用户名: 密码: 验证码:
固体有机废弃物制备活性炭的基础性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源与环境是21世纪的两大主题,城市垃圾处理是这两大主题中的重要课题。伴随着我国经济的快速发展,我国城市规模的不断扩大,人口高度集中,城市垃圾总量的不断增加。如果能够将城市垃圾转化为有效的能源物资,既实现处理垃圾的目的,又缓解能源消耗紧张的压力,无论是我国城市生态环境保护,还是国民经济发展和能源结构调整,都具有十分重大的现实意义。利用热解技术将城市固体有机废弃物制备成活性炭,具有二次污染小,无害化彻底和资源化程度高的特点,是垃圾资源利用化的重要技术之一,近年来得到广大科学工作者的极大关注。
     活性炭微孔发达、比表面积高、吸附能力强,是一种优良的吸附材料,广泛应用于化工、环保、食品与制药、催化剂载体和电极材料等领域。随着科学技术的飞速发展,市场对活性炭的需求量越来越大。本文采用颗粒粒径为0.59-0.85mm的聚碳酸酯(PC)为原料,NaOH作为化学活化剂,在活化温度为773K和氮气保护条件下制备活性炭。活化时间和NaOH/聚碳酸酯混合比这两个工艺参数通过中心组合设计方法设定。实验通过ASAP 2000分析仪测试不同工艺条件下制备的活性炭在77K下对N_2的吸附等温线、比表面积、D-R微孔容积等。
     结果表明,不同活化时间和不同化学药品混合比制备的活性炭的N_2吸附等温线属于Ⅰ型吸附等温线,而水蒸汽吸附等温线则属于Ⅳ型。说明活化时间和化学药品混合比的增加都促进了微孔的形成。但化学药品混合比过高时,会造成微孔孔径扩大至中孔甚至大孔。利用响应面法规划求解得到比表面积,D-R微孔容积和产率的二次响应面近似函数,并通过此函数求出NaOH化学活化聚碳酸酯制备活性炭所得的最大比表面积和D-R微孔容积分别为853.3 m~2/g和0.3678 mL/g。同时也确定了在热解温度773K下,获得最大比表面积和D-R微孔容积对应的活化时间和NaOH/聚碳酸酯混合比的最优水平。另外还得出水蒸汽吸附量Q_((0.35-0.10))和Q_(0.95)的二次响应面近似函数,并求出其最优值分别为0.2373 kg/kg和0.5577 kg/kg。最后用响应表面图检验了活化时间和化学药品混合比对活性炭性能的影响,说明活化时间和化学药品混合比这两个因素对比表面积,D-R微孔容积、产率、水蒸汽吸附量Q_((0.35-0.10))和Q_(0.95)的影响都是非线性的。
Resource and environment are two topics in 21~(st) century,and disposal of municipal refuse is an important task in the two topics.With the rapid development of the economy and enlargement of city scale in China,the city population and municipal refuse are increasing rapidly.Refuse will become an effective energy resource with right disposition and the energy consumption stress will be relieved.It has great practical significance in city environment protection,development of national economic and adjustment of energy structure.Pyrolysis technology is one of important refuse disposal techniques in preparation of activated carbon from solid organic wastes with little secondary pollution,quite innocuity and high reusability,and it has been paid more attention from all over the world.
     Activated carbon has been used widely as an adsorption material in chemical industry, environment protection,food industry,pharmaceutics,catalyst carriers and electrode materials,etc.With the development of science and technology,the demand for activated carbon is increasing rapidly.In this paper,the activated carbon was prepared by chemical activation with NaOH under nitrogen atmosphere from polycarbonate(PC) particles in the size range of 0.59-0.85 mm,while the activation temperature is set at 773K.The activation time and NaOH/PC ratio were planned according to Central composite design.The BET surface area and D-R micropore volume of activated carbon were determined through ASAP 2000 with nitrogen at 77K.
