用户名: 密码: 验证码:
聚烯烃接枝N,N-二烯丙基三聚氰胺和纤维的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯、聚乙烯等聚烯烃作为目前应用最广泛的热塑性聚合物材料,由于其非极性与半结晶性,一定程度地限制了其应用范围。通过对聚烯烃反应挤出接枝改性,可在非极性的聚烯烃分子链上引入极性或功能性侧基,赋予其特殊功能,大大拓宽其应用领域。同时,熔喷纺丝法和共混纺丝法是制备聚合物微/纳米纤维的重要途径,进一步为功能化聚烯烃材料的应用提供了方法。
     本文在结合国内外聚烯烃功能改性研究成果的基础上,选择熔喷用聚丙烯(PP)、低密度聚乙烯(LDPE)和等规聚丙烯(iPP)三种有代表性的聚烯烃材料,以N,N-二烯丙基三聚氰胺(NDAM)为功能单体,采用双螺杆挤出机进行聚烯烃反应挤出接枝改性,制备获得了熔喷用聚丙烯接枝N,N-二烯丙基三聚氰胺(PP-g-NDAM),低密度聚乙烯接枝N,N-二烯丙基三聚氰胺(LDPE-g-NDAM)和等规聚丙烯接枝N,N-二烯丙基三聚氰胺(iPP-g-NDAM)三种接枝聚烯烃共聚物。在此基础上,采用熔喷纺丝法制备了PP-g-NDAM熔喷纤维,采用共混纺丝法将乙酸丁酸纤维素(CAB)与LDPE-g-NDAM, CAB/iPP-g-NDAM体系熔融挤出,利用丙酮出去CAB后,获得LDPE-g-NDAM与iPP-g-NDAM纳米纤维。
     在PP-g-NDAM的研究中,利用红外光谱表征了接枝反应的发生,PP-g-NDAM的接枝率(GD)随过氧化二异丙苯(DCP)用量增加先上升后下降,随NDAM用量增加先快速上升而后缓慢上升;而PP-g-NDAM的熔体流动指数(MFI)随DCP用量增加表现为先下降后上升,随NDAM用量增加出现小幅下降;同时,利用抗氧剂Irganox1010/Irgafos168复配体系很好地抑制了反应挤出过程中PP的降解反应,提高了PP-g-NDAM的热稳定性。与PP相比,PP-g-NDAM未发生晶型转变,熔融温度(Tm)略有下降,结晶温度(Tc)明显上升,且大幅度提高了热稳定性。以最佳原料质量比制得的PP-g-NDAM熔喷纤维的平均直径为3.1μm。熔喷织物的断裂伸长率下降,透气性上升。纤维氯含量最高可达380μg/g PP-g-NDAM熔喷纤维,且氯漂可再生性较好。
     在LDPE-g-NDAM的研究中,利用红外光谱表征了接枝反应的发生LDPE-g-NDAM的GD随过氧化苯甲酰(BPO)用量增加先上升后下降,随NDAM用量单调上升;而LDPE-g-NDAM的MFI随BPO用量增加而下降,随NDAM用量增加而上升;同时,利用液体石蜡、油酸很好地抑制了反应挤出过程中的交联反应。与LDPE相比,LDPE-g-NDAM的Tm略有下降,Tc小幅上升,且热稳定性变化不大。利用共混纺丝工艺制得的LDPE-g-NDAM纳米纤维的平均直径为486nm,活性氯含量最高可达35μg/g LDPE-g-NDAM纳米纤维,且氯漂可再生性较好。
     在iPP-g-NDAM的研究中,利用红外光谱表征了接枝反应的发生,iPP-g-NDAM的GD随着DCP用量增加而上升,随NDAM用量增加而上升;而iPP-g-NDAM的MFI随DCP用量增加而明显上升,随NDAM用量增加而缓慢下降;与iPP相比,iPP-g-NDAM未发生晶型转变,Tm略有下降,Tc明显上升,且热稳定性提高。利用共混纺丝工艺制得的iPP-g-NDAM纳米纤维的平均直径为317nm,活性氯含量最高可达700μg/g iPP-g-NDAM纳米纤维,且氯漂可再生性较好。
As the most widely used thermoplastic polymer materials at present, the applications of polyolefin, particularly polypropylene and polyethylene, are restricted to some extent due to nonpolar and semicrystallization. Polar or functional lateral groups can be grafted onto nonpolar molecular chains of polyolefin via reactive extrusion, enduing it with special functions and making it applicable for more extensive fields. Meanwhile, melt-blown spinning and blended spinning are two important methods to prepare micro/nano fibers, which can be employed to applications of functional polyolefin.
