用户名: 密码: 验证码:
全同立构聚丙烯诱导结晶行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全同聚丙烯(iPP)的附生结晶过程中,基底与附生晶体之间一定程度的晶格/几何结构匹配对附生结晶过程的作用是全同聚丙烯附生结晶研究领域内的重要理论问题。目前很多研究人员认为聚合物附生结晶需要在具有一定程度匹配关系的晶面内进行;而也有人认为结构的匹配性并不是聚合物间产生附生结晶作用的必要条件。本论文的一部分工作主要围绕几何尺寸匹配程度对全同聚丙烯附生结晶过程的影响展开;通过对α成核剂/iPP、β成核剂/iPP异质复合体系,以及iPP纤维/iPP基体均质复合体系的界面结晶形态研究,详细讨论了附生基底与iPP基体间不同晶格/几何结构匹配程度对于附生结晶过程的影响。
     本论文的第一部分工作主要针对iPP纤维/iPP基体均质复合体系中iPP纤维对iPP基体的诱导结晶行为。由于高分子聚合物熔体在降温结晶过程中存在过冷态,因此通过向iPP过冷熔体中引入iPP纤维可以得到iPP纤维/iPP基体均质复合体系。对于iPP均质复合体系的偏光显微镜观察表明,由于iPP纤维和iPP基体之间化学组成相同、晶格匹配一致、表面润湿性好,iPP纤维表面对iPP基体有很强的成核能力。在较低的温度(远低于纤维熔点)下引入iPP纤维,纤维与基体界面处诱导形成纯α相的横穿晶层。扫描电镜观察刻蚀后的样品,结果证实在160℃的纤维引入温度下,固态iPP纤维能够诱导α-iPP片晶垂直于纤维表面生长。进一步的原位偏光显微镜观察发现,iPP纤维诱导α-iPP横穿晶生成的结晶过程中,iPP纤维的成核时间短,成核密度高。通过向iPP基体中共混入山梨醇类、磷酸酯盐类两种α成核剂以及芳酰胺类和庚二酸钙两种β成核剂,分别制备了α成核剂/iPP、β成核剂/iPP异质复合体系,并对相应成核剂诱导结晶过程中的成核时间、成核密度等进行研究。试验结果表明,iPP纤维的成核能力优于试验中使用的四种α、β成核剂。相关实验结果表明,在全同聚丙烯异相成核过程中,几何尺寸匹配程度对成核过程起到非常关键的作用。
     本论文的另一部分工作围绕β-iPP诱导结晶机理展开。在β-iPP诱导结晶机理的研究中,除晶格匹配效应(例如β成核剂)诱导β-iPP生成机理外,有研究工作表明熔体中的剪切效应也可以诱导β-iPP生成:在剪切作用下形成的一定程度取向的分子链段诱导了β-iPP的生成。取向分子链段在β-iPP的诱导结晶机理中究竟扮演怎样的角色,其与晶格匹配效应下α、β成核剂的成核效率相比,哪种机理的成核效率更高是本论文研究的另一个重要研究内容。
     在本论文的这部分工作中,首先通过改变纤维引入温度以及对于复合体系熔融重结晶过程的观察,研究了iPP纤维/iPP基体均质复合体系下,iPP纤维诱导β相晶体形成的机理。研究发现,当纤维引入温度略高于纤维熔点(170℃)时,在全同聚丙烯均质复合体系中观察到界面处部分熔融的iPP纤维诱导基体形成了纯β相的横穿晶层;而当纤维引入温度进一步提高时,纤维诱导的横穿晶层中β相减少,主要由α相组成。在实验过程中固定纤维引入温度,改变纤维引入过程中在过冷熔体中的松弛时间也得到类似的规律。相关实验结果表明β-iPP晶体的形成与iPP纤维取向分子链的松弛程度有关;iPP纤维中分子链的取向状态对于诱导β-iPP的形成起到重要作用。
     在研究中,将纤维部分熔融重结晶诱导β-iPP横穿晶的结晶过程与α、β成核剂诱导基体的结晶过程对比。实验结果表明部分熔融iPP纤维与NB328、庚二酸钙两种β成核剂相比,部分熔融iPP纤维诱导β-iPP的成核时间比NB328成核剂短;而庚二酸钙由于表面独特结构对于iPP分子链的吸附和稳定能力,成为三者中成核效率最高的基底。另外,部分熔融iPP纤维与DBS、NA11两种α成核剂相比,iPP纤维熔融重结晶诱导β横穿晶的成核诱导时间比DBS、NA11两种α成核剂的成核诱导时间短,说明部分熔融纤维表面的有序结构微区对于iPP基体的成核效率与几何尺寸不完全匹配的成核剂相比仍具有优势。
     此外,结晶温度的改变也会影响部分熔融的iPP纤维在界面处诱导α或β-iPP晶体的形成:当均质复合体系在105℃~137℃之间进行等温结晶时,可以在界面处得到β-iPP的横穿晶;当等温结晶温度超过141℃时,iPP纤维无法诱导β晶生成,而是得到纯α-iPP晶体;而在同一结晶温度下, β成核剂NB328仍然具有一定的β成核能力,并在143°C左右失去诱导β-iPP的能力。
In this work, iPP fiber/matrix homogeneious composite andnucleating agents/iPP heterogeneous composites were prepared, andtheir interfacial supermolecular structuress were investigated. The iPPfibers were introduced into the iPP matrices at the supercooled moltenstate.
     Results show that the fiber introduction temperature andcrystallization temperature significantly affect the interfacialsupermolecular structure between the nucleation surface and iPPmatrix, and the influences were studied in details.