     The characteristics of activated carbon prepared at different activation time and chemical ratio were studied.As a result,the N_2 adsorption isotherms are typical of TypeⅠwhile the water vapor isotherms are of TypeⅣ,representing micropores are developed with the increase of activation time and chemical ratio,although the micropores were enlarged to mesopores or macropores.Response surface methodology was used to establish the optimum levels of independent processing factors(activation time at 773 K and NaOH/PC ratio) for obtaining maxima of BET surface area and D-R micropore volume with the second degree polynomial model,853.3 m~2/g and 0.3678 mL/g,respectively.The second degree polynomial model of water vapor amount absorbed was also determined for obtaining maxima of Q_((0.35-0.10)) and Q_(0.95,) 0.2373 kg/kg and 0.5577 kg/kg,respectively.The contour plots are used to inspect the effect of activation time and chemical ratio on characteristics of activated carbon,which is nonlinear.
引文
[1]闰庆松.城市垃圾产生量的预测方法[J].山东环境,1994,6:39.
    [2]陈海滨,陶华,等.我国城市垃圾处理现状研究闭[J].武汉城市建设学院学报,1997,14(3):40-44.
    [3]王中民.城市垃圾处理与处置[M].北京:中国环境科学出版社,1992.
    [4]韩雷,池涌,温俊明,吴旺明,倪明江,岑可法.城市固体废弃物典型组分的快速热分解产气特性研究[J].能源与环境,2004,6:1-5.
    [5]北京市环境卫生科学研究所编著,固体废弃物的处理与处置[M].北京:高等教育出版社,1993.
    [6]聂永丰主编,三废处理工程技术手册(固体废物卷)[M].北京:化学工业出版社,2000.
    [7]国家统计局,中国统计年鉴(2000年)[M].北京:中国统计出版社,2001.
    [8]赵由才,朱青山.城市生活垃圾卫生填埋技术与管理手册[M].北京:化学工业出版社,1999.
    [9]陈世和,张所明.城市垃圾堆肥原理与工艺[M].上海:复旦大学出版社,1990.
    [10]林小英.等离子体技术在固体废弃物处理中的应用[J].资源调查与环境出版社,2005,2(26):129-131.
    [11]金雅娟.城市生活固体废弃物处理[J].水利电力施工机械出版社,1997,75:46-48.
    [12]R J Hong,G F Wang.Life cycle assessment of BMT-based integrated municipal solid waste management:Case study in Pudong[J].China Resources Conservation and Recycling,2006,2(49):129-146.
    [13]宋玉银.城市有机固体废弃物的热解研究[J].环境科学与技术,1992,10(3):9-13.
    [14]何品晶,邵立明,陈正夫等.污水厂污泥低温热化学转化过程机理研究[J].中国环境科学,1998,(1):39-42.
    [15]李爱民.城市固体废弃物在回转窑内运动特性及热解特性的研究[D].浙江杭州:浙江大学,1999.
    [16]王华,何方,马文会,等.二恶英零排放化生活垃圾直接气化熔融焚烧技术[J].工业加热,2001,2:6-10.
    [17]徐继昌,张志冰,等.熔渣法城市垃圾高温焚烧技术试验研究[J].冶金能源,2001,20(6):3-6.
    [18]S SAlves.,J L Figueiredo.A model for pyrolysis of wet wood[J].Chemical Engineering Science,1989,44:2861-2869.
    [19]A N Garcia,A Marcilla,R Font.Thermogravimetric kinetic study of the pyrolysis of municipal solidwaste[J].Thermochimica acta,1995,254:27-304.
    [20]J Lede.The nature and properties of intermediate and unvaporized biomass pyrolysis material[J].Development in thermochemical biomass conversion,1996:27-41.
    [21]W C R Chan,M Kelbon,B B Krieger.Modeling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle[J].Fuel,1985,64(11):1505-1513.
    [22]C K Lee,R F Chaiken,J M Singer.Charring pyrolysis of wood[J].16th International Symposium on Combustion,1976:1459-1470.
