用户名: 密码: 验证码:
基于物证分析的煤矿火灾事故调查技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过理论分析矿井火灾不同燃料燃烧的过程和机理,确定了适用于矿井火灾的火源燃烧模型,得出了矿井火灾时期火源的蔓延传播数学模型,分析了水平巷道火灾浮羽流的特性和形成顶板射流的原因,运用理论分析和数值计算方法,得出了风流与巷壁的非稳态热交换条件下的巷道纵向温度衰减理论模型,通过分析火源邻近区域烟流逆退现象的成因,得出了影响临界风速的各物理参数,通过全尺寸巷道火灾模拟实验与数值模拟,验证了理论分析的正确性,完善了矿井火灾燃烧与蔓延理论,理论分析了矿井火灾现场痕迹物证材料的破坏机理,通过模拟火灾现场对常见的物证材料进行了导电性能测试、金相分析以及硬度测定,建立了火灾温度与物证材料破坏程度的量化关系,与火灾蔓延传播规律有机结合,形成了矿井火灾事故调查综合分析技术,为矿井火灾事故调查提供了理论技术支持。
Through theoretical analysis of the process and mechanism of different fuel, the proper fire combustion model and the fire spread model was determined. By analyzing the formation and characteristics of buoyant plume, which the author used the method of theoretical analysis and of numerical calculation, the author established the attenuation model under non-steady state heat-transfer conditions. By analyzing the causes of inverse plume phenomena near fire, the author concluded the type of physical parameters that influence the critical wind speed. With the method of quantitative analysis, combining full-sized tunnel fire accident simulation and numerical simulation, the analysis was approved and the theory of combustion and of spread was perfected. First step, the author analyzed the destruction mechanism of evidence in fire accident; second, the author determined the conductivity, metallographic structure and hardness of common material by simulation; third, combining the law of fire spread with established quantitative relationship between temperature and damage of evidence during fire accident, the author advanced a comprehensive analysis investigation technology, which supply technical support for the investigation of fire accident in coal mine.
引文
1.周心权,吴兵.矿井火灾救灾理论与实践[M].北京:煤炭工业出版社,1996.11
    2.王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990
    3.范维澄,王清安等.火灾学简明教程[M].合肥:中国科学技术大学出版社,1995
    4.范维澄,刘乃安.火灾安全科学—一个新兴交叉的工程科学领域[J].中国工程科学,2001.1
    5.范维澄等.火灾科学导论[M].武汉:湖北科学技术出版社,1993
    6.霍然,胡源,李元洲编著.建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社,1999.11
    7.杨本洛.理论流体力学的自洽化分析[M].上海:上海交通大学出版社,1998.8
    8. J.Waclawik.o. Temperaturze gazow pozarowych W wyrobiskukorytarzowym[J]. Archives of Minning Sciences,1989,34
    9.[日]羽田,博宪等.井下燃烧物的燃烧气体研究[J].资源,1990,1-9
    10.[西德]瓦尔特.保特.根据矿井中的燃烧热能预计火风压[J].GLUCUF,1982
    11.[日]山尾信一郎.防止井下火灾.日本矿业会志,1953,(8):117-120
    12.张国枢,王省身.火风压的计算及其影响因素分析[J].中国矿业学院学报,1983
    13.夏研春.巷道中火灾烟气的流场研究[D].辽宁工程技术大学,2001
    14. B.A.道林斯基.发生火灾时巷道内温度变化的研究[J].矿业安全与环保,1988,(3):53-54
    15. R. Larry Grayson, Harisha Kinilakodi, Vladislav Kecojevic. Pilot sample risk analysis for underground coal mine fires and explosions using MSHA citation data[J]. Safety Science.2009,10:1371-1378
