾化喷射冷却与内部超常热量传递过程进行了系统深入研究,为有效解决大功率固体激光器的散热冷却问题提供重要实验与理论指导。
     针对激光工作物质外部高效散热冷却,建立了双喷嘴无沸腾雾化喷射冷却可视化实验观测平台,采用先进高倍数显微放大高速摄影系统对雾化喷射过程进行了详细可视化观测,详细研究了各因素对冷却效果的影响规律。实验结果表明,雾化喷射冷却在低表面温度下具有很好的换热能力,可以满足大功率固体激光器及电子元器件类低表面温度、高热流密度的冷却需要;换热过程中单相对流传热和薄液膜蒸发起主导作用,雾化液滴直径约为500μm。。喷射流量与距离、冷却工质进口温度等是影响换热冷却效果的主要因素,喷射流量增大可明显改善换热效果,提高换热系数;喷射距离增大,换热系数先增大后减小,存在最佳喷射距离使冷却效果最佳;随冷却工质进口温度降低,热表面温度下降,换热系数增加;提出在工质中添加适当表面活性剂来进一步提高换热能力与降低热表面温度,实验发现表面活性剂浓度对雾化喷射冷却换热效果有显著影响;在大量实验研究基础上,得出实验关联式;揭示了无沸腾雾化喷射冷却的特殊流动与传热机理,得出提高大功率固体激光器及电子元器件类散热冷却效果与消除/减小热效应的有效措施与方法。
     建立了雾化喷射过程三维几何模型,采用基于欧拉—拉格朗日法的离散相颗粒模型对喷雾腔内流场与温度场进行了详细的数值模拟研究,揭示了其复杂流动与雾化过程特性。结果表明,雾化压力是实现雾化的主要因素;雾化后液滴粒径及其在热表面区域内分布较为均匀,液滴碰壁速度从喷雾中心到边缘逐渐降低;随质量流量的增大,液滴碰壁平均速度增大,相应热表面上的液膜层最大厚度随之减小;当喷射高度变化时,液膜层厚度变化不规则,热表面温度分布趋向均匀,当液膜层厚度最小时相应热表面温度最低。因此在确定具体的喷射距离时,要综合考虑热表面温度及其分布均匀性。
     建立了热壁面薄液膜层内两相流动与换热物理数学模型,综合考虑了气液界面相变、流体重力、表面张力和粘性等因素的影响,对薄液膜层上方有无液滴坠落两种情况下液膜层内气泡运动、相界面变化及壁面换热效果进行了详细数值模拟,并对液滴下降速度、液滴直径与初始位置、多液滴碰撞对液膜层内流动与换热的影响进行了详细模拟分析,揭示了液滴与薄液膜层相互作用机制以及薄液膜层内复杂多相流动与冷却换热过程。结果表明,液滴对液膜层碰撞既可加快液膜层内气泡变形速率,又会引起液膜层内二次核化,显著增强热壁面的换热效果;随着液滴下降初始速度增大,壁面换热系数峰值显著增加且逐渐向左侧移动;存在最佳液滴初始直径,使壁面换热效果最优;液滴初始位置分布对壁面换热效果也有重要影响,当液滴碰撞中心点发生在气泡易于变形处时壁面换热系数最大;多液滴碰撞的壁面换热效果明显优于单液滴碰撞,壁面换热系数分布根据液滴数和碰撞中心点出现不同的波峰。因此,可以通过控制雾化后的液滴参数合理设计整个喷雾冷却系统,实现其在低壁面过热度下达到最好的冷却效果以及冷却均匀。
     针对大功率固体激光器工作物质内部热量传递过程,考虑了连续与脉冲固体激光器实际工作中的超常规传热现象,首次建立了激光工作物质内部传热的一维非稳态非傅立叶导热模型,采用有限差分法进行了详细数值模拟计算,揭示了极端条件下工作物质的超常传热机理及不同泵浦功率密度、脉冲宽度及表面换热系数下工作物质的温度场分布,并与经典的傅立叶模型计算结果进行了对比分析。结果表明,当泵浦功率密度大于104W/m2时,在泵浦瞬间应考虑激光工作物质的非傅立叶效应。随着泵浦功率的增大,非傅立叶效应明显增强;随脉冲宽度的增加,非傅立叶效应明显减弱。另一方面,增大激光工作物质尺寸可使泵浦功率密度下降,也有利于降低泵浦面温度。热松弛时间对非傅立叶效应的影响较大,随热松弛时间增大,非傅立叶效应增强。该工作为进一步深入研究奠定了重要理论基础与新的研究思路和方法,同时拓宽了非傅立叶导热定律的应用范围。
The high-power solid-state lasers have a good prospect of applications in many fields such as the industry, the agriculture, the national defense and military, and the modern high technology. With the development of the laser output and the packages being more compact in size, the thermal effects become the major barriers obstructing the technological development in high-power solid-state laser and the traditional cooling methods are reaching their limits. In this dissertation, the high-effective spray cooling method outside the laser medium and the non-classical heat transfer in the laser medium were studied systematically and deeply. Both experiments and numerical simulations were carried out, which provides important experimental and theoretical instructions for resolving the problem of thermal energy removal of the high-power solid-state lasers.