     When iPP fibers were introduced into the matrix at temperatureblow the fiber melting point, they remained in the solid state andexhibited rather high nucleation capacity towards the iPP matrix.Thenucleation behavior of iPP melt in the presence of its homogeneityfibers, DBS and NA11under various conditions was studied using anpolarized optical microscope equipped with a hot stage and thermalanalysis. The results show that the nucleation capacity of iPP fibers is stronger than that of NA11and DBS, due to better dimensionalmatching at lattice level. The iPP fibers have the same chemicalcomposition and crystalline structure with the α-phase iPP, and thusinduce the crystallization more efficiently than NA11and DBS, whoserepeated period does not exactly accord with structure of α-iPP. Thehigh-level dimensional matching is propitious to fast nucleationprocess, demonstrating that dimension matching is the control step ofheterogeneous nucleation for α-iPP isothermal crystallization.
     When iPP fibers were introduced at higher temperature, theinterfacial transcrystalline iPP was composed of more β-iPP thanα-modification. When the introduction temperature was173°C, nearthe fiber melting point, the introduced mainly β-modificationtranscrystallization layers were obtained. However, when fiberintroduction were conducted at even higher temperature, thetranscrystalline goes back to α-modification again. Adjusting the fiberrelaxation time at a fixed fiber introduction temperature obtainedsimilar conclusions. Therefore, it can be concluded that the nucleationof the β-modification was strongly related to the partially melting stateof the iPP fibers.
     The nucleation behavior of iPP in the presence of its partiallymelted homogeneity fibers, α nucleating agents (DBS and NA11) and βnucleating agents (NB328and calcium pimelate) under various conditions was compared using a polarized optical microscopeequipped with a hot stage and thermal analysis. Results show that theiPP fiber exhibited stronger nucleation capacity than the nucleatingagent NB328, but calcium pimelate shows the strongest nucleationcapacity because of its unique surface structure. And the iPP fiberexhibited stronger nucleation capacity than α nucleating agent DBSand NA11, demonstrating that dimensional matching is an importantfactor for nucleation and growth of iPP.
     Moreover, the crystallization temperature could also affect theinterfacial morphology of iPP induced by its own fiber and nucleatingagents. It is found in the experiments that the transcrystalline structuresof β-iPP can only generate below141°C. While the β nucleating agentNB328remained some nucleation capacity to β-iPP at the sametemperature, but it lose it at the crystallization temperature of143°C.
引文
[1] Varga J, Karger-Kocsis J. Poly(propylene): Structure, blends andcomposites[M].1995.
    [2]赵敏.改性聚丙烯新材料[M].北京:化学工业出版社,2010.
    [3]杨明山.聚丙烯改性及配方[M].北京:化学工业出版社,2008.
    [4] Pasquini N. Polypropylene handbook,2nd edition[M]. Munich: Carl Hanser,2005.
    [5] Sombatdee S, Amornsakchai T, Saikrasun S. Reinforcing performance ofrecycled PET microfibrils in comparison with liquid crystalline polymer forpolypropylene based composite fibers[J]. J. Polym. Res.2012,19(3):1-13.
    [6] Haque M A, Mina M F, Moshiul Alam A K M, Rahman M J, Bhuiyan M A H,Asano T. Multiwalled carbon nanotubes-reinforced isotactic polypropylenenanocomposites: Enhancement of crystallization and mechanical, thermal, andelectrical properties[J]. Polym. Composite.2012,33(7):1094-1104.
    [7] Liang Y, Liu S, Dai K, Wang B, Shao C, Zhang Q, Wang S, Zheng G, Liu C,Chen J, Shen C, Li Q, Peng X. Transcrystallization in nanofiberbundle/isotactic polypropylene composites: Effect of matrix molecularweight[J]. Colloid. Polym. Sci.2012,290(12):1157-1164.
    [8] Huang H. Self-reinforcement of polypropylene by flow-induced crystallizationduring continuous extrusion[J]. J. Appl. Polym. Sci.1998,67(12):2111-2118.
    [9]官青,申开智.常压动态保压注塑自增强高密度聚乙烯的结构与性能[J].高等学校化学学报.1995,(07):1129-1133.
    [10] Loos J, Schimanski T, Hofman J, Peijs T, Lemstra P J. Morphologicalinvestigations of polypropylene single-fibre reinforced polypropylene modelcomposites[J]. Polymer.2001,42(8):3827-3834.
    [11] Devaux E, Cazé C. Composites of ultra-high-molecular-weight polyethylenefibres in a low-density polyethylene matrix: Ii. Fibre/matrix adhesion[J].Compos. Sci. Technol.1999,59(6):879-882.
    [12] Lacroix F v, Loos J, Schulte K. Morphological investigations of polyethylenefibre reinforced polyethylene[J]. Polymer.1999,40(4):843-847.
    [13] Meille S V, Ferro D R, Brueckner S, Lovinger A J, Padden F J. Structure ofbeta-isotactic polypropylene: A long-standing structural puzzle[J].Macromolecules.1994,27(9):2615-2622.
    [14] Karger-Kocsis J, Varga J, Ehrenstein G W. Comparison of the fracture andfailure behavior of injection-molded α-and β-polypropylene in high-speedthree-point bending tests[J]. J. Appl. Polym. Sci.1997,64(11):2057-2066.
    [15] Karger-Kocsis J. How does “phase transformation toughening” work insemicrystalline polymers?[J]. Polym. Eng. Sci.1996,36(2):203-210.
    [16] Mort J. Electronic properties of polymers[M]. New York: John Wiley&Sons,1982.
    [17] Natta G, Corradini P. Conformation of linear chains and their mode of packingin the crystal state[J]. J. Polym. Sci.1959,39(135):29-46.