    16.李杰林,周科平,苏家红,唐谷修.自燃火灾巷道烟流的数值模拟及安全评价[J].中国安全科学学报,2006,16(10):37-41
    17.蔡正委.综采工作面Y型通风采空区煤炭自燃危险性研究[D].安徽理工大学,2009
    18. Qin Bo-tao, Zhang Lei-lin, Wang De-ming, Xu Qin. The characteristic of explosion under mine gas and spontaneous combustion coupling[J]. Procedia Earth and Planetary Science,2009,9:186-192
    19.中川佑一,山尾信一郎.井下火灾时期的风阻变化、通风预测及其计算与Greuer方法相比较[J].煤矿安全,1990.12
    20.[日]驹井武等.关于实际规模巷道火灾的蔓延特征研究.《资源.素材学会志》,1990.12
    21.贾进章.矿井火灾时期温度分布数值模拟[J].辽宁工程技术大学学报,2003.22(4):460-462
    22.戚宜欣.矿井火灾烟流温度场及浓度场的数值模拟[J].西安矿业学院学报,1994(1):26-33
    23.张兴凯.地下工程火灾原理及应用[M].北京:首都经济贸易大学出版社,1997
    24.贾进章,刘剑.矿井火灾时期通风系统可靠[M].北京:煤炭工业出版社,2005
    25.贾进章.矿井火灾仿真与避灾路线的数学模型[J].自然灾害学报.2008,17(1):163-168
    26. WACHOWICZ Jan. Analysis of underground fires in Polish hard coal mines[J].J China Univ Mining&Technol 2008,18:0332-0336
    27. Ashok K.Singh,R.V.K.Singh. Mine fire gas indices and their application to Indian underground coal mine fires[J]. International Journal of Coal Geology 2007,69:192-204
    28. C.C.Hwang,J.C.Edwards. The critical ventilation velocity in tunnel fires-a computer simulation[J], Fire Safety Journal 2005,40:213-244
    29. Ann G.Kim. Locating fires in abandoned underground coal mines[J]. International Journal of Coal Geology 2004,59:49-62
    30. Yu.F. Bulgakov, Ya.V. Melnikova. Aerodynamic interaction of drop liquid with ventilation flows when fires occur in underground workings[J]. Procedia Earth and Planetary Science.2009,9:257-262
    31.Litton C D, DeRosa M, Li J S.Calculating fire-throttling of mine ventilation airflow.RI 9076.Bureau of Mines Report of Investigation, USA,1987
    32. Anupma Prakash,Zoltan Vekerdy. Design and implementation of a dedicated prototype GIS for coalfire investigations in North China[J]. International Journal of Coal Geology.2004,59:107-119
    33.周福宝,王德明.矿井火灾下行风流逆转的突变动力学分析[J].辽宁工程技术大学学报.2006,25(2):164-167
    34.周福宝,王德明.矿井火灾烟流滚退距离的数值模拟[J].中国矿业大学学报.2004,33(5):499-503
    35.褚燕燕,蒋仲安.矿井巷道火灾烟气运动模拟研究[J].矿业安全与环保.2007,34(5):13-14,26
    36.朱红青,汪崇鲜等.巷道煤柱自燃温度场数值模拟与火源定位的研究[J].湖南科技大学学报(自然科学版).2007,22(2):1-4
    37.苏传荣,王海燕,周心权.矿井掘进巷道火灾数值模拟研究.2006(沈阳)国际安全科学与技术学术研讨会论文集
    38.耿继原.矿井火灾时期烟流动态过程的数值模拟[D].辽宁工程技术大学,2007
    39.由长福,徐旭常.煤矿掘进巷道内火灾所致继发性灾害分析[J].工程热物理学报.2008,29(7):1257-1259
    40.安永林,彭立敏,雷明锋.雪峰山公路隧道火灾CO-能见度-温度横向分布[J].土木工程学报,2009,42(6):115-120
    41.彭伟.公路隧道火灾中纵向风对燃烧及烟气流动影响的研究[D].中国科学技术大学,2008
    42.张进华,杨高尚等.隧道火灾烟气流动的数值模拟[J].中南公路工程.2006,31(1):4-8
    43.王芸,安晓利编译.英国火灾调查程序规定[J].消防技术与产品信息.2003(6):68-70
    44.樊东黎.热处理工程师手册[M].北京:机械工业出版社,1999
    45.康怀宇.鉴定矿井火灾原因的金相分析技术[J].煤炭学报,2001,26(3):294-298
    46.梁志宏,刘振刚等.金相鉴定技术在火灾调查中的应用[J].消防科学与技术,2005,24(6):778-780
    47.蒋军成,王省身.矿井竖巷内火灾燃烧模拟实验研究[J].火灾科学,1997,6(2):55-59
    48.胡建国.火灾物证分析[M].北京:警官教育出版社,1999.