     In this paper, on the basis of present researches on the applications of functional polyolefin both in China and abroad, with melt-blown polypropylene (PP), low density polyethylene (LDPE) and isotactic polypropylene (iPP) selected as the representative polyolefin, and N,N-Diallylmelamine as the functional monomer, the grafting modification of polyolefin via reactive extrusion was taken on a twin-screw extruder. Consequently, melt-blown polypropylene grafted N,N-Diallylmelamine (PP-g-NDAM), low density polyethylene grafted N,N-Diallylmelamine (LDPE-g-NDAM), and isotactic polypropylene grafted N,N-Diallylmelamine (iPP-g-NDAM) were obtained. On the basis of previous study, PP-g-NDAM melt-blown fibers were prepared via melt-blown spinning, cellulose acetate butyrate (CAB)/LDPE-g-NDAM and CAB/iPP-g-NDAM binary hybrids melt extruded, obtaining corresponding nano-fibers via blended spinning.
     In the study of PP-g-NDAM, the FTIR spectra illustrate that NDAM was successfully grafted onto PP backbone. The grafting degree (GD) of PP-g-NDAM increased firstly, then decreased with the increase of dicumyl peroxide (DCP) concentration, whereas the GD increased fast originally and then increased gently with the increase of NDAM concentration. However, the melt flow index (MFI) of PP-g-NDAM decreased originally, and then increased with increasing DCP concentration, and decreased slightly with the increase of NDAM concentration. Meanwhile, the degradation of PP was restrained and the thermal stability of PP-g-NDAM was improved after using the antioxygen Irganox1010/Irgafosl68 blends. No crystal tranformation occurred in PP-g-NDAM, as compared with PP, while its melting temperature (Tm) decreased slightly, crystallization temperature (Tc) increased obviously, and thermal stability was enhanced. The PP-g-NDAM melt-blown fibers prepared with the best weight ratio of raw material had an average diameter of 3.1μm. The elongation at break of obtained melt-blown fibers decreased, the air permeability was improved. The active chlorine content was 380μg/g PP-g-NDAM melt-blown fibers at the maximum, and PP-g-NDAM melt-blown fibers had excellent rechargeability of chlorine bleaching.
     In the study of LDPE-g-NDAM, the FTIR spectra showed NDAM was successfully grafted on the backbone of LDPE. The GD of LDPE-g-NDAM increased firstly then decreased as the BPO concentration increased, and increased as the NDAM concentration increased. However, MFI of LDPE-g-NDAM decreased as the BPO concentration increased, and increased slightly as the NDAM concentration increased. Meanwhile, the crosslinking reaction of LDPE was restrained under using the liquid paraffin and oleic acid. Compared with LDPE, Tm of LDPE-g-NDAM decreased slightly, Tc increased, and thermal stability changed little. The LDPE-g-NDAM nano-fibers, which were prepared via blended spinning, had an average diameter of 486nm. The active chlorine content was 350μg/g LDPE-g-NDAM nano-fibers at the maximum, and LDPE-g-NDAM nano-fibers had excellent rechargeability of chlorine bleaching.
     In the study of iPP-g-NDAM, the FTIR spectra showed NDAM was successfully grafted onto iPP backbone. The GD of iPP-g-NDAM increased as the DCP concentration increased, and increased as the NDAM concentration increased. However, MFI of iPP-g-NDAM increased as the DCP concentration increased, and increased slowly as the NDAM concentration increased. Compared with iPP, no crystal tranformation occurred in PP-g-NDAM, its Tm decreased slightly, Tc increased obviously, and thermal stability was enhanced. The iPP-g-NDAM nanofibers, which were prepared via combined spinning, had an average diameter of 317nm. The active chlorine content was 700μg/g iPP-g-NDAM nanofibers at the maximum, and iPP-g-NDAM nano-fibers had excellent rechargeability of chlorine bleaching.