    [23]A Thumer,U Mann.Kinetic investigation of wood pyrolysis[J].Industrial and Engineering Chemical Process Design and Development,1981,20:482-488.
    [24]金保升,仲兆平,周山明.城市固体废物(MSW)热解特性及其动力学研究[J].工程热物理学报,1999,20(4):510-514.
    [25]李斌,谷月玲,严建华,等.城市生活垃圾典型组分的热解动力学模型研究[J].环境科学学报,1999,19(5):562-566.
    [26]张力,冉景缡,屈超蜀.城市生活垃圾物性与热解特性的实验研究[J].环境科学学报,2000,20(5):645-648.
    [27]江淑琴.生物质燃料的燃烧与热解特性[J].太阳能学报,1995,16(1):40-48.
    [28]廖洪强,姚强.TGA技术研究城市生活垃圾焚烧特性[J].燃料化学学报,2001,29(2):140-143.
    [29]方梦祥,陈冠益,骆仲涣,等.反应条件对稻杆热解产物分布的影响[J].燃料化学学报,1998,26(2):180-184.
    [30]李保庆,张碧江,田福军,等.废塑料在煤-焦炉气共热解中的增油减水效应[J].燃料化学学报,1999,27(5):385-388.
    [31]立本英机,安部郁夫主编,高尚愚译编.活性炭的应用技术-其维持管理及存在问题[M].东南大学出版社,2002.
    [32]J Walendziewski.Continuous flow cracking of waste plastics[J].Fuel Processing Technology,2005,86:1265-1278.
    [33]N Miskolczi,L Barthaa,G Deak,B Jover.Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons[J].Polymer Degradation and Stability,2004,86:357-366.
    [34]陈镜泓,李传儒.热分析及其应用[M].科学出版社,1985.
    [35]蔡正千.热分析[M].高等教育出版社,1993.
    [36]富宇,曾凡龙,潘鼎.Polynosic基活性炭纤维的制备[J].炭素,2006,4:44-48.
    [37]B XU,F WU,G CAO,Y YANG.Effect of carbonization temperature on microstructure of PAN-based activated carbon fibers prepared by CO_2 activation[J].New Carbon Materials,2006,3:14-18.
    [38]李全明.不同活化法制备的聚丙烯腈基活性炭纤维的性能比较[J].炭素技术, 2005,5(24):11-14.
    [39]付正芳.聚丙烯腈基中空活性炭纤维的制备及储氢性能的研究[D].东华大学,2005.
    [40]Z Kadirova,Y Kameshima,A Nakajima,K Okada.Preparation and sorption properties of porous materials from refuse paper and plastic fuel(RPF)[J].Journal of Hazardous Materials 2006,B137:352-358.
    [41]E L K Mui,D C K Ko,G McKay.Production of active carbons from waste tyres--a review[J].Carbon,2004,42:2789-2805.
    [42]C A Basar,Y Onal,T Kilicer,D Eren.Adsorptions of high concentration malachite green by two activated carbons having different porous structures[J].Journal of Hazardous Materials,2005,B127:73-80.
    [43]K Nakagawaa,A Nambaa,S R Mukaia,H Tamona.Pisit Ariyadejwanichb,Wiwut Tanthapanichakoonb,Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes[J].Water Research,2004,38:1791-1798.
    [44]K Laszlo,A Szuucs.Surface characterization ofpolyethyleneterephthalate(PET)based activated carbon and the effect of pH on its dsorption capacity from aqueous phenol and2,3,4-trichlorophenolsolutions[J].Carbon,2001,39:1945-1953.
    [45]C J Kirubakaran,K Krishnaiah,S K Seshadri.Experimental study of the production of activated carbon from coconut shells in a fluidized bed reactor[J].Ind.Eng.Chem.Res,1991,27:2411-2416.
    [46]K Laszlo.Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry[J].Colloids and Surfaces,2005,265:32-39.