    49.曾宪义.物证技术学[M].北京:中国人民大学出版社,2000.
    50.梁方束,余小弥.差热分析(DTA)实验条件的研究[J].杭州教育学院学报,2002,19(3):34-35
    51.程霞,陈鲜展,何启林.热分析技术对煤低温氧化规律的研究[J].陕西煤炭,2009,5:51-52;66
    52.葛新玉,何启林,张家精.用热分析技术研究煤的自然发火[J].陕西煤炭,2008,6:40-41
    53.刘术军,邸曼.热分析技术在火场调查中的应用[A].第三届十省区市机械工程学会科技论坛暨黑龙江省机械工程学会年会论文集[C],2007
    54.胡晔.热分析技术在火灾调查中的应用[J].消防技术与产品信息.2004(2):38-41
    55.钟茂华等.事故过程的确定性混沌分析方法[J].中国国安全科学学报.2000,10(3):28-32
    56.邵建章.物证分析中的单纯形最优化法[J].中国人民警官大学学报(自然科学版),1997,8(4):31-33
    57.张兴凯,李华.一次实际模拟火灾实验结果及分析[J].煤矿安全,1994,(10)6-8
    58.刘兴华,梁军.当前我国火灾痕迹物证鉴定存在的问题与对策[J].消防科学与技术.2005第24卷增刊:170-171
    59.梁雄松.化学分析在火灾原因技术鉴定中的应用[J].广西民族学院学报.2002,8(4):48-50
    60.李联选.火场中的低位燃烧痕迹与起火点[J].消防科技.1996(1):44-45
    61.吴郁.浅析放火火灾现场的勘查[J].消防科技2002(1)
    62.张阿宝.认定纵火及嫌疑对象条件和依据[J].上海消防1994(9)
    63. P.Mark L.Sandercock. Fire investigation and ignitable liquid residueanalysis-A review:2001-2007[J]. Forensic Science International 2008,176:93-110
    64. O.Delemont,J.-C.Martin. Application of Computational Fluid Dynamics modelling in the process of forensic fire investigation:Problems and solutions[J]. Forensic Science International 2007,167:127-135
    65.刘振刚等.试述电气火灾痕迹物证技术鉴定程序[J].消防科技与技术.2004(1):94-96
    66.庄琳.火灾现场的勘查与物证技术[J].江西公安专科学校学报.2004,87(5):50-52
    67.邵建章.火灾物证的现场采集技术[J].消防技术与产品信息,2002,(1):45-47
    68.邵建章.火场残留油脂的采集、提取及检验技术[J].消防技术及产品信息,2003,(2):29-33
    69.Stauffer and Lentini J J. ASTM standards for fire debris analysis:a review[J].Forensic Science International, 2003,132(1):63-67
    70. Touron P, M alaquin P, Gardebas D and Nicola J P. Semi-automatic analysis of fire debris[J]. Forensic Science International,2000,110(1):7-18
    71.Chen CY, Ling Y C, Wang JTand ChenH Y. SMS depth profiling analysis of electrical arc residues in fire investigation[J]. Applied Surface Science,2003,203-204:779-784
    72. McCurdy J M, Atwell T and Cole M D. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris[J].Forensic Science International,2001,123(2-3):191-201
    73.Eui-Pyeong L, Hideo Ohtani, Yoshiyuki Matsubara, et.al, Study on discrimination between primary and secondary molten marks using carbonized residue[J]. Fire Safety Journal,2003,37(4):353-368
    74. Shanley J H, Kennedy P M, Program for the study of fire patterns, NISTIR 5904;October 1996[J]. National Institute of Standards and Technology, Annual Conference on Fire Research:Book of Abstracts. October 28-31,1996,Gaithersburg, MD,149-150,1996
    75.Madrzykowski D, Forney G P and Walton W D. Simulation of the dynamics of a fire in a two-story duplex-Iowa[J].December 22,1999, NISTIR 6854, National Institute of Standards and Technology, Gaithersburg, MD 20899-8661,January 2002, USA
    76. Putorti A D and McElroy J. Full-scale house fire experiment for interFIRE VR, U.S. Department of Commerce[J]. National Institute of Standards and Technology, Gaithersburg, MD 20899, Report of Test, FR 4009, November 2,1999, Revised April 10,2000