    [18] Natta G, Corradini P, Ganis P. Prediction of the conformation of the chain inthe crystalline state of tactic polymers[J]. J. Polym. Sci.1962,58(166):1191-1199.
    [19] Wunderlich B. Macromolecular physics, volume1: Crystal structure,morphology, defects[M]. London: Academic Press,1973.
    [20] Brückner S, Meille S V, Petraccone V, Pirozzi B. Polymorphism in isotacticpolypropylene[J]. Prog. Polym. Sci.1991,16(2–3):361-404.
    [21] Jones A T, Aizlewood J M, Beckett D R. Crystalline forms of isotacticpolypropylene[J]. Macromol. Chem. Phys.1964,75(1):134-158.
    [22] Turner-Jones A, Cobbold A J. The β crystalline form of isotacticpolypropylene[J]. J. Polym. Sci., Part B.1968,6(8):539-546.
    [23] Kardos J L, Christiansen A W, Baer E. Structure of pressure-crystallizedpolypropylene[J]. J. Polym. Sci. Part A-2: Polym. Phys.,1966,4(5):777-788.
    [24] Morrow D R, Newman B A. Crystallization of low weight polypropylenefractions[J]. J. Appl. Phys.1968,39(11):4944-4950.
    [25] Sauer J A, Pae K D. Structure and thermal behavior of pressure crystallizedpolypropylene[J]. J. Appl. Phys.1968,39(11):4959-4968.
    [26] Wunderlich B. Thermal analysis[M]. London: Academic Press,1990.
    [27] Piccarolo S, Saiu M, Brucato V, Titomanlio G. Crystallization of polymermelts under fast cooling. Ⅱ. High-purity iPP[J]. J. Appl. Polym. Sci.1992,46(4):625-634.
    [28] Lovinger A J, Chua J O, Gryte C C. Studies on the α and β forms of isotacticpolypropylene by crystallization in a temperature gradient[J]. J. Polym. Sci.:Polym. Phys. Ed.1977,15(4):641-656.
    [29] Asano T, Yamamoto T, Mina M F, Fujiwara Y, Takahashi H, Hatta I. Meltingbehavior of the oriented β-phase polypropylene texture crystallized by thetemperature slope method[J]. J. Macromol. Sci., Phys.,1999, B38(1-2):163-175.
    [30] Tang X, Yang W, Shan G, Yang B, Xie B, Yang M, Hou M. Effect oftemperature gradient on the development of β phase polypropylene indynamically vulcanized PP/EPDM blends[J]. Colloid Polym. Sci.,2009,287(10):1237-1242.
    [31] Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H.Deconvolution analyses of differential scanning calorimetry profiles ofβ-crystallized polypropylenes with synchronized x-ray measurements[J].Macromolecules.2007,40(8):2745-2750.
    [32] Varga J, Karger-Kocsis J. Rules of supermolecular structure formation insheared isotactic polypropylene melts[J]. J. Polym. Sci. Part B: Polym. Phys.1996,34(4):657-670.
    [33] Varga J. Characteristics of cylindritic crystallization of polypropylene[J].Macromol. Mater. Eng.1983,112(1):191-203.
    [34] Varga J, Karger-Kocsis J. Crystallization, melting and supermolecular structureof isotactic polypropoylene in polypropylene: Structure, blends andcomposites[M]. London: Chapman&Hall,1994.
    [35] Grubb D T, Odell J A, Keller A. Characterization of superheatableflow-induced polymer crystals by optical microscopy[J]. J. Mater. Sci.1975,10(9):1510-1518.
    [36] Dragaun H, Hubeny H, Muschik H. Shear-induced β-form crystallization inisotactic polypropylene[J]. J. Polym. Sci.: Polym. Phys. Ed.1977,15(10):1779-1789.
    [37] Lotz B, Kopp S, Dorset D. An original crystal structure of polymers withternary helices[M]. Paris: Elsevier,1994.
    [38] Dorset D L, McCourt M P, Kopp S, Schumacher M, Okihara T, Lotz B.Isotactic polypropylene, β-phase: A study in frustration[J]. Polymer.1998,39(25):6331-6337.
    [39] Lotz B. Molecular aspects of structure and morphology of isotacticpolypropylene[J]. J. Macromol. Sci., Phys.,2002, B41:685-709.
    [40] Hosier I L, Alamo R G, Esteso P, Isasi J R, Mandelkern L. Formation of the αand γ polymorphs in random metallocene propylene copolymers. Effect ofconcentration and type of comonomer[J]. Macromolecules.2003,36(15):5623-5636.
    [41] Alamo R G, Kim M H, Galante M J, Isasi J R, Mandelkern L. Structural andkinetic factors governing the formation of the γ polymorph of isotacticpolypropylene[J]. Macromolecules.1999,32(12):4050-4064.
    [42] Shavit-Hadar L, Rein D M, Khalfin R L, Terry A E, Cohen Y. The effect ofmoderate pressure on the crystalline structure of oriented polypropylene tapesusing in situ x-ray diffraction[J]. Polym. Adv. Technol.,2007,18(9):766-770.
    [43] Assouline E, Wachtel E, Grigull S, Lustiger A, Wagner H D, Marom G.Lamellar orientation in transcrystalline γ isotactic polypropylene nucleated onaramid fibers[J]. Macromolecules.2002,35(2):403-409.
    [44] Valdo Meille S, Bruckner S. Non-parallel chains in crystalline [γ]-isotacticpolypropylene[J]. Nature.1989,340(6233):455-457.
    [45] Natta G, Corradini P. Structure and properties of isotactic polypropylene[J]. ⅡNuovo Cimento Series10.1960,15(1):40-51.
    [46] Miller R L. On the existence of near-range order in isotactic polypropylenes[J].Polymer.1960,1:135-143.