    [47]P Podkoscielny,K Nieszporek.Heterogeneity of activated carbons in adsorption of phenols from aqueous solutions-Comparison of experimental isotherm data and simulation predictions[J].Applied Surface Science,2007,253:3563-3570.
    [48]张丽丹,王晓宁,韩春英,郭坤敏.活性炭吸附二氧化碳性能的研究[J].北京化工大学学报,2007,1(34):76-80.
    [49]A Arenillas,F Rubiera,J B Parra,C O Ania,J J Pis.Surface modification of low cost carbons for their application in the environmental protection[J].Applied Surface Science,2005,252:619-624.
    [50]解强,张香兰,李兰廷,金雷.活性炭孔结构调节:理论、方法与实践[J].新型碳材料,2005,20(2):183-190.
    [51]荣利霞,解立平,董宝中,林伟刚,王俊.同步辐射小角x射线散射方法研究由城市固体垃圾制备的活性炭[J].物理学报,2003,52(3):630-634.
    [52]张春山,邵曼君.活性炭材料改性及其在环境治理中的应用[J].过程工程学报,2005,5(2):223-227.
    [53]W Qiao,Y Korai,I Mochida,Y Hori,T Maeda.Preparation of an activated carbon artifact:oxidative modification of coconut shell-based carbon to improve the strength[J].Carbon,2002,40:351-358.
    [54]孟庆函,刘玲,宋怀河,等.金属Mn/活性炭电极材料电化学性能的研究[J].功能材料,2004,35(2):209-211.
    [55]曹玉登.煤制活性炭及污染治理[M].北京:中国环境科学出版社,1995.126-130
    [56]吴新华.活性炭生产工艺原理与设计[M].北京:中国林业出版社,1994.78-80
    [57]蒋旭光,池涌,严建华.污泥的热解动力学特性研究[J].环境科学学报,1999,19(2):221-224.
    [58]H Teng,Y C Lin,L Y Hsu.Production of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide[J].Air & Waste Manage,Assoc,2000,50:1940-1946.
    [59]T Ohkubo,T Iiyama,K Kaneko.Organized struetures of methanol in carbon nanospaces at 303K studies within situ X-ray dirffaction[J].Chem.Phys.Letters,1999,312(2-4):191-195.
    [60]S J Gregg,K S W Sing.Adsorption,Surface Area and porosity[M].AcademiePress,NewYork,1982:41-56.
    [61]F Rouquerol,J Rouquerol,K Sing.Adsorptizon by powders and Porous solids[M].London:AeademiePress,1999,165-179.
    [62]A P Terzyk,P A Gauden,P Kowalezyk.What kind of pore size distribution is assumed in the Dubinin-Astakhov adsorption isotherrn equation[J].Carbon,2002,40(15):2879-2886.
    [63]S Gavalda,K Kaneko,K T Thomson,et al.Molecular modeling of carbon aerogels[J].Colloids and Surafaces A,2001,187-188:531-538.
    [64]R J Dombrowski,C M Lastoskie,D R Hyduke.The Horvath-Kawazoe method revisited[J].Colloids and Surafces A,2001,187-188:23-39.
    [65]S A Korili,A Gil.On the application of various methods to evaluate the microporous properties of activated carbons[J].Adsorption,2001,7(3):249-264.
    [66]解立平,林伟刚,杨学民.废弃物基活性炭吸附性能的影响因素[J].新型碳材料,2006,21(2):156-159.
    [67]李良波,孟平蕊.PVC废弃物的炭化处理及最终利用研究[J].中国塑料,2006,20(9):76-79.
    [68]宋玲君,李侃社,周妮娜.废弃聚苯乙烯制备活性炭的初步研究[J].化工新型材料,2006,34(7):69-70,76.
    [69]杨全红,郑经堂,李英,王茂章,张碧江.聚丙烯腈活性炭纤维对硫化氢的常温吸附[J].离子交换与吸附,2000,16(2):120-127.