    77. Nelson H E. Fire growth analysis of the fire of March 20,1990, Pulaski building,20 Massachusetts avenue[J]. N.W.Washington, DC, NISTIR 4489, National Institute of Standards and Technology, Gaithersburg, MD 20899, IssuedJune 1994, December,1990, USA
    78. Putorti A D McElroy J A and Madrzykowski D. Flammable and combustible liquid spill/burn patterns[J]. NIJ Report 60400, U.S. Department of Justice Office of Justice Programs,National Institute of Justice, Building and Fire Research Laboratory, National Institute of Standards and Technology,Gaithersburg, MD 20899-8641,March 2001,USA
    79. BeijingTan, Hardy JK and Snavely R E. Accelerant classification by gas chromatography/mass spectrometry and multivariate pattern recognition[J]. Analytica Chimica Acta,2000,422(1):37-46
    80. O.Manca, B.Morrone, and S.Nardim. Thermal analysis of solids at high Peclet numbers Subjected to moving heat sources[J]. Transactions of the ASME, J. of Heat Transfer,1999,12(2):182-186.
    81.GF.Carrier, F.E.Fendell, and M.F.Wolff. Wind-aided firespread across arrays of discrete fuel elements[J]. I. Theory. Combustion Sci. and Tech,1991,75:99,31-51
    82. M.F.Wolff,GF.Carrier,F.E.Fendell. Wind-aided firespread across arrays of discrete fuel elements[J]. Ⅱ. Experiment. Combustion Sci. and Tech,1991,Vol.77,99.261-289
    83.R.Kurose, H Tsuji, H.Makino. Effects of moisture in coal on pulverized coal combustion characteristics[J]. Fuel 80(2001)1457-1465
    84. M.Satto, K.Amagai etc. Combustion characteristics of waste material containing high moisture[J]. Fuel 80(2001)1201-1209
    85. GZheng, J.A.Kozinski. Thermal events occurring during the combustion of biomass residue[J]. Fuel 79(2000)181-192
    86. L.Sorum, M.G.Gronli, J.E.Hustad. Pyrolysis characteristics and kinetics of municipal solid wastes[J]. Fuel 80(2001)1217-1227
    87. B.K.Mazumdar. Theoretical oxygen requirement of coal combustion,relationship with its calorific value[J]. Fuel 79(2000)1413-1419.
    88.韩昭沧.燃料及燃烧[M].北京:冶金工业出版社,1994.10.
    89.常弘哲,张永康,沈际群编.燃料与燃烧[M].上海:上海交通大学出版社,1993.3
    90. X.H.Liang, J.A.Koziski. Numerical modeling of combustion and pyrolysis of cellulosic biomass in thermol gravimentric systems[J]. Fuel 79(2000)1477-1486.
    91.E.Donskoi, D.L.McElwain. Optimization of coal pyrolysis modeling[J]. Combustion and Flame 122:359-367(2000).
    92. Seung Wook Beek, Jeong Soo Kim. Ignition of a pyrolyzing solid with radiatively active fuel vapor[J]. Combustion Sci. and Tech,1991,Vol.75,99,89-102.
    93. J Larfeldt, B.Lockner, M.C.Melaaen. Modelling and measurements of the pyrolysis of large wood particles. Fuel 79(2000)1637-1643.
    94. K.B.McGRATTAN, T.KASHIWAGI, and H.R.BAUM. Effects of ignition and microgravity environment[J]. Combustion and flame 106:377-391(1996).
    95.(苏)E.B.康托劳维奇著,闻望译.固体燃料燃烧与氧化导论[M].北京:中国工业出版社,1965.9.
    96. Tan Fang Zeng, Wei Biao Fu. The ratio CO/CO2 of oxidation on a burning carbon surface[J]. Combustion and Flame 107:197-210(1996).
