用户名: 密码: 验证码:
钍基熔盐快堆多物理耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔盐堆是第四代核能系统的六种候选堆型之一,特殊之处在于采用液态熔盐作为燃料,其在固有安全、核燃料循环、小型化、核资源的有效利用和防止核扩散等方面有其突出的优点。鉴于GIF目标和钍基熔盐快堆在燃料增殖、核废料嬗变和安全方面具有良好的性能,自2005年,国际上液态燃料熔盐堆的设计和研发工作集中在快谱钍基熔盐堆技术研发,尤其是罐式堆芯结构熔盐快堆。钍基熔盐快堆特殊的设计和运行方式,使得钍基熔盐快堆堆芯中子、缓发中子先驱核、温度和流场内在强耦合,导致新的重要的物理效应。随着计算机技术发展,核反应堆多物理场耦合技术正成为国内外研究的前沿。因此,构建钍基熔盐堆多物理综合仿真模拟平台,研制钍基熔盐快堆三维多物理耦合程序,作为熔盐快堆多物理多尺度耦合分析的有效平台和工具,对于理解熔盐快堆多物理耦合的重要特性和优化钍基熔盐快堆的设计,无论是在学术研究还是在工程应用上都具有重要的现实意义。
     本论文首先回顾了熔盐堆发展历史及现状,介绍了多物理场耦合技术的发展及应用,简述了熔盐堆多物理耦合国内外研究现状。然后,详细推导了考虑流体运动影响的熔盐堆中子输运方程,通过P1近似、分群理论和雷诺平均法,获得熔盐快堆多群中子扩散方程;基于传质组份守恒原理,考虑熔盐快堆对流输运和湍流输运效应,详细推导了熔盐快堆缓发中子先驱核浓度方程;从流体动力学三大基本守恒方程出发,采用雷诺平均法和涡粘模型,获得了熔盐快堆湍流N-S方程、湍流动能k方程、湍流耗散率ε方程和以温度T表示的湍流能量方程。这些中子物理方程、热工水力方程及其边界条件,共同构成了钍基熔盐快堆多物理耦合数学模型。为了选择合适的数值方法求解钍基熔盐快堆多物理耦合模型,分析评估了钍基熔盐快堆多物理耦合模型方程的空间离散方法和时间离散方法,介绍了用于求解离散方程的多种有效算法,以及所采用的多物理耦合方案。
     通过构建钍基熔盐堆综合仿真模拟平台,依据推导的钍基熔盐快堆多物理耦合数学模型,有限体积空间离散方法,Euler全隐式时间离散方法,采用Gauss-Seidel迭代法、松弛迭代法、共轭梯度法、双共轭梯度法、预处理共轭梯度法和预处理双共轭梯度法六种代数方程组求解算法,以及串行、隐式、内耦合的耦合方案,编制并验证了钍基熔盐快堆三维多物理耦合程序-TMSR3D。三维多物理耦合程序支持结构化和非结构化网格,使用一套网格,全隐式耦合方法,三维可视化后处理,C++面向对象的编程语言,模块化的程序结构设计等特点。为了进一步说明三维多物理耦合程序的功能和特点,给出一种小型钍基熔盐快堆概念设计,应用三维多物理耦合程序分析了小型钍基熔盐快堆堆芯多物理稳态耦合的燃料入口速度效应、燃料回路衰变时间效应和湍流扩散效应;分析了阶跃引入反应性后,堆芯瞬态耦合特性,尤其分析了湍流扩散效应。结果表明,钍基熔盐快堆三维多物理耦合程序能够充分的、有效的模拟液态燃料钍基熔盐快堆堆芯三维多物理稳态和瞬态耦合物理现象,尤其是钍基熔盐快堆对流项的对流输运效应和湍流扩散项的湍流输运效应。
The Molten Salt Reactor(MSR) with special liquid molten salt fuel is one of the sixadvanced reactor concepts identified by the Generation IV International Forum(GIF) as acandidate for cooperative development, which is characterized by remarkable advantages ininherent safety, fuel cycle, miniaturization, effective utilization of nuclear resources andproliferation resistance. In view of the main GIF goals and the perfect capable of breeding,actinide transmutation and safety in the thoium molten salt fast reactor(TMSFR), since2005,R&D in the countries of the world has focused on the development of fast-spectrum MSRconcepts combining the generic assets of fast neutron reactors with those relating to molten saltfluorides as fluid fuel and coolant, especially, for can-type TMSFR without solid moderator inthe core. The peculiar design and operation in TMSFR make inherent tightly coupling relationsbetween the neutron fux, the delayed neutron precursor, the heat transfer and the turbulent fow,which can result in new and important physical effect. Besides, the multi-physical couplingtechnology in the nuclear reactor is becoming the research frontier of the nuclear engineering athome and abroad. Hence, to bulid the thorium molten salt reactor integrated simulationplatform(TMSRINS) and develop the throrium motlen salt fast reactor three dimentionmulti-physical coupling code as an effective tool for multis-cale and multi-physics analysis inTMSFR have important significance in academic research and engineering application forunderstanding the characteristics of multi-physical coupling and optimizing the design in thethorium molten salt fast reactor.