     In order to understand the non-boiling heat transfer behavior of the spray cooling, an experimental setup with two full cone spray nozzles was established using pure water as the working fluid. A microscopic lens system in conjunction with an advanced high-speed camera was used to observe the spray process. The influences of the liquid flux, the spacing between the nozzles and the heated surface and the inlet temperature of the liquid on the cooling effect were investigated. It is found that the non-boiling spray cooling method can remove high heat flux from surfaces while maintaining low surface temperature, which satisfies the cooling requirements of the high-power solid-state lasers and the electronic components. The flow and heat transfer mechanism is believed to consist of convective heat transfer and direct evaporation from the surface of the liquid film. The droplet diameter is about 500μm. It is concluded that increasing the liquid flux increases the overall heat transfer coefficient and enhances the cooling effect distinctly. When increasing the space between the nozzles and the heated surface, the heat transfer coefficient increases first and then reduces. So there exists an optimal spacing in the experiment. With the reducing of the inlet temperature of the liquid, the surface temperature decreases and the heat transfer coefficient increases. The thermal performance can be improved further by adding proper surfactant. The concentration of surfactant plays an important role in spray cooling. A heat transfer correlation about Nu was developed on the basis of large amounts of experiments. The effective method to promote heat transfer and reducing the thermal stress is proposed.
     A three-dimensional geometric model was developed and the numerical simulations have been carried out to investigate the flow of the liquid pressure atomization and spray process using the Discrete Phase Model which follows the Euler-Lagrange approach combined with the Wall-Film boundary conditions. The complicated flow and atomization process was discovered. It shows that the spray pressure is the main factor to realize the atomization. After atomization, the droplet is basically uniform in the diameter and was also distributed on the heated surface uniformly. The droplet collision velocity reduces from the center to the edge. Increasing the liquid mass flux can increase the average droplet collision velocity, but the corresponding maximum film thickness on the heated surface declines. The film thickness changed irregularly with the increase of the spray distance, however, the temperature distribution tends to be uniform and the surface temperature happened to be the lowest where the corresponding film thickness was the least. Hence, both the surface temperature and its uniformity should be considered when confirming the best spray distance.
     A mathematical model was developed to investigate the details of two-phase flow and heat transfer in a thin liquid film. The model considers the effects of phase change between vapor and liquid, gravity, surface tension and viscosity. The dynamics of bubble growth in the film, the movement of the interface between two fluids and the surface heat transfer characteristics were numerically simulated for two cases:(1) when a liquid droplet impacts a thin liquid film with vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without droplet impacting. The influences of droplet falling velocity, droplet diameter and initial position, the multi-droplets impact on the flow and heat transfer were discussed. The interaction mechanism between the droplet and the thin film, the complicated multiphase flow and heat transfer characteristics were revealed. It is found that the droplet impact can improve the surface heat transfer notably because it can quicken the distortion speed of bubble, and leads to the secondary nuclei in the film. The peak value of surface heat transfer coefficient increases with the increase of the droplet velocity and meanwhile the position of the peak value moves left gradually. The heat transfer coefficient does not increase linearly with the increase of the diameter. The initial position of the droplet plays an important role in the heat transfer. When the droplet impacts the right side of the bubble where the collision leads more acute disturbing to the thin liquid film and promotes the bubble distortion speed, the surface heat transfer coefficient is largest. The heat transfer due to multi-droplets impact exceeds the case of single droplet impact significantly when the diameter and the falling speed are same. The distinct peak value of the surface heat transfer coefficient would appear according to the difference of the droplet number and the impact center. The surface heat transfer coefficient will tend to be uniform if the number of the droplets is enough. The above conclusions provide the theoretical basis on designing the spray cooling system by controlling the droplet parameters, which can realize the best cooling effect under low surface superheat.
     Considering the non-classical heat transfer phenomena in the process of series or impulse solid-state lasers, a one-dimensional unsteady non-Fourier heat conduction model with non-uniform heat source was developed to simulate the transient heat transfer in the laser medium under extreme conditions for the first time. The temperature fields were numerically analyzed using the finite difference method combined with the TDMA algorithm for different pump power densities, pulse durations, thermal relaxation time and cooling intensities, respectively. The calculated results are compared with those predicted by the classical Fourier heat conduction law. The results indicate that the non-classical heat transfer phenomenon of laser medium should be considered at the moment of pumping when the pump power density is more than 104W/m2. The larger the pump power density, the more apparent the non-Fourier effects. The longer the pulse duration, the less significant the non-Fourier effects in the laser medium. At the same time, increasing the size of the laser medium can reduce the pump power density, which also is helpful to debase the maximum temperature. The thermal relaxation time is a crucial factor to determine whether the non-classical heat transfer behavior is significant or not. The non-Fourier effects will be improved as the increase of the thermal relaxation time. So it is necessary to further confirm this value. This study provides an important theoretical basis and a new research method. Also, it expands the applications of the Non-Fourier heat transfer law.