    97.傅培舫,周怀春.巷道火灾过程中燃烧速率和释热速率的预测[J].燃烧科学与技术.2006,12(5):408-412
    98.邵启胤.矿井胶带机火灾及其防治措施[J].煤炭工程师,1995(1):10-13,
    99.王志刚.胶带输送机火灾发展规律[J].煤矿安全,1998(4):45-47.
    100. zhang Congli, DuanQichang,Pan Jinling. Research of fire hazard critical guidelines of mine use belt conveyor and automatic fighting fire system[C]//Proceedings of the World Congress on Intelligent Control and Automation. Hangzhou, China,2004.3742-3746.
    101.刘雨忠,吴吉南,冯学武,等.煤矿胶带火灾救灾决策的研究与实施[J].北京科技大学学报,2000(12):501-504
    102. Guo Jian, Li Ming, Guo Kai. Applying BP neural network to detect conveyor belt fire with multi-sensors[J]. Journal of Coal Science and Engineering,2004(10):66-69
    103.Song Zhengchang. Expermental study of kinetic properties of pyrolysis for conveyor belt in coal mine[J]. Journal of China University of Mining and Technology,2005(15):314-316
    104. Dorgal Drysdale. An Inreoduction to Fire Dynamics[J]. A Wiley-interscience Publication,1985
    105.高永庭,防火防爆工程学[M],国防工业出版社,1989
    106. Bott, W, New Insight for Fighting Open Mine Fine Fires in Accensional and Descensional Ventilation[J]. International Congress on Mine Ventilation, Joachimsthal (CSR),1968
    107. Mitcher, D. W,Fighting Mine Fires, Transact. SME223,1962,218-240.
    108. Eisener, H. S. and Smith, P.B., Convection Effects From Underground Fires:The Backing of Smoke Against the Ventilation[J]. SMRE Res. Rep.96,1954.
    109. Osipov, S. N. and Zadan, V. M., Progress of a Fire in a Horizontal Mine Roadway[J]. Ugol Ukrainy 11,1967,No.9,pp35-38.
    110. Dougherty, J.J., Control of Mine Fires[J]. West Virginia University,1969.
    111.Maas,W. and Sadee, C., Reversals of Airflow by a Fire[J]. Geologic en Mijnbouw,45,1966,59-69.
    112. Baltajtes, V. J. and Markovic, M. J., Methods to Determine Some Properties of Mine Fires from the Composition of the Fumes[J]. Lzvestija Vuz, Gornyj Zurnal 10,1967, No.9, pp46-51
    113.程远平,陈亮,张孟君.火灾过程中羽流模型及其评价[J].火灾科学,2002.11(3):132-136
    114. McCaffrey B J. Momentum implications for buoyant diffusion flames [J]. Combustion and Flame; 1983.52: 149
    115.余常昭.环境流体力学导论[M].北京:清华出版社,1992
    116. Rodi, W. Turbulent buoyant jets and plumes [M]. Pergamon Press,1982
    117. Wright, S. J. Buoyant jets in density-stratified crossflow[J].Journal of Hydraulic Engineering,1984.5
    118.王云.矿井火灾预防与处理[M].北京:煤炭工业出版社,1992.12
    119. A. Guelzm, J.M. Souil, J.D. Vantelon, et.al., Modeling of a Reverse layer of Fire Induced Smoke in a Tunnel [C], Fire Safety Science Proceedings of the Fourth International Symposium,1994,277-288
    120. Thomas, P.H., Fire Research Note 723:The Movement of Smoke in Horizontal Passage Against an Air Flow[J]. Technical Report, Fire Research Station, Borehamwood, Herts, UK,1968
    121.周延,王省身.水平巷道烟流滚退发生条件的研究[J].煤炭学报,1998.4:362-365
    122. Fletcher, D. F., Kent, J. H., Apte, V.B.& Green, A. R., Numerical simulations of smoke movement from a pool fire in a ventilated tunnel[J].Fire Safety Journal,1994.3:305-325
    123. Hwang, C. C.& Wargo, J. D., Experimental study of thermally generated reverse stratified layers in a fire tunnel[J].Combustion and Flame,1986.66:171-180