     In the dissertation, firstly, the development and status of the molten salt reactor, themulti-physical coupling technology and the mutli-physical coupling research in molten saltreactor are reviewed and summaried. And then the neutron transport equation with the effect ofthe fluid flow is derived in detail, and the multi-group neutron diffusion equation of the moltensalt reactor is established by P1approximation,grouping theory and Reynolds-averaged method.The six-group delayed neutron precursor conservation equations with the effect of the turbulenttransport are derived detailly based on the principle of conservation of components. On the basisof baisc principles of conservation of mass, momentum and energy, adopting Reynolds-averagedmethod and Boussinesq eddy viscosity assumption, the turbulent Navier-Stokes equation, thegoverning euqation for turbulent kinetic energy k, the governing equation for the rate of viscous dissipation ε and the energy equation expressed as the temperature T in the TMSFR are buildcompletely. Ultimately, these equations with relevant boundary conditions constitute themulti-physical coupling model in TMSFR. In order to shoose suitable numerical method to solvethe PDEs of the multi-physical model for the thorium molten salt fast reactor, in the dissertation,the spatial discretisation methods, the temporal discretisation methods and the multi-physicalcoupling chemes are analyzed and compared, at the same time, the numerical algorithms forthese discretised linear equations are also introduced.
     After bluiding the TMSRINS platform, in the light of multi-physical coupling model forTMSFR, finite volume method for saptical discretisation, Euler fully implicit method fortemporal discretisation, Gauss-Seidel method, relaxation method, conjugate gradient method,bi-conjugate gradient, preconditioned conjugate gradient method and preconditionedbi-conjugate gradient method for discretised linear equations, and serial, implicit, direct couplingscheme, the three dimension multi-physical coupling code-TMSR3D for TMSFR is develpedand validated. The TMSR3D code support structured and unstructured mesh, uses the same meshin different modules, fully implicit coupling scheme in coupling solvers, three dimensionvisualization in post-processing, C++object-oriented programming language, modular-basedcode design and so on. With the purpose of demonstrating the the functions and features of theTMSR3D code, a concept design of the small thoium molten salt fast reactor is present, then theTMSR3D code is applied to analyze the effect of the fuel inlet velocity, the effect of the fuelresident time out of the core and the effect of the turbulent diffusion at the steady state. Inaddition, the transient characteristics in the core, particularly, the effect of the turbulent diffusion,are simulated and analyzed after a step reactivity addition. The results indicate that the TMSR3Dcode can adequately and effectively simulates the multi-physical coupling phenomena at steadystate and transient in the core of TMSFR,and can especially well refect the transport effect ofthe convective term and the turbulent diffusion term, which is peculiar to TMSFR.
引文
[1] IAEA. Power Reactor Information System [DB/OL].[2014-04-02]. http://www.iaea.org/PRIS/home.aspx.
    [2]中国核能行业协会.2013年年度全国核电运行情况[R/OL].[2014-02-11]. http://www.china-nea.cn/html/2014-02/28745.html.
    [3]中国能源中长期发展战略研究项目组.中国能源中长期(2030、2050)发展战略研究:电力油气核能环境卷[M].北京:科学出版社,2011.
    [4] GIF. Overview of The Generation IV International Forum [EB/OL]. https://www.gen-4.org/gif/jcms/c_9335/charter.