    [47] Wunderlich B, Grebowicz J. Thermotropic mesophases and mesophasetransitions of linear, flexible macromolecules[M]. New York: Springer BerlinHeidelberg,1984.
    [48] Haudin J M. Optical properties of polymers[M]. London: Elsevier,1986.
    [49] Jenckel E, Teege E, Hinrichs W. Transkristallisation in hochmolekularenstoffen[J]. Colloid. Polym. Sci.1952,129(1):19-24.
    [50] Kantz M R, Corneliussen R D. Thermoplastic fiber reinforced polypropylenecomposites having a transcrystalline morphology[J]. J. Polym. Sci.: Polym.Lett. Ed.1973,11(4):279-284.
    [51] Campbell D, Qayyum M M. Melt crystallization of polypropylene: Effect ofcontact with fiber substrates[J]. J. Polym. Sci.: Polym. Phys. Ed.1980,18(1):83-93.
    [52] Huson M G, McGill W J. The effect of transcrystallinity on the behavior offibers in polymer matrices[J]. J. Polym. Sci.: Polym. Phys. Ed.1985,23(1):121-128.
    [53] Folkes M J, Hardwick S T. Direct study of the structure and properties oftranscrystalline layers[J]. J. Mater. Sci. Lett.1987,6(6):656-658.
    [54] Saujanya C, Radhakrishnan S. Structure development and properties of PETfibre filled PP composites[J]. Polymer.2001,42(10):4537-4548.
    [55] Thomason J L, Van R A A. Transcrystallized interphase in thermoplasticcomposites. Part ii. Influence of interfacial stress, cooling rate, fiber propertiesand polymer molecular weight[J]. J. Mater. Sci.,1992,27(4):897-907.
    [56] He T, Porter R S. Melt transcrystallization of polyethylene on high moduluspolyethylene fibers[J]. J. Appl. Polym. Sci.1988,35(7):1945-1953.
    [57] Ishida H, Bussi P. Surface induced crystallization in ultrahigh-moduluspolyethylene fiber-reinforced polyethylene composites[J]. Macromolecules.1991,24(12):3569-3577.
    [58] Haas T W, Maxwell B. Effects of shear stress on the crystallization of linearpolyethylene and polybutene-1[J]. Polym. Eng. Sci.1969,9(4):225-241.
    [59] Chatterjee A M, Price F P, Newman S. Heterogeneous nucleation ofcrystallization of high polymers from the melt. I. Substrate-inducedmorphologies[J]. J. Polym. Sci.: Polym. Phys. Ed.1975,13(12):2369-2383.
    [60] Chen Y, Zhong G, Lei J, Li Z, Hsiao B S. In situ synchrotron x-ray scatteringstudy on isotactic polypropylene crystallization under the coexistence of shearflow and carbon nanotubes[J]. Macromolecules.2011,44(20):8080-8092.
    [61] Varga J. Supermolecular structure of isotactic polypropylene[J]. J. Mater. Sci.,1992,27(10):2557-2579.
    [62] Fujiyama M. Structures and properties of injection molding of β-crystalnucleator-added polypropylenes: Part1Effect of β-crystal nucleator content[J].Int. Polym. Proc.1995,(02):172-178.
    [63] Fujiyama M. Structure and properties of injection moldings of β-crystalnucleator-added polypropylene: Part2Effect of MFI of base resin[J]. Int.Polym. Proc.1995,(03):251-254.
    [64] Fujiyama M. Structures and properties of injection moldings of β-crystalnucleator-added polypropylenes: Part3Comparison of nucleating effectbetween γ-quinacridone and quinacridonequinone[J]. Int. Polym. Proc.1996,(03):4.
    [65] Bonev I. On the terminology of the phenomena of mutual crystal orientation[J].Acta. Crystallogr. A.1972,28(6):508-512.
    [66] Royer L. Experimental research on parallel growth or mutual orientation ofcrystals of different species[J]. Bull. Soc. Fran. Mineral.,1928,51:7-159.
    [67] Royer L. Epitaxy: Remarks concerning the problems which they raise[J]. Bull.Soc. Fr. Mineral.,1954,77:1004-1028.
    [68] Willems J. ber orientierte aufwachsungen von paraffinen auf aromatischenkohlenwasserstoffen und alkalihalogeniden[J]. Naturwissenschaften.1955,42(7):176-177.
    [69] Willems J. Oriented overgrowth of organic high polymers[J]. Experientia.1957,13(7):276-277.
    [70] Fischer E W. Orientierte kristallisation des poly thylens auf steinsalz[J].Colloid. Polym. Sci.1958,159(2):108-118.
    [71] Fisher M E. General discussion[J]. Discussions of the Faraday Society.1958,25:205-206.
    [72] Willems J. Oriented growth in the field of organic high polymers[J].Discussions of the Faraday Society.1958,25:111-113.
    [73] Willems J. The development of orientation in nylon6by contact with thecleavage plane of potassium chloride[J]. Experientia.1959,15(5):175.
    [74] Tuinstra F, Baer E. Epitaxial crystallization of polyethylene on graphite[J]. J.Polym. Sci. Polym. Lett.1970,8(12):861-865.
    [75] Seifert H, Müller-Buschbaum B. Epitaxie von linearen makromolekeln aufquarz[J]. Naturwissenschaften.1965,52(7):155-156.
    [76] Hobbs S Y. Row nucleation of isotactic polypropylene on graphite fibres[J].Nature.1971,234(44):12-13.
    [77] Boucher E A. Growth of n-alkane crystals on graphite and on carbon-fibresurfaces[J]. J. Mater. Sci.1973,8(1):146-148.