    [70]张丽丹,王晓宁,韩春英,郭坤敏.活性炭吸附二氧化碳性能的研究[J].北京化工大学学报,2007,1(34):76-80.
    [71]K Nakagawa,R S Mukai,T Suzuki,H Tamon.Gas adsorption on activated carbons from PET mixtures with a metal salt[J].Carbon,2003,41:823-831.
    [72]T Otowa,Y Nojima,T Miyazaki.Development of KOH activated high surface area carbon and its application to drinking water purification[J].Carbon,1997,35(9):1325-1329.
    [73]M A L Rodenas,D C Amoros,A L Solano.Understanding chemical reactions between carbons and NaOH and KOH:an insight into the chemical activation mechanism[J].Carbon,2003,41(2):267-275.
    [74]A R Sanchez,A A Elguezabal,J A Pliego.Chemical activation of Quercus agrifolia char using KOH:evidence of cyanide presence[J].Micropore.Mesopore.Mater.2005,85:331-339.
    [75]M A L Rodenas,D L Castello,D C Amoros,A L Solano.Preparation of activated carbons from Spanish anthracite Ⅱ[J].Activation byNaOHo Carbon,2001,39:751-759.
    [76]D L Castello,M A L Rodenas,D C Amoros,A L Solano.Preparation of activated carbons from Spanish anthracite Ⅰ activation by KOH[J].Carbon,2001,39:741-749.
    [77]J Kobayashi,T Imamura,M Ichikawa,M Kubota,F Watanabe,N Kobayashi,M Hasatani.Production of activated carbon for water vapor adsorption by koh and naoh activation[J].Kagagu Kogaku Ronbunshu,2006,32(2):186-189.
    [78]茹诗松.实验设计[M].北京:中国统计出版社,2004.
    [79]W J Hill,W G Hunter.A Review of Response Surface Methodology:A iterature Survey[J].Technometrics.1966,8(4):571-590.
    [80]R H Myers,D C Montgomery.Response Surface Methodology[M].New York,Wiley and Sons,1995:1-200.
    [81]A I Khuri,J A Cornell.Response Surfaces,2nd Edition[M].New York,Marcel Dekker,INC..1996.
    [82]P J M.Carrott,M M L Ribeiro Carrott,P A M Mourao,Pore size control in activated carbons obtained by pyrolysis under different conditions of chemically impregnated cork[J].Journal of Analytical and Applied Pyrolysis,2006,75(2):120-127.
    [83]A Ahmadpour,D D Do.The preparation of active carbons from coal by chemical and pysical activation[J].Carbon,1996,34(4):471-479.
    [84]D D Do,H D Do.Adsorption Science and Technology[J].2003,21(5):389-423.
    [85]J Li,M Kubota,F Watanabe,N Kobayashi,M Hasatani,Optimal design of fin-type silica gel tube module in the silica gel/water adsorption heat pump[J].Jurnal of Chemical Engineering. 2004, 37(4): 551-557.
    
    [86] M Kubota, M Ichikawa, K Okada, TUeda, RFujisawa, F Watanabe, NKobayashi,M Hasatani. Development of a compact adsorption heat pump with high-performance adsorption module[A]. In: Proceedings of 1 Oth Asian Pacific Confederation of Chemical Engineering (APCChE2004)[C], 2004, 2G-10.
    
    [87] JKobayashi, TFujita, M Sugiyama, N Fukuta, NKobayashi, FWatanabe, M Hasatani. Production of activated carbons for adsorption heat pump by KOH chemical activation[J]. Kagaku Kogaku Ronbunshu, 2003, 29: 562-564.
    
    [88] J Kobayashi, T Imamura, M Ichikawa, M Kubota, F Watanabe, NKobayashi, M Hasatani. Production of activated carbon for water vapor adsorption by KOH and NaOH activation[J]. Kagaku Kogaku Ronbunshu, 2006, 32(2): 186-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700