    [5] GIF.A Technology Roadmap for Generation IV Nuclear Energy Systems [R/OL].[2002-12]. https://www.gen-4.org/gif/jcms/c_40481/technology-roadmap.
    [6] IAEA. Thorium fuel cycle-Potential benefits and challenges, IAEA-TECDOC-1450[R]. VIENNA: InternationalAtomic Energy Agency,2005.
    [7] BETTIS E S, SCHROEDER R W, CRISTY G A, et al. The Aircraft Reactor Experiment-Design and Construction[J]. Nuclear Science and Engineering,1957,2:804-825.
    [8] FRAAS A P, SAVOLAINEN A W. Design Report on The Aircraft Reactor Test, ORNL-2095[R]. Oak Ridge,Tennessee: Oak Ridge National Laboratory,1956.
    [9] COTTRELL W B, HUNGERFORD H E, LESLIE J K, et al. Operation of The Aircraft Reactor Experiment,ORNL-1845[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory,1955.
    [10] HAUBENRE P N, ENGEL J R. Experience with The Molten Salt Reactor Experiment [J]. Nuclear Applicationsand Technology,1970,8:
    [11] BRIGGS R B. Molten Salt Reactor Program Semiannual Progress Report for Period Ending August31,1965,ORNL-3872[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory,1965.
    [12] ROBERTSO R C. MSRE Design and Operations Report, Part I, Description of Reactor Design, ORNL-TM-728[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory,1965.
    [13] GEHIN J C. Molten Salt Reactor Technology for Throium Fueled Small Reactors [C]//Advanced SMRTechnology Symposium Small Modular Reactors2011, Washington, DC, March28,2011,2011.
    [14] GUYMON R H. MSRE Systems and Components Performance, ORNL-TM-3039[R]. Oak Ridge, Tennessee:Oak Ridge National Laboratory,1973.
    [15] ROBERTSO R C. Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor, ORNL-4541[R].Oak Ridge, Tennessee: Oak Ridge National Laboratory,1971.
    [16] ROBERTSO R C, HAUBENRE P N, BRIGGS R B. Development Status of Molten-Salt Breeder Reactors,ORNL-4812[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory,1972.
    [17] BETTIS E S, ALEXANDER L G, WATTS H L. Design Studies of A Molten Salt Reactor Demonstration Plant,ORNL-TM-3832[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory,1972.
    [18] MCWHERTER J R. Molten Salt Breeder Experiment Design Bases, ORNL-TM-3177[R]. Oak Ridge, Tennessee:Oak Ridge National Laboratory,1970.
    [19] ENGEL J R, GRIMES W R, RHOADES W A, et al. Molten Salt Reactors For Efficient Nuclear Fuel Utilizationwithout Plutionium Separation, ORNL-TM-6413[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory,1978.
    [20] ENGEL J R, CRIME W R, BAUMAN H F, et al. Conceptual Design Characteristics of a Denatured Molten-SaltReactor with Once-Through Fueling, ORNL-TM-7207[R]. Oak Ridge, Tennessee: Oak Ridge NationalLaboratory,1980.
    [21] INGERSOLL D T, PETERSON P F, PICKARD P S, et al. Status of Preconceptual Design of the AdvancedHigh-Temperature Reactor (AHTR), ORNL/TM-2004/104[R]. Oak Ridge, Tennessee: Oak Ridge NationalLaboratory,2004.
    [22] FORSBERG C W. Refueling Options and Considerations for Liquid-Salt-Cooled Very High-TemperatureReactors, ORNL/TM-2006/92[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory,2006.
    [23] FORSBERG C W, HU L W, PERTERSON P F, et al. Fluoride-Salt-Cooled High-Temperature Reactors (FHRs) forBase-Load and Peak Electricity, Grid Stabilization, and Process Heat, MIT-ANP-TR-147[R]. Cambridge, MA:Center for Advanced Nuclear Energy System, MIT,2013.
    [24] MASCHEK W, STANCULESCU A, ARIEN B, et al. Report on intermediate results of the IAEA CRP on 'Studiesof advanced reactor technology options for effective incineration of radioactive waste'[J]. EnergyConversion and Management,2008,49(7):1810-1819.