引文
[1]吕百达编著.固体激光器件.北京:北京邮电大学出版社.2002
    [2]李适民等编著.激光器件原理与设计.北京:国防工业出版社.1998
    [3]李志刚.大功率固体激光器中的传热与热应力研究.博士学位论文,中国科学院工程热物理研究所,2008
    [4]李修乾,洪延姬.高能固体激光器现状及发展趋势[J].装备指挥技术学院学报,2004,15(1):101~105
    [5]李庄.激光器的新进展[J].激光生物学报,1998,7(2):135~137
    [6]Boris A.Usievich, Vladimir A.Sychugov, Florent Pigeon, and Alexander Tishchenko. Analytical Treatment of the Thermal Problem in Axially Pumped Solid-State Lasers. IEEE J. Quantum Electronics. 2001,37(9):1210~1215
    [7]M.Schmid, Th.Graf, and H.P. Weber. Analytical mode of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating, J.Opt.Soc.B.2000,17:1398~1406
    [8]David F W. A brief history of high-power semiconductor lasers. IEEE J. Sel. Top. Quant.,2000,6 (6):1470-1477
    [9]Bibeau C, Bayramian A, Beach R J, et al. Mercury and beyond: diode-pumped solid-state lasers for inertial fusion energy. C. R. Acad. Sci. Paris, t.1, Serie IV, p.,2000,1 (6):745-749
    [10]Hugel H. New solid-state lasers and their application potentials. Opt. Lasers Eng.,34 (2000) 213-229
    [11]Payne S A, Bibeau C, Beach R J, et al. Diode-pumped solid-state lasers for inertial fusion energy. Journal of Fusion Energy,1998,17 (3):213-217
    [12]Kawashima T, Kanabe T, Matsui H, et al. Design and performance of a diode-pumped Nd:silica-phosphate glass zig-zag slab laser amplifier for inertial fusion energy. Jpn. J. Appl. Phys.,2001,40 (11):6415-6425
    [13]Payne S A, Beach R J, Bibeau C, et al. Diode arrays, crystals, and thermal management for solid-state lasers. IEEE J. Sel. Top. Quant.,1997,3 (1): 71-81
    [14]高俊超.固体激光介质热效应的理论研究.硕士学位论文,华中科技大学,2004
    [15]柴立和,彭晓峰,沸腾传热研究历史、现状及发展方向的哲学思考,大自然探索17(66)1998 105-109
    [16]I. Mudawar, W.S. Valentine, Determination of the local quench curve for spray-cooled metallic surfaces, J. Heat Treatment 7 (1989) 107-121
    [17]A.G. Pautsch, T.A. Shedd, Spray impingement cooling with single-and multiple-nozzle arrays Part I:Heat transfer data using FC-72, Int. J. Heat Mass Transfer, inpress, doi:10.1016/j.ijheatmasstransfer.2005.02.012
    [18]A.G. Pautsch, Heat transfer and film thickness characteristics of spray cooling with phase change, Master_s thesis,University of Wisconsin-Madison, Madison, Wisconsin,2004
    [19]T.A. Shedd, Single-and three-color strobe techniques for bubble/droplet sizing and velocimetry, in:C.-F. Lee (Ed.), ILASS 2002, ILASS Americas, Madison, WI,2002, pp.376-380
    [20]T. Fujita, T. Ueda, Heat transfer to falling liquid films and film breakdown—Ⅰ:Subcooled liquid films, Int. J. Heat Mass Transfer 21 (1978) 97-107
    [21]V.I. Tolubinskiy, V.A. Antonenko, Y.N. Ostrovskiy, Heat transfer during vaporization in thin films, Heat Transfer—Soviet Res.14 (6) (1982) 109-114
    [22]I. Mudawar, T.A. Deiters, A universal approach to predicting temperature response of metallic parts to spray quenching, Int. J. Heat Mass Transfer 37 (3) (1994) 347-362
    [23]Q. Cui, S. Chandra, S. McCahan, The effect of dissolving salts in water sprays used for quenching a hot surface:Part 2. Spray cooling, J. Heat Transfer 125 (2) (2003) 333-338
    [24]李港,陈檬.热容性高能固体激光器设计研究[J].地面防空武器,2003,2:44~45
    [25]陶毓伽,淮秀兰,李志刚,蔡军.大功率固体激光器冷却综述.激光杂志,2007,28(2):11-12
    [26]翁兴涛,伍建军,聂辉.YAG激光器泵灯聚光腔的改进[J].武汉大学学报(信息科学版),2001,26(2):177~182
    [27]陈建业.大功率电力电子装置冷却系统的原理与应用[J].国际电 力,2002,6(4):48-52
    [28]Assouad Y, Caplot M, Gautier T. Advanced cooling techniques comparison for airborne electronic circuits. SEMITHERM ⅩⅢ[A].13th Annual IEEE[C]. USA:1997
    [29]陈义红,赵兵,赵德正.大功率全固化固体激光器的研究[J].光电子激光,2001,12(12):1234~1235
    [30]金峰,周鼎富.高功率固体热容激光器[J].激光技术,2004,28(5):534~538
    [31]R.Weber, B.Neuenschwander, M.Mac Donald et al. Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods[J]. IEEE JOURNAL OF QUANTUM ELECTRONICS,1998,34(6):1046-1053
    [32]郭丽,姚建铨,禹国俊.85W绿光激光器中的KTP晶体热效应研究[J].激光杂志,2003,24(6):20~23
    [33]王军荣,闵敬春,宋耀祖.板状激光振荡介质温度场和应力场的数值模拟[J].工程热物理学报,2003,24(5):855~857
    [34]Schmid M, Graf Th, Weber H P. Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating. J. Opt. Soc. Am. B.,2000,17 (8): 1398-1404
    [35]Usievich B A., Sychugov V A, Pigeon F, et al. Analytical treatment of the thermal problem in axially pumped solid-state lasers. IEEE J. Quantum Elect., 2001,37 (9):1210-1214