    [78] Koutsky J A, Walton A G, Baer E. Epitaxial crystallization of homopolymerson single crystals of alkali halides[J]. J. Polym. Sci. Polym. Phys.1966,4(4):611-629.
    [79] Willems J. Oriented overgrowth (epitaxy) of macromolecular organiccompounds[J]. Experientia.1967,23(6):409-415.
    [80] Carr S H, Keller A, Baer E. Relationship between self-seeded and epitaxialcrystallization from polymer solutions: A potentially new method for molecularweight separation and a new decoration method for alkali halides[J]. J. Polym.Sci. Polym. Phys.1970,8(9):1467-1490.
    [81] Mauritz K A, Baer E, Hopfinger A J. Molecular energetics of the epitaxialcrystallization of polyethylene on alkali halide substrates[J]. J. Polym. Sci. Pol.Phys.1973,11(11):2185-2197.
    [82] Mauritz K A, Baer E, Hopfinger A J. The epitaxial crystallization ofmacromolecules[J]. J. Polym. Sci. Macromol. R.1978,13(1):1-61.
    [83] Ihn K J, Tsuji M, Isoda S, Kawaguchi A, Katayama K, Tanaka Y, Sato H.Morphology of cycloparaffins crystallized epitaxially on NaCl[J]. Macromol.Chem. Phys.1989,190(4):837-847.
    [84] Müller-Buschbaum B, Seifert H. Epitaxie von polyacrylnitril auf quarz[J].Colloid. Polym. Sci.1965,205(1):46-55.
    [85] Wittmann J C, Lotz B. Epitaxial crystallization of aliphatic polyesters ontrioxane and various aromatic hydrocarbons[J]. J. Polym. Sci., Polym. Phys.Ed.,1981,19(12):1853-1864.
    [86] Da C V, Le M J, Oswald L, Pham T A, Thierry A. Thin film orientation byepitaxy of carbazolyl polydiacetylenes: Guest-host interaction on a crystalsurface[J]. Macromolecules.1998,31(5):1635-1643.
    [87] Yang J, Wang J, Sidoti G, Liu J, Rybnikar F, Kaszonyiova M, Geil P H.Crystal structure and morphology of nascent samples of symmetric aromaticpolyesters ⅰ. Poly(p-phenylene terephthalate)[J]. Chinese. J. Polym. Sci.2003,21(2):189-204.
    [88] Weng X, Li C Y, Jin S, Zhang D, Zhang J Z, Bai F, Harris F W, Cheng S Z D,Lotz B. Helical twist senses, liquid crystalline behavior, crystal microtwins,and rotation twins in a polyester containing main-chain molecular asymmetryand effects of the number of methylene units in the backbones on the phasestructures and morphologies of its homologues[J]. Macromolecules.2002,35(26):9678-9686.
    [89] Yamashita Y, Nishimura S, Shimamura K, Monobe K. Epitaxialpolymerization of acetylene[J]. Makromol. Chem. Macromol. Symp.1986,187(7):1757-1764.
    [90] Dosiere M, Point J J. Oriented crystallization of biphenyl in low-densitypolyethylene with a single texture[J]. J. Polym. Sci., Polym. Phys. Ed.,1977,15(9):1655-1661.
    [91] Wittmann J C, Manley R S J. Epitaxial crystallization of polyesters on aromatichydrocarbon substrates[J]. J. Polym. Sci., Polym. Phys. Ed.,1978,16(10):1891-1895.
    [92] Somani R H, Yang L, Zhu L, Hsiao B S. Flow-induced shish-kebab precursorstructures in entangled polymer melts[J]. Polymer.2005,46(20):8587-8623.
    [93] Willems J. Orientierte verwachsung von poly thylen mit polyoxymethylen[J].Naturwissenschaften.1963,50(3):92-92.
    [94] Wunderlich B, Melillo L. Surface recrystallization of polyethyleneextended-chain crystals[J]. Science.1966,154(3754):1329-1330.
    [95] Seth K K, Kempster C J E. Observations of trimodal crystal texture inpolypropylene blended with nylon11[J]. J. Polym. Sci. Polym. Symp.1977,58(1):297-310.
    [96] Petermann J, Gleiter G. Morphology and growth of "row structure" in isotacticpolystyrene[J]. Prog. Colloid Polym. Sci.,1978,64:122-124.
    [97] Pennings A J, Mark J M A A, Kiel A M. Hydrodynamically inducedcrystallization of polymers from solution[J]. Colloid. Polym. Sci.1970,237(2):336-358.
    [98] Morrow D R, Woodward A E. Deformation of poly-1-butene crystalaggregates[J]. J. Macromol. Sci., Phys.,1970,4(1):153-160.
    [99] Lotz B, Wittmann J C. The molecular origin of lamellar branching in the α(monoclinic) form of isotactic polypropylene[J]. J. Polym. Sci., Part B: Polym.Phys.,1986,24(7):1541-1558.
    [100] Takahashi T, Inamura M, Tsujimoto I. Epitaxial growth of polymer crystals onuniaxially drawn polymers[J]. J. Polym. Sci. Polym. Lett.1970,8(9):651-657.
    [101] Willems J. Orientierte aufwachsung von poly thylen und paraffin aufpolyamiden[J]. Colloid&Polymer Science.1973,251(7):496-497.
    [102] Buleon A, Chanzy H, Roche E. Epitaxial crystallization of cellulose ⅱ onvalonia cellulose[J]. J. Polym. Sci. Pol. Phys.1976,14(10):1913-1916.
    [103] Takahashi T, Teraoka F, Tsujmoto I. Epitaxial crystallization of crystallinepolymers on the surface of drawn polytetrafluoroethylene[J]. J. Macromol. Sci.Phys.1976,12(3):303-315.