引文
1.金慧,盛京,原续波.反应挤出聚烯烃接枝改性研究进展.高分子通报,2006(03):37-41.
    2.. 胡友良,乔金梁,吕立新.聚烯烃功能化及改性.2006,北京.3-4.
    3. Tsubokawa N, Hayashi S. Surface Modification of Carbon Microbead by the Grafting of Polymers. Journal of Macromolecular Science-Pure and Applied Chemistry,1995. A32(3):525-535.
    4. Geuskens G, Etoc A, Di Michele P. Surface modification of polymers-Ⅶ. Photochemical grafting of acrylamide and N-isopropylacrylamide onto polyethylene initiated by anthraquinone-2-sulfonate adsorbed at the surface of the polymer. European Polymer Journal,2000.36(2):265-271.
    5. Ruckert D, Geuskens G, Fondu P, Vanerum S. Surface Modification of Polymers.3. Photo-Initiated Grafting of Water-Soluble Vinyl Monomers and Influence on Fibrinogen Adsorption. European Polymer Journal,1995.31(5): 431-435.
    6. Ruckert D, Geuskens G. Surface modification of polymers.4. Grafting of acrylamide via an unexpected mechanism using a water soluble photo-initiator. European Polymer Journal,1996.32(2):201-208.
    7. Zhao JQ, Geuskens G. Surface modification of polymers-Ⅵ. Thermal and radiochemical grafting of acrylamide on polyethylene and polystyrene. European Polymer Journal,1999.35(12):2115-2123.
    8. Zenkiewicz M, Rauchfleisz M, Czuprynska J, Polanski J, Karasiewicz T, Engelgard W. Effects of electron-beam irradiation on surface oxidation of polymer composites. Applied Surface Science,2007.253(22):8992-8999.
    9. 史志兰.聚丙烯辐射接枝改性及其应用.塑料工业,2006(S1):151-155.
    10. Zanini S, Orlandi M, Colombo C, Grimoldi E, Riccardi C. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates. European Physical Journal D,2009.54(2):159-164.
    11. Tokuyama H, Naohara S, Fujioka M, Sakohara S. Preparation of molecular imprinted thermosensitive gels grafted onto polypropylene by plasma-initiated graft polymerization. Reactive & Functional Polymers,2008.68(1):182-188.
    12. Uyama Y, Kato K, Ikada Y. Surface modification of polymers by grafting. Grafting/Characterization Techniques/Kinetic Modeling,1998.137:1-39.
    13. Kubo M, Takashima S, Tsuru K, Hayakawa S, Osaka A, Ohtsuki C. Surface modification of polymers with grafting and coating of silane hybrids and their bioactivity. Organic/Inorganic Hybrid Materials Ii,1999.576:377-382.
    14. Zhao J, Shi QA, Yin LG, Luan SF, Shi HC, Song LJ, Yin JH, Stagnaro P. Polypropylene modified with 2-hydroxyethyl acrylate-g-2-methacryloyloxyethyl phosphorycholine and its hemocompatibility. Applied Surface Science,2010. 256(23):7071-7076.
    15. Henry GRP, Drooghaag X, Rousseaux DDJ, Sclavons M, Devaux J, Marchand-Brynaert J, Carlier V. A practical way of grafting maleic anhydride onto polypropylene providing high anhydride contents without sacrificing excessive molar mass. Journal of Polymer Science Part a-Polymer Chemistry, 2008.46(9):2936-2947.
    16. Kang DJ, Lee SH, Pal K, Park CY, Zhang ZX, Bang DS, Kim JK. Preparation and Characterization of Grafted Maleic Anhydride onto Polypropylene by Reactive Extrusion. Polymer-Korea,2009.33(4):358-363.