    124. J. P. Vantelon, A. Guelzim, D. Quach, et al. Investigation of fire induced smoke movement in tunnels and stations:an application to the Paris Metro [C]. Fire Safety Science Proceedings of the 3rd International Symposium,1991:901-918
    125.巷道发生火灾时烟的逆流现象.救命器技术研究会志[日]第48回,抚顺煤科分院情报所译
    126. Y Wu, M Z ABU BAKAR. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity [J]. Vehicle Tunnels, BHR Group,2000:639-651
    127. Hwang C C. Reverse stratified flow in duct fires:a two dimensional approach [A]. Proceedings of 6th Symposium (International) on Combustion[C].The Combustion Institute, Pittsburgh,1977:1385-1395
    128. Thomas, PH., Fire Research Note No.351:the movement of buoyant fluid against a stream and the venting of underground fires[J].Technical Report, Fire Research Station, Borehamwood, Herts., UK,1968
    129.叶汝陵.巷道火灾时期的通风状态[J].煤炭工程师,1992.4:1-8
    130. P. J. Woodburn & R. E. Britter. CFD simulations of a tunnel fire-Part Ⅰ [J].Fire Safety Journal,1996.26: 35-62
    131.顾恒祥.燃料与燃烧[M].西北工业大学出版社,1993.6,pp34-41
    132. Fletcher, D. F., Kent, J. H., Apte, V. B.& Green, A. R.,Numerical simulations of smoke movement from a pool fire in a ventilated tunnel[J].Fire Safety Journal,1994.3:305-325
    133.韩昭沧.燃料及燃烧第二版[M].冶金工业出版社,1984.6
    134.井上雅红.火灾气流的温度及风速变化[J].煤矿安全,岑衍强译自《社团法人资源》.素材学会春季大会讲演要旨集,1989.3:93-94
    135.Mass, W. and Sadee, C. Reversals of airflow by a fire [M].Geologicen Mijnbouw,45,1966:59-69
    136.覃文清、李风,隧道火灾与防范,消防科学与技术[J],2004年第1期:54-57
    137.朱政,城市地下公路隧道工程消防设计探讨,消防科学与技术[J],2004年第23卷第6期:543-544
    138.陈立道,王锦,吴晓宇,道路隧道火灾预防与控制研究,地下空间[J],2003年第23卷第1期:72-78
    139. Toong Tau-Yi. Combustion dynamics [M].MsGrawHill Co.1983
    140.陆煜,程林编著.传热原理与分析[M].北京:科学出版社,1997.12
    141.Hwang, C. C.,et al., Reverse Stratified Flow in Duct Fires,A Two-Dimensional Approach,Sixteenth Symposium (International) on Combustion Held at MIT,1976, p6
    142. Mitchell, D. W.,etal. Practical Aspects of Controlling an Underground Fire on a Mining Machine, US Bu. Mines, RI.5846,1961,pp20
    143.Pobis, J. J.,etal. Final Report of Major Mine Fire and Explosion Disaster Mars No.2 Mine Clinchfield Coal Company, US. Bu. Mines, Oct.16,1965
    144.蒋军诚.矿井火灾烟气流动分析及防灾决策支持系统研究[D].中国矿业大学,1995:10
    145.范维澄,王清安,霍然等编著.火灾科学导论[M].合肥:中国科学技术大学出版社,1992
    146.范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1992
    147. Y.R.Sivathanu,G.M.Faeth.Generalized state relationships for scalar properties in non-premixed hydrocarbon/air flames [J].Combust. Flame.1990.82.211-230
    148.吴望一.流体力学[M].北京大学出版社.2000
    149. FLUENT.Inc.The FLUENT user guide [M].Centerra Resource Park 10 Cavendish Court Lebanon.NH03766.2001
    150. Mitcher, D. W., Mine Fires, Prevention, Detection, Fighting,3rd ed., Maclean Huster, USA,1996, p167
    151.叶汝陵,巷道火灾时期的通风状态及MTU通风网络计算程序,煤炭科学研究院重庆分院,1991.6
    152.金属平均晶粒度的测定方法.GB/T 6394-2002[S].
    153.吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2006
    154.胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006
    155.王希庆,韩宝玉,邸曼.电气火灾现场勘查与鉴定技术指南[M].沈阳:辽宁大学出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700