    [104] Kumamaru F, Kajiyama T, Takayanagi M. Formation of single crystals ofpolyacrylonitrile during the process of solution polymerization[J]. J. Cryst.Growth.1980,48(2):202-209.
    [105] Wang C, Hwang L M. Transcrystallization of PTFE fiber/PP composites (Ⅰ).Crystallization kinetics and morphology[J]. J. Polym. Sci. Part B: Polym. Phys.1996,34(1):47-56.
    [106] Wang C, Hwang L M. Transcrystallization of PTFE fiber/PP composites (Ⅱ).Effect of transcrystallinity on the interfacial strength[J]. J. Polym. Sci. Part B:Polym. Phys.1996,34(8):1435-1442.
    [107] Kojima M, Satake H. Morphological and structural features of heat-treateddrawn polypropylene/high-density polyethylene blends[J]. J. Polym. Sci. Pol.Phys.1984,22(2):285-294.
    [108] Nishio Y, Yamane T, Takahashi T. Crystallization behavior of high-densitypolyethylene in an oriented blend with polypropylene[J]. J. Macromol. Sci.Phys.1984,23(1):17-27.
    [109] Yan S, Petermann J, Yang D. Epitaxial behavior of HDPE on the boundary ofhighly oriented iPP substrates[J]. Colloid. Polym. Sci.1995,273(9):842-847.
    [110] Wang K, Zhou C, Tang C, Zhang Q, Du R, Fu Q, Li L. Rheologicallydetermined negative influence of increasing nucleating agent content on thecrystallization of isotactic polypropylene[J]. Polymer.2009,50(2):696-706.
    [111]张志秋山梨醇类透明成核剂合成工艺的研究[D].大庆:大庆石油学院,2007.
    [112]杨振生.成核剂对热致相分离法聚丙烯多孔膜结构及透过性能的影响[J].天津工业大学学报.2008,27(3):5-8.
    [113] Nogales A, Mitchell G R. Development of highly oriented polymer crystalsfrom row assemblies[J]. Polymer.2005,46(15):5615-5620.
    [114] Varga J, Ehrenstein G W. Formation of β-modification of isotacticpolypropylene in its late stage of crystallization[J]. Polymer.1996,37(26):5959-5963.
    [115] Wilder E A, Spontak R J, Hall C K. The molecular structure and intermolecularinteractions of1,3:2,4-dibenzylidene-d-sorbitol[J]. Mol. Phys.2003,101(19):3017-3027.
    [116] Smith T L, Masilamani D, Bui L K, Khanna Y P, Bray R G, Hammond W B,Curran S, Belles J J, Jr., Binder-Castelli S. The mechanism of action of sugaracetals as nucleating agents for polypropylene[J]. Macromolecules.1994,27(12):3147-3155.
    [117] Shepard T A, Delsorbo C R, Louth R M, Walborn J L, Norman D A, Harvey NG, Spontak R J. Self-organization and polyolefin nucleation efficacy of1,3:2,4-di-p-methylbenzylidene sorbitol[J]. J. Polym. Sci., Part B: Polym.Phys.,1997,35(16):2617-2628.
    [118] Nu ez C M, Whitfield J K, Mercurio D J, Ilzhoefer J R, Spontak R J, Khan SA. Effect of molecular architecture on DBS-induced block copolymer gels: Arheological study[J]. Macromol. Symp.1996,106(1):275-286.
    [119] Mathieu C, Thierry A, Wittmann J C, Lotz B.“Multiple” nucleation of the(010) contact face of isotactic polypropylene, α phase[J]. Polymer.2000,41(19):7241-7253.
    [120] Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, SchmidtH-W. The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene)sorbitol: Phase behavior, nucleation, and optical properties[J].Macromolecules.2003,36(14):5150-5156.
    [121] Feng Y, Jin X, Hay J N. Effect of nucleating agent addition on crystallizationof isotactic polypropylene[J]. J. Appl. Polym. Sci.1998,69(10):2089-2095.
    [122] Nagarajan K, Myerson A S. Molecular dynamics of nucleation andcrystallization of polymers[J]. Cryst. Growth. Des.2001,1(2):131-142.
    [123]徐涛,王晓静,邱亚东,雷华.成核剂对聚丙烯材料结晶形态的影响[J].高分子材料科学与工程.2011,(09):92-95.
    [124]李俊卿.成核透明剂TM-1(DBS)的合成工艺[J].中国科技信息.2011,(7):158.
    [125] Zhao S, Xin Z, Zhang J, Han T. Combined effect of organic phosphate sodiumand nanoclay on the mechanical properties and crystallization behavior ofisotactic polypropylene[J]. J. Appl. Polym. Sci.2012,123(1):617-626.
    [126] Marco C, Gómez M A, Ellis G, Arribas J M. Highly efficient nucleatingadditive for isotactic polypropylene studied by differential scanningcalorimetry[J]. J. Appl. Polym. Sci.2002,84(9):1669-1679.
    [127] Yoshimoto S, Ueda T, Yamanaka K, Kawaguchi A, Tobita E, Haruna T.Epitaxial act of sodium2,2’-methylene-bis-(4,6-di-t-butylphenylene)phosphateon isotactic polypropylene[J]. Polymer.2001,42(23):9627-9631.
    [128]蒋海斌,张晓红,乔金樑.聚烯烃结晶成核剂的研究进展[J].石油化工.2011,(10):1027-1036.
    [129] Abraham F, Kress R, Smith P, Schmidt H-W. A new class of ultra-efficientsupramolecular nucleating agents for isotactic polypropylene[J]. Macromol.Chem. Phys.2013,214(1):17-24.
    [130] Wang C, Chu Y, Wu Y. Electrospun isotactic polystyrene nanofibers as a novelβ-nucleating agent for isotactic polypropylene[J]. Polymer.2012,53(23):5404-5412.