    17. Ratzsch M, Arnold M, Borsig E, Bucka H, Reichelt N. Radical reactions on polypropylene in the solid state. Progress in Polymer Science,2002.27(7): 1195-1282.
    18. Yang W, Luo W, Sun Y, He C, Porous polypropylene particle suspension solid phase graft-modification method, Univ Beijing Chem (Uybj).
    19.马里诺.赞索斯.反应挤出:原理与实践.1999,北京:化学工业出版社.5-20.
    20.金慧,盛京,原续波.反应挤出聚烯烃接枝改性研究进展.高分子通报,2006(03):37-40.
    21.王卫卫,邱桂学.反应加工制备接枝聚合物的研究进展.上海塑料,2007(04):1-5.
    22.洪浩群,贾志欣,何慧,贾德民,徐焕翔.聚烯烃接枝改性设备的开发.高分子通报,2006(03):65-72.
    23. Moad G. The synthesis of polyolefin graft copolymers by reactive extrusion. Progress in Polymer Science,1999.24(1):81-142.
    24.付东升,张康助,孙福林,朱光明.反应性挤出原理及应用研究进展.现代塑料加工应用,2003(05):52-58.
    25. Bhattacharya A, Misra BN. Grafting:a versatile means to modify polymers-Techniques, factors and applications. Progress in Polymer Science,2004.29(8): 767-814.
    26. Verbeek CJR, Hanipah SH. Grafting itaconic anhydride onto polyethylene using extrusion. Journal of Applied Polymer Science.116(6):3118-3126.
    27. Gaylord NG, Mahendra M, Role of homopolymerization in the peroxide-catalyzed reaction of maleic anhydride and polyethylene in the absence of solvent, J o P S P L Edition, Editor.1982. p.0360-6384.
    28. Gaylord NG, Mahendra M, Rajendra M, Degradation and cross-linking of ethylene-propylene copolymer rubber on reaction with maleic anhydride and/or peroxides, J o A P Science, Editor.1987 p.1189.
    29. Gaylord NG, Rajendra M, Vijay K, Mohammed T, High density polyethylene-g-maleic anhydride preparation in presence of electron donors, J o A P Science, Editor.1989. p.38.
    30. Russell KE, Kelusky EC, Grafting of maleic anhydride to n-eicosane.1988. p. 2273-2280.
    31.白景美,李树材.聚乙烯熔融挤出接枝马来酸酐的研究.塑料,2005(02):53-55.
    32. Torres N, Robin JJ, Boutevin B, Functionalization of high-density polyethylene in the molten state by glycidyl methacrylate grafting, in Journal of Applied Polymer Science, J o A P Science, Editor.2001. p.81.
    33.石强,朱连超,蔡传伦,殷敬华.反应挤出接枝共聚反应表观链增长常数的测量.高等学校化学学报,2005(09):1757-1760.
    34. Shi Q, Zhu LC, Cai CL, Yin JH, Costa G. Graft chain propagation rate coefficients of acrylic acid in melt graft copolymerization with linear low density polyethylene. Polymer,2006.47(6):1979-1986.
    35. Shi Q, Zhu LC, Cai CL, Yin JH, Costa G. Kinetics study on melt grafting copolymerization of LLDPE with acid monomers using reactive extrusion method. Journal of Applied Polymer Science,2006.101(6):4301-4312.
    36.胡友良.聚丙烯手册.2008,北京:化学工业出版社.383-393.
    37. Zheng K, Liu RG, Chang HB, Shen DY, Huang Y. In situ FTIR spectroscopic study of the conformational change of syndiotactic polypropylene during the isothermal crystallization. Polymer,2009.50(24):5782-5786.
    38. Cheng S, Wen DJ, Wu GQ. Preparation and characterization of fluorinated polypropylene by reactive extrusion with fluorinated acrylate. Journal of Polymer Research,2009.16(3):271-278.
    39. Su FH, Huang HX. Rheology and Thermal Behavior of Long Branching Polypropylene Prepared by Reactive Extrusion. Journal of Applied Polymer Science,2009.113(4):2126-2135.