    [25] IGNATIEV V, SCHIKORR M, FEYNBERG O, et al. Calculation of safety related parameters for Na,Li,Be/FMOSART concept [C]//The3rd RCM of IAEA CRP on Studies of Innovative Reactor Technology Options forEffective Incineration of Radioactive Waste, Domain VI, Indira Gandhi Centre for Atomic Research (IGCAR),Chennai, India, January15-19,2007.
    [26] MERLE-LUCOTTE E, HEUER D, ALLIBERT M, et al. The Thorium Molten Salt Reactor: Launching the ThoriumCycle while Closing the Current Fuel Cycle [C]//Contribution247, Actes de conférence de la EuropeanNuclear Conference ENC2007, Bruxelles, Belgique,2007.
    [27] CORDIS. Evaluation and Viability of Liquid Fuel Fast Reactor System(EVOL)[EB/OL].[2012-12-06].http://cordis.europa.eu/projects/rcn/97054_en.html.
    [28] AUFIERO M, BROVCHENKO M, CAMMI A, et al. Calculating the effective delayed neutron fraction in theMolten Salt Fast Reactor: Analytical, deterministic and Monte Carlo approaches [J]. Annals of NuclearEnergy,2014,65:78-90.
    [29] ROUCH H, GEOFFROY O, RUBIOLO P, et al. Preliminary thermal–hydraulic core design of the Molten SaltFast Reactor (MSFR)[J]. Annals of Nuclear Energy,2014,64:449-456.
    [30] DOLIGEZ X, HEUER D, MERLE-LUCOTTE E, et al. Coupled study of the Molten Salt Fast Reactor core physicsand its associated reprocessing unit [J]. Annals of Nuclear Energy,2014,64:430-440.
    [31] HEUER D, MERLE-LUCOTTE E, ALLIBERT M, et al. Towards the thorium fuel cycle with molten salt fastreactors [J]. Annals of Nuclear Energy,2014,64:421-429.
    [32] BROVCHENKO M, HEUER D, MERLE-LUCOTTE E, et al. Design-Related Studies for the Preliminary SafetyAssessment of the Molten Salt Fast Reactor [J]. Nuclear Science and Engineering,2013,175(3):329-339.
    [33] MERLE-LUCOTTE E. Introduction to the Physics of the Molten Salt Fast Reactor [C]//Thorium EnergyConference2013, CERN, Geneva,2013.
    [34] FURUKAWA K, LECOCQ A, KATO Y, et al. Thorium Molten-Salt Nuclear Energy Synergetics [J]. Journal ofNuclear Science and Technology,1990,27(12):1157-1178.
    [35] SMITH J, SIMMONS W E. An assessment of a2500MWe molten chloride salt fast reactor, AEEW-R956[R].Dorchester: United Kingdom Atomic Energy Authority,1974.
    [36]《上海勘察设计志》编撰委员会.上海勘察设计志[M].上海:上海社会科学院出版社,1998.
    [37]江绵恒,徐洪杰,戴志敏.未来先进核裂变能-TMSR核能系统[J].中国科学院院刊,2012,27(03):366-374.
    [38] IAEA. Small Reactor Without On-Site Refueling:Neutronic Characteristics, Emergency Planning AndDevelopment Scenarios, IAEA-TECDOC-1652[R]. Vienna: IAEA,2010.
    [39] IAEA. Advanced Reactors Information System(ARIS)[DB/OL]. https://aris.iaea.org/sites/overview.html.
    [40]王刚,安琳. COMSOL Multiphysics工程实践与理论仿真:多物理场数值分析技术[M].北京:电子工业出版社,2012.
    [41]孙培德,杨东全,陈奕柏.多物理场耦合模型及其数值模拟导论[M].北京:中国科学技术出版社,2007.
    [42]张洪才. ANSYS14.0理论解析与工程应用实例[M].北京:机械工业出版社,2013.
    [43] SCHMIDT R, BELCOURT K, HOOPER K, et al. Foundational development of an advanced nuclear reactorintegrated safety code, SAND2010-0878[R]. Albuquerque, New Mexico and Livermore, California: SandiaNational Laboratories,2010.
    [44] PAWLOWSKI R, BARTLETT R, BELCOURT N, et al. A theory manual for multi-physics code coupling in LIME,SAND2011-2195[R]. Albuquerque, New Mexico and Livermore, California: Sandia National Laboratories,2011.