    [131] Chen J, Yao B, Su W, Yang Y. Isothermal crystallization behavior of isotacticpolypropylene blended with small loading of polyhedral oligomericsilsesquioxane[J]. Polymer.2007,48(6):1756-1769.
    [132] Phillips A, Zhu P, Edward G. Polystyrene as a versatile nucleating agent forpolypropylene[J]. Polymer.2010,51(7):1599-1607.
    [133] Leugering V H J. Einflu der kristallstruktur und der überstruktur auf einigeeigenschaften von polypropylen[J]. Macromol. Chem. Phys.1967,109(1):204-216.
    [134] Huo H, Jiang S, An L, Feng J. Influence of shear on crystallization behavior ofthe β phase in isotactic polypropylene with β-nucleating agent[J].Macromolecules.2004,37(7):2478-2483.
    [135] Zhang Z, Chen C, Wang C, Junping Z, Mai K. A novel highly efficientβ-nucleating agent for polypropylene using nano-CaCO3as a support[J].Polym. Int.2010,59(9):1199-1204.
    [136] Liu M, Guo B, Du M, Chen F, Jia D. Halloysite nanotubes as a novelβ-nucleating agent for isotactic polypropylene[J]. Polymer.2009,50(13):3022-3030.
    [137] Corradini P. The discovery of isotactic polypropylene and its impact on pureand applied science[J]. J. Polym. Sci. Polym. Chem.2004,42(3):391-395.
    [138] Zhang Y, Xin Z. Isothermal crystallization behaviors of isotactic polypropylenenucleated with α/β compounding nucleating agents[J]. J. Polym. Sci., Part B:Polym. Phys.,2007,45(5):590-596.
    [139] Ikeda N, Kawahara Y. Crystalline polypropylene resin composition and amidecompounds[P]. U.S. Patent,6235823B1.2001-5-22.
    [140] udla J, Raab M, Eichhorn K-J, Strachota A. Formation and transformation ofhierarchical structure of β-nucleated polypropylene characterized by x-raydiffraction, differential scanning calorimetry and scanning electronmicroscopy[J]. Polymer.2003,44(16):4655-4664.
    [141] Kotek J, Raab M, Baldrian J, Grellmann W. The effect of specific β-nucleationon morphology and mechanical behavior of isotactic polypropylene[J]. J. Appl.Polym. Sci.2002,85(6):1174-1184.
    [142] Dong M, Guo Z, Yu J, Su Z. Study of the assembled morphology of aryl amidederivative and its influence on the nonisothermal crystallizations of isotacticpolypropylene[J]. J. Polym. Sci., Part B: Polym. Phys.,2009,47(3):314-325.
    [143]史建公,赵桂良,张敏宏,刘志坚,石勤智,杨万泰,赵丽梅.脂肪二羧酸及其盐类聚丙烯β成核剂研究进展[J].中外能源.2011,16(4):75-82.
    [144] Li J X, Cheung W L. Pimelic acid-based nucleating agents for hexagonalcrystalline polypropylene[J]. J. Vinyl. Addit. Techn.1997,3(2):151-156.
    [145]张景云,史观一,曹友虹,王弘. β晶型聚丙烯的力学性质[J].高分子通讯.1986,(04):241-244.
    [146]史观一,张景云. β晶型聚丙烯的研究[J].科学通报.1981,(12):731-733.
    [147] Varga J, Mudra I, Ehrenstein G W. Highly active thermally stable β-nucleatingagents for isotactic polypropylene[J]. J. Appl. Polym. Sci.1999,74(10):2357-2368.
    [148] Stocker W, Schumacher M, Graff S, Thierry A, Wittmann J-C, Lotz B.Epitaxial crystallization and AFM investigation of a frustrated polymerstructure: Isotactic poly(propylene), β phase[J]. Macromolecules.1998,31(3):807-814.
    [149] Mathieu C, Thierry A, Wittmann J C, Lotz B. Specificity and versatility ofnucleating agents toward isotactic polypropylene crystal phases[J]. J. Polym.Sci., Part B: Polym. Phys.,2002,40(22):2504-2515.
    [150] Kawai T, Iijima R, Yamamoto Y, Kimura T. Crystal orientation ofN,N’-dicyclohexyl-2,6-naphthalenedicarboxamide in high magnetic field[J]. J.Phys. Chem. B.2001,105(34):8077-8080.
    [151] Kawai T, Iijima R, Yamamoto Y, Kimura T. Crystal orientation of β-phaseisotactic polypropylene induced by magnetic orientation ofN,N’-dicyclohexyl-2,6-naphthalenedicarboxamide[J]. Polymer.2002,43(26):7301-7306.
    [152] Hou W, Liu G, Zhou J, Gao X, Li Y, Li L, Zheng S, Xin Z, Zhao L. Theinfluence of crystal structures of nucleating agents on the crystallizationbehaviors of isotactic polypropylene[J]. Colloid. Polym. Sci.2006,285(1):11-17.
    [153] Zhou J, Liu J, Yan S, Dong J, Li L, Chan C, Schultz J M. Atomic forcemicroscopy study of the lamellar growth of isotactic polypropylene[J].Polymer.2005,46(12):4077-4087.
    [154] Yamaguchi M, Fukui T, Okamoto K, Sasaki S, Uchiyama Y, Ueoka C.Anomalous molecular orientation of isotactic polypropylene sheet containingN,N’-dicyclohexyl-2,6-naphthalenedicarboxamide[J]. Polymer.2009,50(6):1497-1504.
    [155] Li H, Jiang S, Wang J, Wang D, Yan S. Optical microscopic study on themorphologies of isotactic polypropylene induced by its homogeneity fibers[J].Macromolecules.2003,36(8):2802-2807.