    [36]Innocenzi M E, Yura H T, Fincher C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers. Appl. Phys. Lett.,1990,56 (19):1831-1833
    [37]Belostotskii B R, Kudryashev L I. The temperature distribution in a rectangular laser rod. Zhurnal Prikladnoi Spektroskopii,1967,7 (5):763-766
    [38]Forster J D, Osterink L M. Thermal effects in a nd:yag laser. J. Appl. Phys., 1970,41 (9):3656-3663
    [39]Kuroda H, Masuko H, Maekawa S. Development of highly repetitive phosphate glass lasers. J. Appl. Phys.,1980,51 (3):1351-1356
    [40]Farrukh U O, Buoncristiani A M, Byvik C E. An analysis of the temperature distribution in finite solid-state laser rods. IEEE J. Quantum Elect.,1988,24 (11):2253-2263
    [41]王坚,王世萍.微通道强迫对流的传热分析[J].火控雷达技术,1996,25:8~12
    [42]D.B.Tuckerman. Heat-transfer microstructure for integrated circuit. Ph.D.Theis,Lawrence Livermore National Laboratory, UCRL-53515.1984
    [43]喻世平.微通道传热的近似分析[J].电子机械工程,1994,3:37~40
    [44]武德勇,高松信,吕文强.940nm波长高功率线阵二极管激光器封装研究[J].强激光与粒子束,2002,14(6):840~842
    [45]Beach R, Benett W J, Freitas B L et al. Modular microchannels cooled heatsinks for high average power diode arrays [J].IEEE J QE,1992,28(4):966-969
    [46]J.A.Skidmore. Silicon monolithic microchannel-cooled laser diode array[J]. Applied physics letters,2000,77(1):10~12
    [47]Jandeleit, Wiedman N, Ostlender A et al. Packaging and characterization of high power diode lasers[J]. Proc of SPIE[C],2000,3945:270~272
    [48]Treusch H G, Harrison J, Morris B, et al. Compact high brightness and high power diode laser source for materials processing [A]. Proc of APIE.2000,3945:23~27
    [49]刘云,寥新胜,秦丽.大功率半导体激光器叠层无氧铜微通道热沉[J].发光学报,2005,26(1):109~114
    [50]Jidong Yang, Martin R.Pais, Louis C.Chow. High heat-flux spray cooling[J]. Proc of SPIE,1992,1739:29~40
    [51]何叶,李磊民,杨涛.基于MEMS技术的新型微冷却方式[J].仪表技术与传感器,2004,9:43~45
    [52]Amon C H, Murthyj Y, Yao S C. MEMS-enabled thermal management of high-heat-flux devices, EDIFICE:embedded droplet impingement for integrated cooling of electronics [J]. Experimental Thermal and Fluid Science,2001,25(5):231~242
    [53]梅国晖,孟红记等,高温表面喷雾冷却传热系数的理论分析,冶金能源,200423(6)18-22
    [54]William M.Grissom, F.A.Wierum, Liquid spray cooling of a heated surface, Int.J.Heat Mass Transfer 24 (1980) 261-271
    [55]J. D. Naber, P. V. Farrell, Hydrodynamics of droplet impinging on a heated surface,1993
    [56]Shanjuan Jiang, Vijay K. Dhir. Spray cooling in a closed system with different fractions of non-condensibles in the environment. International Journal of Heat and Mass Transfer.47(2004):5391-5406
    [57]C.Bonacina, S.Del Giudice, G.Comini. Dropwise evaporation. J. Heat Transfer.101(1979):441-446
    [58]Matteo Fabbri, Shanjuan Jiang, Vijay K.Dhir. A comparative study of cooling of high power density electronics using sprays and microjets. Journal of Heat Transfer.127(2005):38-48
    [59]Toda, S. A study of mist cooling (1st Report:Investigation of Mist Cooling). Heat Transfer-Jpn. Res. 1(1972):54-64
    [60]A.G. Pautsch, T.A. Hedd. Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with FC-72. International Journal of Heat and Mass Transfer,2006,49(15-16):2610-2618
    [61]尹冉.喷雾冷却过程雾化和换热特性的实验及数值模拟研究.硕士学位论文,北京科技大学,2008
    [62]郑可可,雷树业等,无沸腾喷雾冷却中流量和喷头高度对换热性能的影响,工业加热5(2002)8-10
    [63]Yang J, Chow L C, Pais M R, An analytical method to determine the liquid film thickness by gas atomized sprays, Journal of Heat Transfer,1996,118 (2):255-258
    [64]安珍彩,雷树业,何玮菁等,雾化喷射下的波动液膜的电测量,工程热物理学报,2004,25(1):121-123
    [65]芦秋敏,雷树业,雾化喷射冷却的机理及模型研究,工程热物理学报,200526(5)817-819
    [66]Chow, L.C., Sehembey, M.S., and Pais, M.R., High Heat Flux Spray Cooling. Annu. Rev. Heat Transfer,8(1997):291-318
    [67]Nguyen, D., Chen, R.-H, and Chow, L.C., Effect of heater orientation and confinement on liquid nitrogen pool boiling. J. Thermophys. Heat Transfer, 14(2000):109-111
    [68]Sehmbey, M.S., Chow, L.C., Hahn, O.J., and Pais, M.R., Effect of spray characteristics on spray cooling with liquid nitrogen. J. Thermophys. Heat Transfer,9(1995):757-765
    [69]Chang, J.Y., and You, S.M., Boiling heat transfer phenomena from microporous and porous surfaces in saturated FC-72. Int. J. Heat Mass Transf.,40(1997):4437-4447