    40. SuFH, Huang HX. Rheology and Thermal Properties of Polypropylene Modified by Reactive Extrusion with Dicumyl Peroxide and Trimethylol Propane Triacrylate. Advances in Polymer Technology,2009.28(1):16-25.
    41.刘君丽,曲建林,周安宁.N-羟甲基丙烯酰胺熔融接枝聚丙烯的流变性能.合成树脂及塑料,2007(02):61-63.
    42.吴海萍,丁永红,顾伟东,俞强.聚丙烯熔融接枝马来酸酐过程中降解的抑制.现代塑料加工应用,2008(01):8-10.
    43.李颖,谢续明,陈年欢.聚丙烯多单体熔融接枝及其共混物研究.高分子通报,2000(02):73-78.
    44.张超灿,陈艳军,刘长生.高分子化学原理.2008,北京:化学工业出版社.46-47.
    45. Cartier H, Hu GH. Styrene-assisted melt free radical grafting of glycidyl methacrylate onto polypropylene. Journal of Polymer Science Part a-Polymer Chemistry,1998.36(7):1053-1063.
    46. Cartier H, Hu GH. Styrene-assisted free radical grafting of glycidyl methacrylate onto polyethylene in the melt. Journal of Polymer Science Part a-Polymer Chemistry,1998.36(15):2763-2774.
    47. Hu GH, Cartier H. Styrene-assisted melt free radical grafting of glycidyl methacrylate onto an ethylene and propylene rubber. Journal of Applied Polymer Science,1999.71(1):125-133.
    48. Wang D, Xie XM, Jow J, Chen HY, Lai SY. Styrene-assisted melt free-radical grafting of pentaerythritol triacrylate onto polypropylene and its crystallization behavior. Journal of Applied Polymer Science,2008.108(3):1737-1743.
    49. Bettini SHP, Ruvolo AC. Styrene-assisted grafting of maleic anhydride onto polypropylene by reactive processing. Journal of Applied Polymer Science,2008. 107(3):1430-1438.
    50. Ondarcuhu T, Joachim C. Drawing a single nanofibre over hundreds of microns. Europhysics Letters,1998.42(2):215-220.
    51. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer,2007.48(11): 3306-3316.
    52.卢正险,延卫.电纺法及其在制备聚合物纳米纤维中的应用.高分子通报,2005(02):35-41.
    53. Xu XL, Zhuang XL, Chen XS, Wang XR, Yang LX, Jing XB. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromolecular Rapid Communications,2006.27(19):1637-1642.
    54.张大省,王锐.超细纤维生产技术及应用.2007.28-31.
    55. Wang D, Sun G, Chiou BS. A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromolecular Materials and Engineering,2007.292(4):407-414.
    56. Barhate RS, Loong CK, Ramakrishna S. Preparation and characterization of nanofibrous filtering media. Journal of Membrane Science,2006.283(1-2): 209-218.
    57. Yang DY, Lu B, Zhao Y, Jiang XY Fabrication of aligned fibirous arrays by magnetic electrospinning. Advanced Materials,2007.19:3702.
    58. Lin Y, Yao YY, Yang XZ, Shen LM, Li RX, Wu DC. Effect of Gas Flow Rate on Crystal Structures of Electrospun and Gas-Jet/Electrospun Poly(Vinylidene Fluoride)Fibers. Chinese Journal of Polymer Science,2009.27(4):511-516.
    59.李旭清,周虹,姚永毅,林义,陈竹平,吴大诚,伍玲,唐剑,陈春.气流-静电纺丝法制备苯乙烯-丁二烯-苯乙烯嵌段共聚超细纤维.合成纤维,2007(09):14-18.
    60.曹振博,肖茹CAB/iPP双组分体系相态演化与形态控制.化学世界,2009(04):215-219.
    61.廖申扬,肖茹.原位微纤化EPS/CAB共混物的形态结构研究.合成技术及应用,2008(03):25-28.
    62. Wang D, Sun G, Chiou BS. Fabrication of tunable submicro- or nano-structured polyethylene materials from immiscible blends with cellulose acetate butyrate. Macromolecular Materials and Engineering,2008.293(8):657-665.