    [156] Olley R H, Bassett D C. An improved permanganic etchant for polyolefines[J].Polymer.1982,23(12):1707-1710.
    [157] Lotz B. α and β phases of isotactic polypropylene: A case of growth kinetics`phase reentrency' in polymer crystallization[J]. Polymer.1998,39(19):4561-4567.
    [158] Nakamura K, Shimizu S, Umemoto S, Thierry A, Lotz B, Okui N. Temperaturedependence of crystal growth rate for α and β forms of isotacticpolypropylene[J]. Polym. J.(Tokyo, Jpn.).2008,40(9):915-922.
    [159] Stocker W, Magonov S N, Cantow H J, Wittmann J C, Lotz B. Contact faces ofepitaxially crystallized α-and γ-phase isotactic polypropylene observed byatomic force microscopy[J]. Macromolecules.1993,26(22):5915-5923.
    [160] Varga J, Menyhard A. Effect of different β-nucleating agents on crystallizationof isotactic polypropylene[J]. Magy. Kem. Foly., Kem. Kozl.,2008,114(3):120-125.
    [161] Nakamura K, Nakamura S, Umemoto S, Okui N. Nucleation behavior for α andβ forms of isotactic polypropylene[J]. J. Polym. Sci.2009,66(10):470-474.
    [162] Varga J, Mudra I, Ehrenstein G W. Crystallization and melting of β-nucleatedisotactic polypropylene[J]. J. Therm. Anal. Calorim.1999,56(3):1047-1057.
    [163] Dou Q. Effect of malonic acid/calcium stearate bicomponent nucleator on theβ-crystalline formation in isotactic poly(propylene)[J]. Int. Polym. Proc.2010,(05):334-340.
    [164]窦强.庚二酸/硬脂酸钙双组分成核剂对β晶型等规聚丙烯生成的影响[J].高分子材料科学与工程.2008,24(9):76-79.
    [165] Karger-Kocsis J, Czigany T. Interfacial effects on the dynamic mechanicalbehavior of weft-knitted glass fiber fabric-reinforced polypropylene compositesproduced of commingled yarns. Tensile and flexural response[J]. Appl.Compos. Mater.1997,4(4):209-218.
    [166] Wu C M, Chen M, Karger-Kocsis J. Interfacial shear strength and failuremodes in sPP/CF and iPP/CF microcomposites by fragmentation[J]. Polymer.2001,42(1):129-135.
    [167] Rausch J, M der E. Health monitoring in continuous glass fibre reinforcedthermoplastics: Manufacturing and application of interphase sensors based oncarbon nanotubes[J]. Compos. Sci. Technol.2010,70(11):1589-1596.
    [168] Blades H. Polyamide fibers and films[P]. German Patent, DE2219703A1.1972-11-9.
    [169] Blades H. Polyamide fibers[P]. German Patent, DE2219646A.1972-11-9.
    [170] Ciferri A, Ward I M. Ultra-high modulus polymers[M]. London: AppliedScience Publishers,1979.
    [171] Smith P, Lemstra P J. Ultra-high-strength polyethylene filaments by solutionspinning/drawing[J]. J. Mater. Sci.1980,15(2):505-514.
    [172] Teishev A, Incardona S, Migliaresi C, Marom G. Polyethylenefibers-polyethylene matrix composites: Preparation and physical properties[J].J. Appl. Polym. Sci.1993,50(3):503-512.
    [173] Vroom W I, Westover R F. Polymer fabrication under hydrostatic pressure[P].French Patent, FR2085801A5.1971-11-31.
    [174] Li H, Liu J, Wang D, Yan S. A comparison study on the homogeneity andheterogeneity fiber induced crystallization of isotactic polypropylene[J].Colloid. Polym. Sci.2003,281(10):973-979.
    [175] Chatterjee A M, Price F P, Newman S. Heterogeneous nucleation ofcrystallization of high polymers from the melt. Ii. Aspects of transcrystallinityand nucleation density[J]. J. Polym. Sci.: Polym. Phys. Ed.1975,13(12):2385-2390.
    [176] Chatterjee A M, Price F P, Newman S. Heterogeneous nucleation ofcrystallization of high polymers from the melt. Iii. Nucleation kinetics andinterfacial energies[J]. J. Polym. Sci.: Polym. Phys. Ed.1975,13(12):2391-2400.
    [177] Olley R H, Bassett D C. On the development of polypropylene spherulites[J].Polymer.1989,30(3):399-409.
    [178] Karger-Kocsis J. Polypropylene structure, blends and composites V.1:Structure and morphology[M]. Berlin: Springer-Verlag GmbH,1995.
    [179] Garbarczyk J, Paukszta D. Influence of additives on the structure and propertiesof polymers.3. Study of β→α transition in isotactic polypropylene at varioustemperatures and heating times[J]. Colloid Polym. Sci.,1985,263(12):985-990.
    [180] Shi G, Zhang X, Qiu Z. Crystallization kinetics of β-phase poly(propylene)[J].Macromol. Chem. Phys.1992,193(3):583-591.
    [181] Salem D R. Structure formation in polymeric fibers[M]. Munich: HanserVerlag,2001.
    [182] Somani R H, Hsiao B S, Nogales A, Fruitwala H, Srinivas S, Tsou A H.Structure development during shear flow induced crystallization of ipp: Insitu wide-angle x-ray diffraction study[J]. Macromolecules.2001,34(17):5902-5909.
    [183] Li X, Hu K, Ji M, Huang Y, Zhou G. Calcium dicarboxylates nucleation ofβ-polypropylene[J]. J. Appl. Polym. Sci.2002,86(3):633-638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700