    [70]Rini, D.P., Chen, R.-H., and Chow, L.C., Bubble behaviour and heat transfer mechanism in FC-72 pool boiling, Exp. Heat Transfer,14, No.1(2001):27-44
    [71]Estes, K.A., and Mudawar, I., Comparison of two-phase electronic cooling using free jets and sprays, ASME J. Electron. Packag.,117(1995):323-332
    [72]Sehembey, M.S., Chow, L.C., Hahn, O.J., and Pais, M.R., Spray Cooling of Power Electronics at Cryogenic Temperatures, J. Thermophys. Heat Transfer,9, No.l(1995):123-128
    [73]You, S.M., Simon, T.W., Bar-Cohen, A., and Hong, Y.S., Effects of Dissolved Gas Content on Pool Boiling of Highly Wetting Fluid, ASME J. Heat Transfer,117(1995):687-692
    [74]You, S.M., Simon, T.W., and Bar-Cohen, A., Pool Boiling Heat Transfer With an Array of Flush-Mounted Square Heaters on a Vertical Surface, ASME J. Heat Transfer,119(1997):17-25
    [75]Anderson, T.M., and Mudawar, I., Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid, ASME J. Heat Transfer, 111(1989):752-759
    [76]Reed, S.J., and Mudawar, Elimination of Boiling Incipience Temperature Drop in Highly Wetting Fluids Using Spherical Contacts With a Flat Surface, Int. J. Heat Mass Transf.,42(1999):2439-2454
    [77]Daniel P.Rini, Ruey-Hung Chen, Louis C. Chow, Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling, Journal of Heat Transfer 124 (2002):63-72
    [78]F. Demiray, J. Kim. Microscale heat transfer measurements during pool boiling of FC-72:effect of subcooling. International Journal of Heat and Mass Transfer,2004,47(14-16),3257-3268
    [79]M. Pais, D. Tilton, L. Chow, et al. High heat flux, low superheat evaporative spray cooling, In:Proceedings of the 27th AIAA Aerospace Sciences Meeting, Reno, NV,1989
    [80]J. Yang, L. C. Chow and M. R. Pais. Nucleate boiling heat transfer in spray cooling. Journal of Heat Transfer,1996,118(3):668-671
    [81]B. Horacek, K. Kiger and J. Kim. Single nozzle spray cooling heat transfer mechanisms. International Journal of Heat and Mass Transfer,2005,48(8): 1425-1438
    [82]B. Horacek, J. Kim and K. Kiger. Spray cooling using multiple nozzles: visualization and wall heat transfer measurements. IEEE Transactions on Device and Materials Reliability,2004,4(4):614-625
    [83]Monde, M., Critical Heat Flux in the Saturated Forced Convection Boiling on a Heated Disk With Impinging Droplets. Heat Transfer-Jpn. Res., 8(1979):54-64
    [84]Mudawar, I., and Estes, K.A., Optimizing and Predicting CHF in Spray Cooling of a Square Surface. ASME J. Heat Transfer.118(1996):672-680
    [85]Estes, K.A., and Mudawar, I., Correlating of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surface. Int. J. Heat Mass Transf.,38(1995):2985-2996
    [86]Oliphant, K., Webb, B.W., and McQuay, M.Q., An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-Boiling Regime. Exp. Therm. Fluid Sci.,18(1998):1-10
    [87]Ghodbane, M., and Holman, J.P., Experimental Study of Spray Cooling With Freon-113. Int. J. Heat Mass Transfer,34(4,5),1991:1163-1174
    [88]Holman, J.P., and Kendall, C.M., Extended Studies of Spray Cooling With Freon-113. Int. J. Heat Mass Transfer,36(8),1993:2239-2241
    [89]D.E. Tilton, L.C. Chow, E.T. Mahefkey, G. Switzer. Critical Heat Flux Phenomena in Spray Cooling, AIAA Paper. AIAA-90-1729,1990
    [90]S.C. Yao, K.J. Choi, Heat Transfer Experiments of Mono-dispersed Vertically Impacting Sprays, International Journal of Multiphase Flow. 13(5)(1987):639-648
    [91]Cho, C., and Ponzel, R., Experimental Study on the Spray Cooling of a Heated Solid Surface. Proceedings of the ASME Fluids Engineering Division. 244(1997):265-272
    [92]Kopchikov, I.A., Veronin, G.I., Kolach, T.A., Labuntsov, D.A., and Lebedev, P.D., Liquid Boiling in a Thin Film. Int. J. Heat Mass Transf., 12(1969):791-896
    [93]Chen R H, Chow L C, Navedo J E, Effects of spray characteristics on critical heat flux in subcooled water spray cooling, International Journal of Heat and Mass Transfer,2002,45(19):4033-4043
    [94]M. Kato, Y. Abe, Y.H. Mori, A. Nagashima, On the Spray Cooling Characteristics under Reduced Gravity. AIAA J. Thermophys. Heat Transfer 9(1995):378-381
    [95]K. Yoshida, Y. Abe, T. Oka, Y.H. Mori, A. Nagashima. Spray Cooling under Reduced Gravity Conditions. ASME J. Heat Transfer 123(2001):309-318