    63. Wang D, Sun G. Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends. European Polymer Journal,2007.43(8):3587-3596.
    64.王留阳,顾利霞.卤胺化合物在制备抗菌纤维中的应用.上海纺织科技,2005(01):25-26.
    65. Chen Y, Worley SD, Huang TS, Weese J, Kim J, Wei CI, Williams JF. Biocidal polystyrene beads. Ⅲ. Comparison of N-halamine and quat functional groups. Journal of Applied Polymer Science,2004.92(1):363-367.
    66. Chen Y, Worley SD, Huang TS, Weese J, Kim J, Wei CI, Williams JF. Biocidal polystyrene beads. Ⅳ. Functionalized methylated polystyrene. Journal of Applied Polymer Science,2004.92(1):368-372.
    67. Liang J, Chen Y, Barnes K, Wu R, Worley SD, Huang TS. N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials,2006. 27(11): 2495-2501.
    68. Badrossamay MR, Sun G. Acyclic halamine polypropylene polymer:Effect of monomer structure on grafting efficiency, stability and biocidal activities. Reactive & Functional Polymers,2008.68(12):1636-1645.
    69. Badrossamay MR, Sun G. Graft Polymerization of N-tert-Butylacrylamide Onto Polypropylene During Melt Extrusion and Biocidal Properties of its Products. Polymer Engineering and Science,2009.49(2):359-368.
    70.马良海.聚丙烯在熔喷非织造布中应用.现代塑料加工应用,2007(04):59-61.
    71.饶剑辉,靳向煜.PP熔喷过滤滤芯聚合物材料的性能研究.非织造布,2009(02):27-29.
    72.徐家福,杨雅光,郭秉臣.熔喷法非织造布结构与性能分析.非织造布,2005(03):35-39.
    73.洪定一.聚丙烯——原理、工艺与技术.2002,北京:中国石油出版社.450-524.
    74.江移.聚丙烯非织造布亲水改性的研究.非织造布,2008(03):20-22.
    75. Park HJ, Na CK. Preparation of anion exchanger by amination of acrylic acid grafted polypropylene nonwoven fiber and its ion-exchange property. Journal of Colloid and Interface Science,2006.301(1):46-54.
    76.崔晓萍,朱光明,杨健.聚丙烯熔喷非织造布的接枝改性研究.山西大学学报(自然科学版),2005(02):182-185.
    77.杜慷慨,许庆清.丙烯酸悬浮接枝聚丙烯纤维及性能的研究.中国塑料,2005(07):45-48.
    78.唐丽华,李鑫,江渊,王荣民.等离子体引发丙烯酰胺接枝改性聚丙烯非织造布.纺织学报,2007(12):26-29.
    79. Ciszewski A, Gancarz I, Kunicki J, Bryjak M. Plasma-modified polypropylene membranes as separators in high-power alkaline batteries. Surface & Coatings Technology,2006.201(6):3676-3684.
    80. Sun YY, Sun G. Novel regenerable N-halamine polymeric biocides. Ⅲ. Grafting hydantoin-containing monomers onto synthetic fabrics. Journal of Applied Polymer Science,2001.81(6):1517-1525.
    81.钟世云,许乾慰,王公善.聚合物降解与稳定化.2002,北京:化学工业出版社.184-194.
    82. Coiai S, Passaglia E, Aglietto M, Ciardelli F. Control of degradation reactions during radical functionalization of polypropylene in the melt. Macromolecules, 2004.37(22):8414-8423.
    83.朱新远,田国华,王国明,颜德岳,闫东航,周恩乐.等规聚丙烯DSC熔融双峰的成因.高分子材料科学与工程,2001(01):75-77.
    84. Zhang YF, Li X, Wei XS. Isothermal Crystallization Behaviors of Isotactic Polypropylene Nucleated with Nucleating Agent Bicyclic [2,2,1] heptane di-carboxylate. Journal of Macromolecular Science Part B-Physics,2009.48(6): 1125-1131.