    [45] TURNER J, SUMMERS R, PALMTAG S. Virtual Environment for Reactor Applications (VERA), CASL-U-2014-0006-000[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory,2013.
    [46] GASTON D, HANSEN G, KADIOGLU S, et al. Parallel multiphysics algorithms and software for computationalnuclear engineering [J]. Journal of Physics: Conference Series,2009,180:012012.
    [47] GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: A parallel computational framework for coupledsystems of nonlinear equations [J]. Nuclear Engineering and Design,2009,239(10):1768-1778.
    [48] KIRK B S, PETERSON J W, STOGNER R H, et al. libMesh: a C++library for parallel adaptive mesh refinement/coarsening simulations [J]. Engineering with Computers,2006,22(3-4):237-254.
    [49] HANSEN G, MARTINEAU R, NEWMAN C, et al. Framework for simulation of pellet cladding thermalinteraction (PCTI) for fuel performance calculations [C]//American Nuclear Society2009InternationalConf Advances in Mathematics, Computational Methods,and Reactor Physics, Saratoga Springs, NY,2009.
    [50] NEWMAN C, GASTON D, HANSEN G. Computational foundations for reactor fuel performance modeling
    [C]//American Nuclear Society2009International Conference on Advances in Mathematics,Computational Methods, and Reactor Physics, Saratoga Springs, NY,2009.
    [51] NEWMAN C, HANSEN G, GASTON D. Three dimensional coupled simulation of thermomechanics, heat,and oxygen diffusion in nuclear fuel rods [J]. Journal of Nuclear Materials,2009,392(1):6-15.
    [52] KNOLL D, PARK R, SMITH K. Application of the Jacobian-free Newton-Krylov method in computationalreactor physics [C]//American Nuclear Society2009International Conference on Advances inMathematics, Computational Methods, and Reactor Physics, Saratoga Springs, NY,2009.
    [53] KNOLL D A, PARK H, NEWMAN C. Acceleration of k-Eigenvalue-Criticality Calculations Using theJacobian-Free Newton-Krylov Method [J]. Nuclear Science and Engineering,2011,167(2):133-140.
    [54] PARK H, KNOLL D A, GASTON D R, et al. Tightly Coupled Multiphysics Algorithms for Pebble Bed Reactors[J]. Nuclear Science and Engineering,2010,166(2):118-133.
    [55] LAPENTA G, MATTIODA F, RAVETTO P. Point kinetic model for fluid fuel systems [J]. Annals of NuclearEnergy,2001,28(17):1759-1772.
    [56] DULLA S, NICOLINO C. Dynamics of Fluid Fuel Reactors in the Presence of Periodic Perturbations [J].Science and Technology of Nuclear Installations,2008,2008:1-11.
    [57] DULLA S, RAVETTO P. Interactions between fluid-dynamics and neutronic phenomena in the physics ofmolten-salt systems [J]. Nuclear Science and Engineering,2007,155(3):475-488.
    [58] LECARPENTIER D, CARPENTIER V. A Neutronic Program for Critical and Nonequilibrium Study of MobileFuel Reactors: The Cinsf1D Code [J]. Nuclear Science and Engineering,2003,143(1):33-46.
    [59] YAMAMOTO T, MITACHI K, SUZUKI T. Steady state analysis of small molten salt reactor (Effect of fuel saltflow on reactor characteristics)[J]. Jsme International Journal Series B-Fluids and Thermal Engineering,2005,48(3):610-617.
    [60] YAMAMOTO T, MITACHI K, ILEUCHI K, et al. Transient characteristics of small molten salt reactor duringblockage accident [J]. Heat Transfer—Asian Research,2006,35(6):434–450.
    [61] KREPEL J, GRUNDMANN U, ROHDE U, et al. DYN1D-MSR dynamics code for molten salt reactors [J]. Annalsof Nuclear Energy,2005,32(17):1799-1824.
    [62] KREPEL J, ROHDE U, GRUNDMANN U, et al. DYN3D-MSR spatial dynamics code for molten salt reactors [J].Annals of Nuclear Energy,2007,34(6):449-462.
    [63] KOPHAZI J, LATHOUWERS D, KLOOSTERMAN J L. Development of a Three-Dimensional Time-DependentCalculation Scheme for Molten Salt Reactors and Validation of the Measurement Data of the Molten SaltReactor Experiment [J]. Nuclear Science and Engineering,2009,163(2):118-131.