    [96]Shou-Shing Hsieh, Tsung-Cheng Fan, Huang-Hsui Tsai. Spray cooling characteristics of water and R-134a. Part I:nucleate boiling. International Journal of Heat and Mass Transfer.47(2004):5703-5712
    [97]PAIS M R, CHOW L C. Surface Roughness and its Effects on the heat Transfer Mechanism in Spray Cooling, J.Heat Transfer,114 (1992) 211-219
    [98]Sehmbey, M.S., Pais, M.R., and Chow, L.C., Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray Cooling. J. Thermophys. Heat Transfer,6(1992):505-512
    [99]L. Ortiz, J. E. Gonzalez. Experiments on steady-state high heat fluxes using spray cooling, Experimental Heat Transfer,1999,12:215-233
    [100]E. A. Silk, J. KIM, K. Kiger. Spray cooling of enhanced surfaces:impact of structured surface geometry and spray axis inclination. International Journal of Heat and Mass Transfer,2006,49(25-26):4910-4920
    [101]Schwarzkopf J, Sovar G, Cader T, Okamoto K, Li BQ, Ramaprian B. Effect of Spray Angle in Spray Cooling Thermal Management of Electronics. ASME heat transfer/fluids engineering summer conference, July 11-15, Charlotte, NC., paper no:HT-FED2004-56414, conference proceedings; 2004
    [102]M. Visaria, I. Mudawar. Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux. International Journal of Heat and Mass Transfer,2008,51(9-10):2398-2410
    [103]郭永献,贾建援,孙发明等.喷射倾角对喷雾冷却CHF的影响,中国工程热物理学会传热传质学术会议论文集.中国工程热物理学会,郑州,2008
    [104]Lanchao Lin, Rengasamy Ponnappan, Heat transfer characteristics of spray cooling in a closed loop, International Journal of Heat and Mass Transfer,2003,46:3737-3746
    [105]C.F. Ma, Y.P. Gan, Y.C. Tian, D.H. Lei, T. Gomi, Liquid jet impingement heat transfer with or without boiling, Journal of Thermal Science 2(1) (1993) 32-49
    [106]Cristina H.Amon, Jayathi Murthy, S.C.Yao et al. MEMS-enabled thermal management of high-heat-flux devices EDIFICE:embedded droplet impingement for integrated cooling of electronics, Experimental Thermal and Fluid Science 25 (2001) 231-242
    [107]Nguyen, D., Chen, R.-H., and Chow, L. C., Effects of Heater Orientation and Confinement on Liquid Nitrogen Pool Boiling, J. Thermophys. Heat Transfer,2000,14:109-111
    [108]L. Lin, R. Ponnappan, K. Yerkes, B. Hager, Large area spray cooling, in Proc.42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV,2004
    [109]Kato M, Yoshiyuki A. Toshiharu O, Akira N. Spray Cooling Characteristics under Reduced Gravity. J Thermophys 1994; 9(2):378-381
    [110]李燕.液滴撞击加热固体平壁变形过程的数值模拟.硕士学位论文,大连理工大学,2008
    [111]王安邦,陈仕异等,液滴与介面交互作用之十年研究回顾,国立台湾大学台大工程学刊91(2004)103-115
    [112]SIkalo S, Marengo M, Tropea C. Analysis of impact of droplet on horizontal surface. Experimental Thermal and Fluid Science.2002,25(7):503-510
    [113]SIkalo S, Tropea C, GanieE N. Impact of droplet onto inclined surface. Journal of Colloid and Interface Science.2005,286:661-669
    [114]SIkalo S, Tropea C, GanieE N. Dynamic wetting angle of a spreading droplet. Experimental Thermal and Fluid Science.2005,29(7):795-802
    [115]SIkalo S, GanieE N. Phenomena of Droplet-Surface Interactions. Experimental Thermal and Fluid Science.2006,31(2):97-110
    [116]Samuel L. Manzello, and Jiann C. Yang. An experimental investigation of water droplet impingement on a heated wax surface. International Journal of Heat Mass Transfer.2004,47(8-9):1701-1709
    [117]Pasandideh-Fard M, Qiao Y M, Chandra S. Capillary eddect during droplet impact on a solid surface. Phys Fluids.1996,8:650-659
    [118]高珊,曲伟,姚伟.喷雾冷却中液滴冲击壁面的流动和换热.工程热物理学报.2007,28(z1):221-224
    [119]Z.Zhao and D. Poulikakos, J. Fukai. Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate—Ⅰ. Modeling. International Journal of Heat Mass Transfer.1996,39(13):2771-2789
    [120]G.E. Cossali, A. Coghe, and M. Marengo. The impact of a single drop on a wetted solid surface. Experiments in fluids.1997,22:463-472
    [121]刘华敏.粘性液滴的形成与沉积扩散的数值模拟.硕士学位论文,北京工业大学,2007
    [122]C. Josserand, S. Zaleski. Droplet splashing of a thin liquid film. Phys. Fluids. 2003,15(6):1650-1657
    [123]R. Panneer Selvam, Lancho Lin, Rengasamy Ponnappan, Direct simulation of spray cooling:Effect of vapor bubble growth and liquid droplet impact on heat transfer, International Journal of Heat and Mass Transfer,49 (2006) 4265-4278
    [124]马银亮.高浓度气固两相流的数值模拟研究.博士学位论文,浙江大学,2001