    85. Tan XM, Xu YS, Jia GW, Oian J. Ultrasonically initiated grafting of maleic anhydride onto poly(propylene). Macromolecular Reaction Engineering,2007. 1(1):185-190.
    86. Xie F, Wang YZ, Yang B, Liu Y. A novel intumescent flame-retardant polyethylene system. Macromolecular Materials and Engineering,2006.291(3): 247-253.
    87.王全华,付中玉.熔融指数对聚丙烯熔体流动性及纤维强度的影响.北京服装学院学报(自然科学版),2004(04):27-31.
    88.王文.碱性溶液中硫代锑酸钠的测定.河南化工,2001(04):34-35.
    89. White GC. The handbook of chlorination 1986, New York:Van Nostrand Reinhold Co.,Ltd.218.
    90. Qian L, Sun G Durable and regenerable antimicrobial textiles:Chlorine transfer among halamine structures. Industrial & Engineering Chemistry Research,2005. 44(4):852-856.
    91. Liu S, Sun G. Acyclic N-halamine structures in antibacterial modification of cotton. Abstracts of Papers of the American Chemical Society,2006.231: 526-528.
    92. Sanchez Y, Albano C, Perera R, Karam A, Silva P. Characterization of LDPE grafted with diethylmaleate by gamma radiation:Application of FTIR, GPC and SSA techniques. Macromolecular Symposia,2007.257:139-146.
    93. Niaounakis M, Kontou E. Effect of LDPE on the thermomechanical properties of LLDPE-based films. Journal of Polymer Science Part B-Polymer Physics,2005. 43(13):1712-1727.
    94. Verbeek CJR, Hanipah SH. Grafting Itaconic Anhydride onto Polyethylene Using Extrusion. Journal of Applied Polymer Science,2010.116(6):3118-3126.
    95. Moad G, Solomon DH. Radical Reactions, in The Chemistry of Radical Polymerization (Second Edition).2005, Elsevier Science Ltd:Amsterdam. p. 11-48.
    96. Badrossamay MR, Sun G. A Study on Melt Grafting of N-Halamine Moieties onto Polyethylene and Their Antibacterial Activities. Macromolecules,2009. 42(6):1948-1954.
    97. Lu B, Xu GX, Dong JY, Chung TC. Synthesis of well-defined maleic anhydride grafted PE, PP, EP and S-PS polymers via selective modifications of metallocene-prepared polyolefin copolymers. Abstracts of Papers of the American Chemical Society,2000.220:U247-U247.
    98. Yang JH, Yao ZH, Shi D, Huang HL, Wang Y, Yin JH. Efforts to decrease crosslinking extent of polyethylene in a reactive extrusion grafting process. Journal of Applied Polymer Science,2001.79(3):535-543.
    99. Khonakdar HA, Jafari SH, Taheri M, Wagenknecht U, Jehnichen D, Haussler L. Thermal and wide angle X-ray analysis of chemically and radiation-crosslinked low and high density polyethylenes. Journal of Applied Polymer Science,2006. 100(4):3264-3271.
    100.程奎,沈经纬.热塑性聚合物原位成纤研究进展.塑料工业,2004(06):8-10.
    101.王爱平,宋永明,王清文,王伟宏,曾宪忠.利用挤出技术制备马来酸酐接枝聚丙烯.东北林业大学学报,2006(06):87-89.
    102.刘安栋,王顶,王益龙.反应挤出马来酸酐接枝聚丙烯的结构与性能.合成树脂及塑料,2004(03):63-65.
    103. Zhu LC, Tang GB, Shi Q, Cai CL, Yin JH. Neodymium oxide-assisted melt free-radical grafting of maleic anhydride on isotactic-polypropylene by reactive extrusion. Journal of Polymer Science Part B-Polymer Physics,2006.44(1): 134-142.
    104.何和智,李积迁.反应挤出聚丙烯接枝马来酸二丁酯的研究.工程塑料应用,2009(12):22-24.
    105. Wang D, Sun G, Chiou BS, Hinestroza JP. Controllable fabrication and properties of polypropylene nanofibers. Polymer Engineering and Science,2007.47(11): 1865-1872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700