    [64] CAMMI A, DI MARCELLO V, LUZZI L, et al. A multi-physics modelling approach to the dynamics of MoltenSalt Reactors [J]. Annals of Nuclear Energy,2011,38(6):1356-1372.
    [65] GUO Z P, WANG C L, ZHANG D L, et al. The effects of core zoning on optimization of design analysis ofmolten salt reactor [J]. Nuclear Engineering and Design,2013,265:967-977.
    [66] GUO Z P, ZHOU J J, ZHANG D L, et al. Coupled neutronics/thermal-hydraulics for analysis of molten saltreactor [J]. Nuclear Engineering and Design,2013,258:144-156.
    [67]郭张鹏,张大林,肖瑶等.物理-热工耦合计算方法在熔盐堆稳态分析中的应用[J].原子能科学技术,2013,47(11):2071-2076.
    [68] WANG S S, RINEISKI A, MASCHEK W. Molten salt related extensions of the SIMMER-III code and itsapplication for a burner reactor [J]. Nuclear Engineering and Design,2006,236(14-6):1580-1588.
    [69] NICOLINO C, LAPENTA G, DULLA S, et al. Coupled dynamics in the physics of molten salt reactors [J].Annals of Nuclear Energy,2008,35(2):314-322.
    [70] ZHANG D L, LIU C L, QIAN L B, et al. Numerical Research on Steady Coupling of Neutronics andThermal-Hydraulics for a Molten Salt Reactor [J]. Icone16: Proceeding of the16th InternationalConference on Nuclear Engineering-2008, Vol3,2008:95-105.
    [71] ZHANG D L, QIU S Z, LIU C L, et al. Steady state investigation on neutronics of a molten salt reactorconsidering the flow effect of fuel salt [J]. Chinese Physics C,2008,32(8):624-628.
    [72] ZHANG D L, QIU S Z, SU G H, et al. Development of a steady state analysis code for a molten salt reactor [J].Annals of Nuclear Energy,2009,36(5):590-603.
    [73] ZHANG D L, QIU S Z, SU G H, et al. Analysis on the neutron kinetics for a molten salt reactor [J]. Progress inNuclear Energy,2009,51(4-5):624-636.
    [74] ZHOU J, WANG C, AN H, et al. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSRin steady state condition [J]. Nuclear Engineering and Design,2014,267:88-99.
    [75] VAN DER LINDEN E. Coupled neutronics and computational fluid dynamics for the molten salt fast reactor[D]. Delft, Netherlands; Delft University of Technology,2012.
    [76] FIORINA C, LATHOUWERS D, AUFIERO M, et al. Modelling and analysis of the MSFR transient behaviour [J].Annals of Nuclear Energy,2014,64:485-498.
    [77] DUDERSTADT J J, HAMILTON L J. Nuclear Reactor Analysis [M]. New York: John Wiley&Sons, Inc.,1942.
    [78] STACEY W M. Nuclear Reactor Physics [M].2th ed. New York: John Wiley&Sons, Inc.,2001.
    [79] BELL G, GLASSTONE S. Nuclear Reactor Theory [M]. U.S.: Van Nostrand Reinhold Inc.,1970.
    [80]黄祖洽.核反应堆动力学基础[M].第二版.北京:北京大学出版社,2007.
    [81]杜书华,张树发,冯庭桂等.输运问题的计算机模拟[M].长沙:湖南科学技术出版社,1988.
    [82] INCROPERA F P, DEWITT D P, BERGMAN T L, et al. Fundamentals of Heat and Mass Transfer [M].6th ed.New York: John Wiley&Sons, Inc.,2007.
    [83]陶文铨.数值传热学[M].第二版.西安:西安交通大学出版社,2001.
    [84]诸林,刘瑾,王兵等.化工原理[M].北京:石油工业出版社,2007.
    [85]陈义良,朱旻明.物理流体力学[M].合肥:中国科学技术大学出版社,2008.
    [86] POPE S B. Turbulent Flows [M].1st ed. Cambridge: Cambridge University Press,2000.
    [87]王福军.计算流体动力学-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [88] LAUNDER B E, SPALDING D B. Lectures in Mathematical Models of Turbulence [M]. London: AcademicPress,1972.