    [125]魏文韫.高速气雾两相流驰豫过程相间动量传递研究.博士学位论文,四川大学,2002
    [126]常见虎.燃气舵气-固两相绕流数值模拟及试验研究.博士学位论文,南京理工大学,2008
    [127]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社.1991
    [128]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京大学:科学出版社,1994
    [129]朱自强.应用计算流体动力学[M].北京:北京航空航天大学出版社,2001
    [130]MacCormack, R.W. The Effect of Viscosity in Hypervelocity Impact Cratcring, AIAA-69-354
    [131]马铁犹.计算流体动力学[M].北京:北京航空学院出版社,1986
    [132]王志峰,刘儒勋.波前追踪(Front Tracing)方法.力学与实践,2000,22-3:1-14
    [133]Hirt C.W. and Nichols B. D.. Volume of fluid(VOF) method for the dynamics of free boundary. J. Comput. Phys.,1981,39:201-225
    [134]Ashgriz and Poo J. Y.. FLAIR:Flux line-segment model for advection and interface reconstruction. J. Comput. Phys.,1991,93:449-468
    [135]Youngs D. L.. Time-dependent multi-material flow with large fluid distortion numerical method for fluid dynamics. Academic, New York,1982,273-285
    [136]Rudman M.. A volume-tracking method for incompressible multifluid flows with large density variations. Int. J. N. M. in Fluids,1998,28:357-378
    [137]Guegffier D. and Li Jie. Volume-of-fluid interface tracking with smoothed surface stress. J. Comput. Phys.,1999,152:423-451
    [138]刘儒勋,王志峰编著.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社.2001
    [139]Chen I. L. and Glimm J.. Front tracking for gas dynamics. J. Comput. Phys., 1986,62:83-110
    [140]Marshall G.. A front tracking method for one-dimensional moving boundary problems. SIAM J. Sci. Stat. Comput.,1986,7(1):252-263
    [141]Charrier P. and Tossieras B.. On front tracking methods applied to hyperbolic systems of nonlinear conservation laws. SIAM J. Numer. Analysis,1986, 23(3):461-472
    [142]LeVeque R. J. amd Shyue K-M.. One dimensional front tracking based on high resolution wave propagation methods. SIAM J. Sci. Comput.,1995, 16-2:348-377
    [143]Hiditoh J. and Colella P.. A front tracking method for compressible flames in one dimension. SIAM J. Sci. Comput.,1995,16-4:755-772
    [144]Osher S. and Sethian J. A.. Fronts propagating with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 1988,79:12
    [145]Jacqmin D.. Three dimensional computations of droplet conllisions, conloscence, and droplet wall interactions using a continuum tension method. AIAA 95-0883
    [146]Jacqmin D.. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys.,1999,155:96-127
    [147]Brackbbill J., Kothe D. B. and Zemach C.. A continuum method for modeling surface tension. J. Comput. Phys.,1992,100:335
    [148]Wang S. L. and Sekerku P. F.. Algorithms for phase field computation of the dendritic operating state at large supercoolings. J. Comput. Phys.,1996, 127:110
    [149]喷雾系统公司工业喷雾产品样本
    [150]李天友.压力式喷嘴雾化特性实验研究及喷雾干燥热质传递特性数值模 拟.硕士学位论文,四川大学,2006
    [151]TZAN Y L, YANG Y M. Experimental Study of Surfactant Effects on Pool Boiling Heat Transfer [J]. Journal of Heat Transfer,1990,112 (1):207~212
    [152]QIAO Y M, CHANDRA S. Experiments on Adding a Surfactant to Water Droplets Boiling on a Hot Surface; proceedings of the Proceedings of the Royal Society of London, London,1997 [C].673-689
    [153]J. Straatsma. G. Van Houwelingen. A.E. Steenbergen. P. De Jong. Spray drying of food products:1. Simulation model. Journal of Food Engineering. 1999,42:67-72
    [154]陶文铨编著,数值传热学.西安:西安交通大学出版社,2001
    [155]S.A.Morsi and A. J.Alexander. An Investigation of Particle Trajectories in Two-Phase Flow Systems. J.Fluid Mech,1972,55(2):193-208
    [156]P.J. O'Rourke and A.A.Amsden. The TAB Method for Numerical Calculation of Spray Droplet Breakup. SAE Technical Paper 872089. SAE,1987
    [157]R.D. Retiz. Mechanisms of Atomization Processes in High-Pressure Vaporing Sprays. Atomization and Spray Technology,1987,3:309-337
    [158]D.P.Schmidt, I. Nouar, P.K. Senecal, C.J. Rutland, J.K. Martin, and R.D. Retiz. Pressure-Swirl Atomization in the Near Field. SAE Paper 01-0496, SAE,1999
    [159]王喜忠.于才渊.周才君.喷雾干燥.北京:化学工业出版社.2003
    [160]A.H. Lefebvre, Atomization and Sprays, Hemisphere Publishing Corporation, New York, NY(1989)
    [161]I. Mudawar, Assessment of high heat-flux thermal management schemes, IEEE Trans. Comp. Packag. Technol.2001,24:122-141