    [89] MORADNIA P. CFD of Air Flow in Hydro Power Generators [D]. Goteborg,Sweden; Chalmers University ofTechnology,2010.
    [90] FURBO E. Evaluation of RANS turbulence models for flow problems with significant impact of boundarylayers [D]. Uppsala,Sweden; Uppsala University,2010.
    [91]张涵信,沈孟育.计算流体力学-差分方法的原理和应用[M].北京:国防工业出版社,2003.
    [92]毕超.计算流体力学有限元方法及其编程详解[M].北京:机械工业出版社,2013.
    [93] VERSTEEG H K, MALALASEKERA W. An Introduction to Computational Fluid Dynamics-The Finite VolumeMethod [M].2nd ed. Essex, England: Person Education Limited,2007.
    [94]任玉新,陈海昕.计算流体力学基础[M].北京:清华大学出版社,2006.
    [95]林成森.数值计算方法[M].北京:科学出版社,1998.
    [96]《现代应用数学手册》编委会.现代应用数学手册-计算与数值分析卷[M].北京:清华大学出版社,2005.
    [97] TURNER J A. Virtual Environment for Reactor Applications(VERA):Snapshot3.1, CASL-U-2013-0164-000[R].Oak Ridge, Tennessee: Oak Ridge National Laboratory,2013.
    [98] CHAULIAC C, ARAGON S J-M, BESTION D, et al. NURESIM–A European simulation platform for nuclearreactor safety: Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis [J]. NuclearEngineering and Design,2011,241(9):3416-3426.
    [99] NURESAFE-EXCOM. NURESAFE presentation, D1.11[R]. Gif sur Yvette, France: CEA,2013.
    [100] OPENCASCADE. SALOME6-THE OPEN SOURCE INTEGRATION PLATFORM FOR NUMERICAL SIMULATION[M]//OPENCASCADE-CEA-EDF.2012.
    [101] ESI-OPENCFD. User Guide [M]. Bracknell, U.K.: OpenCFD Ltd.,2009.
    [102]潘春祥,任秀华,李香. SolidWorks2014中文版基础教程[M].北京:人民邮电出版社,2014.
    [103] OPENSCAD. OpenSCAD-The Programmers Solid3D CAD Modeller [EB/OL]. http://www.openscad.org/about.html.
    [104] SCH BERL J. NETGEN-automatic mesh generator [EB/OL]. http://www.hpfem.jku.at/netgen/index.html.
    [105] ENGITS. enGrid-open-source mesh generation [EB/OL]. http://engits.eu/en/engrid.
    [106]丁源,王清. ANSYS ICEM CFD从入门到精通[M].北京:清华大学,2013.
    [107] KITWARE. ParaView Guide [M]. New York: Kitware, Inc.,2013.
    [108]唐家鹏. FLUENT14.0超级学习手册[M].北京:人民邮电出版社,2013.
    [109] CEI公司. EnSight科学工程数据后处理与可视化[EB/OL]. http://ensight.com.cn/products.
    [110] INTELLIGENT-LIGHT. FieldView14–CFD Results Without Compromise [EB/OL]. http://www.ilight.com/en/products/fieldview-14.
    [111]李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战-FLUENT GAMBIT ICEM CFD Tecplot [M].北京:人民邮电出版社,2011.
    [112] THOMPSON D L, BRAUN J, FORD R. OpenDX Paths to Visualization [M]. Missoula: Visualization andImagery Solutions, Inc.,2001.
    [113] GREENE N M, PETRIE L M. XSDRNPM: A ONE-DIMENSIONAL DISCRETE-ORDINATES CODE FOR TRANSPORT ANALYSIS ORNL/TM-2005/39[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory,2006.
    [114] MARLEAU G, HEBERT A, ROY R. A USER GUIDE FOR DRAGON VERSION4, IGE-294[R]. Montréal, Canada:école Polytechnique de Montréal,2013.
    [115] ANSWERS. WIMS-A General Purpose Code for Reactor Core Analysis. Dorchester,UK: AEA Technology plc,1995.
    [116] MACFARLANE R E, MUIR D W. The NJOY Nuclear Data Processing System, LA-12740-M [R]. Los Alamos,New Mexico: Los Alamos National Laboratory,1994.
    [117] FLOWER T B, VONDY D R, CUNNINGHAM G W. Nuclear Reactor Core Analysis Code System:CITATION, ORNL-TM-2496[R]. Oak Ridge, Tennessee Oak Ridge National Laboratory,1971.
    [118] SEKKI D, HEBERT A, CHAMBON R. A USER GUIDE FOR DONJON VERSION4, IGE-300[R]. Montr′eal, Canada:Institute of Nuclear Engineering, école Polytechnique de Montréal,2011.
    [119] LANL. MCNP-A General Monte Carlo N-Particle Transport Code, Version5, LA-UR-03-1987[R]. Los Alamos,U.S.A: Los Alamos National Laboratory,2003.
    [120] BOWMAN S M. Scale6: Comprehensive Nuclear Safety Analysis Code System [J]. Nuclear Technology,2011,174(2):126-148.
    [121] EDF. Description of Code_Saturne [EB/OL]. http://code-saturne.org/cms/features.
    [122] EDF. Overview of SYRTHES code Version4.0[EB/OL]. http://researchers.edf.com/software/syrthes-44340.html.
    [123] SCDAP/RELAP5-DEVELOPMENT-TEAM. RELAP5/MOD3.3CODE MANUAL VOLUME II: USER'S GUIDE ANDINPUT REQUIREMENTS, NUREG/CR-5535/Rev1-Vol II [R]. Rockville, Maryland: Information SystemsLaboratories, Inc.,2001.
    [124]王正林. MATLAB/Simulink与控制系统仿真[M].第二版.北京:电子工业出版社,2012.
    [125] EDF. Overview of Code_Aster code [EB/OL]. http://researchers.edf.com/software/code-aster-44332.html.
    [126] PATANKAR S V, SPALDING D B. A calculation procedure for heat, mass and momentum transfer inthree-dimensional parabolic flows [J]. International Journal of Heat and Mass Transfer,1972,15(10):1787-1806.
    [127] ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting [J]. Journal ofComputational Physics,1986,62:40-65.
    [128] MOSTELLER R D, EISENHART L D, LITTLE R C, et al. Benchmark Calculations for the Doppler Coefficient ofReactivity [J]. Nuclear Science and Engineering,1991,107(3):265-271.
    [129] HIRAKAWA N, ABOANBER A I, MITACHI K, et al. Molten salt reactor benchmark problem to constrainplutonium, TECDOC-1319[R]. Vienna, Austria: IAEA,2002.
    [130]廖承奎.三维节块中子动力学方程组的数值解法及物理与热工-水力耦合瞬态过程的数值计算的研究[D].西安;西安交通大学,2002.
    [131] TAYLOR J B. The Development of A Three-dimensional Nuclear Reactor Kinetics Methodology Based OnThe Method of Characteristics [D]. University Park, Pennsylvania; Pennsylvania State University,2007.
    [132] GEHIN J C. A Quasi-Static Polynomial Nodal Method for Nuclear Reactor Analysis [D]. Cambridge, MA;Massachusetts Institute of Technology,1992.
    [133] BURKE O W. Hybrid Computer Simulation of the MSBR, ORNL-TM-3767[R]. Oak Ridge, Tennessee: OakRidge National Laboratory,1972.
    [134] BROVCHENKO M, MERLE-LUCOTTE E, ROUCH H, et al. Optimization of the pre-conceptual design of theMSFR, R_EVOL_D2.2[R]. Paris, France: CNRS-LPSC,2013.
    [135] SABHARWALL P, KIM E S, SIAHPUSH A S, et al. Preliminary Design for Conventional and Compact SecondaryHeat Exchanger in a Molten Salt Reactor [J]. Proceedings of the Asme Summer Heat Transfer Conference,2012, Vol1,2012:1-12.
    [136] GIBBS J P, HEJZLAR P, DRISCOLL M J. Applicability of Supercritical CO2Power Conversion Systems to GEN IVReactors, MIT-GFR-037[R]. Cambridge, MA: Center for Advanced Nuclear Energy Systems, MIT,2006.
    [137] OTT K O, NEUHOLD R J. Introductory Nuclear Reactor Dynamics [M]. Illinois,U.S.A.: American NuclearSociety,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700