    [162]Toda, S.,1972, A study of Mist Cooling (1st Report:Investigation of Mist Cooling), Heat Transfer-Jpn. Res.,1. pp.54-64
    [163]FRANCOIS M, SHYY W. Computations of drop dynamics with the immersed boundary method. PART 2:Drop impact and heat transfer [J]. Numerical Heat Transfer, Part B:Fundamentals,2003,44 (2):119~143
    [164]HASAN N O, ANDREA P. Bubble Entrainment by the Impact of Drops on Liquid Surface [J]. Journal of Fluid Mechanics,1990,219:143~179
    [165]WEISS D A, YARIN A L. Single Drop Impact Onto Liquid Films:Neck Distortion,Jetting,Tiny Bubble Entrainment and Crown Formation [J]. Journal of Fluid Mechanics,1999,385:29~254
    [166]JIA-HONG G, SHI-QIANG D. Numerical simulation on the mechanism of the normal impact of two droplets onto a thin film [J]. Journal of Shanghai University (English Edition),2007,11 (3):210~212
    [167]G. Son, N. Ramanujapu, V. K. Dhir, Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling, J. Heat Transfer.2002,124:51-62
    [168]H. Y. Yoon, S. Koshizuka, Y. Oka, Direct calculation of bubble growth, departure, and rise in nucleate pool boiling, Int. J. Multiphase Flow. 2001,27:277-298
    [169]R.P. Selvam, R. Ponnappan. Numerical modeling of nucleation boiling in thin film and effect of droplet impact, in:Proceedings of the 15th Annual Thermal & Fluids Analysis Workshop(TFAWS 2004), Pasadena, CA, August 30th to September 3rd,2004
    [170]R. Panneer Selvam, Lanchao Lin, Rengasamy Ponnappan. Computational Modeling of Spray Cooling:Current Statusand Future Challenges, AIP Conference Proceedings,2005,746:55-63
    [171]张淑君,吴锤结,王惠民.界面模拟方法在气泡运动领域的应用评述.河海大学学报(自然科学版),2006,34(6):655-659
    [172]G. Trggvason et al., A front-tracking method for the computations of multiphase flow, J. Comp. Physics,2001,169:708-759
    [173]Asghar Esmaeeli, Gretar Tryggvason. Computations of film boiling. Part I: numerical method, International Journal of Heat and Mass Transfer 47 (2004) 5451-5461
    [174]S. W. J. Welch, J. Wilson, A volume of fluid based method for fluid flows with phase change, J. Comp. Physics.2000,160:662-682
    [175]解茂昭,韩薇,刘红,王德庆.液态金属熔体中气泡运动特性数值模拟.大连理工大学学报,2006,46(3):340-344
    [176]袁明豪,杨燕华,李天舒,胡志华.基于VOF方法的带相变的自由界面的计算.工程热物理学报,2007,28(6):961-964
    [177]Asghar Esmaeeli, Gretar Tryggvason. Computations of film boiling. Part Ⅰ: numerical method, International Journal of Heat and Mass Transfer 47 (2004) 5451-5461
    [178]G. Son, V.K.Dhir, Numerical simulation of film boiling near critical pressures with a level set method, Journal of Heat Transfer 120(1998) 183-192
    [179]Youngs D.L. Time-Dependent Multi-Material Flow with Large Fluid Distortion, Morton K W, Baines M J. Numerical Methods for Fluid Dynamics. New York:Academic,1982,273-285
    [180]Brackbill J, Kothe D B, Zemach C. A Continuum Method for Modeling Surface Tension. J. Comput. Phys.,1992,100(2):335-354
    [181]Jiang Fangming, Liu Dengying. Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. In:International Conference on Heat Transfer and Transport Phenomena in Microsystems, 15-20 October, Banff, Canada.2000,129-135
    [182]姜任秋编著.热传导、质扩散与动量传递中的瞬态冲击效应.北京:科学出版社,1997
    [183]Li Ji, Zhang Zhengfang, Liu Dengying. Difference scheme for hyperbolic heat conduction equation with pulsed heating boundary. J.of Thermal Science, 2000,9 (2):152-157
    [184]刘登瀛,杨院生.中国科学院“九五”基础性研究重大项目(KJ951.B1.704)超急速传热传质的基础研究论文集.2001
    [185]张浙,刘登瀛.非傅立叶热传导的研究进展.力学进展.2000,30(3):446~455
    [186]W.Kaminski. Hyperbolic heat conduction equation for materials with a nonhomogeous inner structure. Transactions of ASME—Journal of Heat Transfer.1990,112:555~560
    [187]Ali Vedavarz, Sunil Kumar and M.Karim Moallemi. Sigificance of Non-Fourier heat waves in conduction. Transactions of ASME—Journal of Heat Transfer.1994,116:221~224
    [188]D.Y. Tzou. An engineering assessment to the relaxation time in the thermal wave propagation. Int. J. Heat Mass Transfer.1993,36(7):1845~1851
    [189]马养武,陈钰清.激光器件.浙江大学出版社,1994.135-136
    [190]J. Marchiak-Kozlowska and M. Kozlowski, Lasers in Engineering,6, (1997),p.141
    [191]Janina Marciak-Kozlowska and Miroslaw Kozlowski, Modified Schrodinger equation for attosecond laser pulse interaction with matter
    [192]W.克希奈尔著,华光译.固体激光工程.科学出版社,1983.59-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700